 Frequently asked questions about GNU Maverik.

The latest version of this document can be found online at http://aig.cs.man.ac.uk/maverik/faq.htm

Last changed: 10th January 02

Q1: Will Maverik run on <Insert your OS here>?

Q2: Does Maverik support the <Insert Peripheral Here>?

Q3: Does Maverik support the <Insert Graphics Card Here>?

Q4: My Maverik program doesn't seem to work.

Q5: I get a "error in loading shared libraries" or "rld: Fatal Error: Cannot Successfully Map soname" error.

Q6: I get a "MAV_HOME environment variable not set" error.

Q7: I get a "can't open avatar curve file walking.cset" error message when running the avatar example.

Q8: Why does Maverik run slowly on my old SGI?

Q9: Sometimes after my Maverik application has finished, the keyboard repeat is disabled.

Q10: Where are the pull-down menus, sliders and other widgets?

Q11: Why is there no collision detection?

Q12: Can read in objects defined in <Insert File Format Here>?

Q13: My objects appear to be clipped to planes that don't coincide with the view frustum - I'm getting objects
disappearing when they get near the edge of the window.

Q14: Where is Spot The Dog?

Q15: Is Maverik thread-safe?

Q16: What about multi-distributed users?

Q17: Why are there 'get' functions, but no complimentary 'set' functions? For example, there is a
mav_callbackGetMatrixExec but no equivalent mav_callbackSetMatrixExec?

Q18: I sometimes see a colour banding effect on objects - I get a saw-tooth pattern around the edges of
objects?

Q19: How are MAV_matrix's implemented/ordered?

Q20: Are applications written for Maverik version 4.x compatible with version 5.x?

Q21: How do I recompile modified Maverik soure code, examples, or demos?

Q22: Why are some of the later chapters in the MPG missing?

Q23: Why are some of the functional specifications poorly documented or blank?

Q24: Why do the man pages look horrible on SGI's?

Q25: I get an "ld: cannot open -lGL: No such file or directory" error when compiling Maverik

Q26: Why does mav_matrixRPYGet give the wrong results?

Q27: Why are the numbers returned by mav_fps and mav_fps_avg incorrect?

Q28: What are the issues when dealing with semi-transparent objects?

Q29: Are applications written for Maverik version 5.x compatible with version 6.x?

Q30: Is there a 64 bit version of Maverik?

Q1: Will Maverik run on <Insert your OS here>?

Maverik is available as source code and should compile under Windows, MacOS and on UNIX systems - essentially any system that has OpenGL, Mesa (version 3.1 or above), IrisGL or DirectX (version 8). However, while it is possible to use any of these libraries, OpenGL/Mesa is currently the best supported library for Maverik to use.

Maverik is known to run on RedHat 5.2 and 6.x; FreeBSD 3.2; SuSE 7.1, Irix 5.3, 6.3 and 6.5; SunOS 5.7; MacOS and Windows 98, 2k and NT. This list is not intended to be exhaustive but simply reflects operating systems that we, or others, have access to and tried Maverik with. Ports to other UNIX platforms should be fairly trivial and we belive the code to work on Window 95.

Since we at the University of Manchester do not have access to SunOS, SuSE, FreeBSD, or MacOS; new releases of Maverik cannot be tested to ensure they will compile error-free on these platforms.

Feel free to contact us if you want more details of exactly what porting to other platforms would involve.

Q2: Does Maverik support the <Insert Peripheral Here>?

A standard compilation of Maverik provides supports for a desktop mouse, keyboard and screen. This makes it easy to try out the examples and demonstrations.

The configuration of 3D peripherals used in VR labs tends to be site specific. Code is included in the distribution to support Polhemus FASTRAK and ISOTRAK II six degree of freedom trackers (optionally coupled to Division 3D mice); Ascension Flock of birds (ERC only); Spacetec SpaceBalls and SpaceOrb360s; Magellan Space Mouse; InterSense InterTrax 30 gyroscopic trackers; 5DT data gloves; and a serial Logitech Marble Mouse. With modification other similar specification 6 DOF input devices/tracking technology can be supported. Code to support IBM's ViaVoice speech recognition engine is also provided. This code is not compiled by default since it is not relevant to everyone and requires some manual configuration. See the README in the src/extras directory for more information.

We have also supported more peculiar peripherals in our own lab: Microsoft SideWinder Force-Feedback joystick and our homebuilt MIDI server. These are relatively uncommon devices and so are not included in a "standard" Maverik release. However, if your interested in this code drop us an e-mail.

Q3: Does Maverik support the <Insert Graphics Card Here>?

Maverik ultimately makes calls to a well supported graphics library (OpenGL, IrisGL or DirectX) to perform its rendering. Therefore, if these libraries are hardware accelerated by your graphics card, then Maverik will be accelerated.

For SGI machines this process is seamless. Unfortunately, for PC's things get a little more complicated. Mesa, the freely available OpenGL work-a-like, supports hardware acceleration for a number of graphics boards [see http://mesa3d.sourceforge.net]. Alternatively, the graphic card vendor may supply drivers. We have verified Maverik with the following cards: Voodoo, Voodoo2, TNT, TNT2, GeForce 256, GeForce2 and GeForce 3 based boards. See the Mesa web page for more information and the README.3DFX file in the Mesa distribution for how to compile Mesa to take advantage of Voodoo based graphics boards.

Maverik should automatically detect that a Voodoo based card is present and that hardware acceleration has been requested (it determines this from the MESA_GLX_FX environment variable). Under these circumstances, the default window size is changed to a Voodoo compatible 640x480 and the mouse pointer is restricted, by default, to stay within the graphics window.

Q4: My Maverik program doesn't seem to work.

That's not a question.

Q5: I get a "error in loading shared libraries" or "rld: Fatal Error: Cannot Successfully Map soname" error.

Maverik libraries are dynamically loaded and therefore you may need to include their location in the dynamic library search path environment variable LD_LIBRARY_PATH (or possibly LD_LIBRARYN32_PATH on Irix6). E.g.

export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/usr/local/maverik-6.5/lib

You may also need to include the location of the TDM libraries, if used, in the LD_LIBRARY_PATH.

Q6: I get a "MAV_HOME environment variable not set" error.

Errr, like it says, your MAV_HOME environment variable is not set. Some Maverik applications require this environment variable to be set to point to the location of the Maverik distribution. E.g.

export MAV_HOME=/usr/local/maverik-6.5

Its good practice to set it regardless of whether your application requires it or not.

Q7: I get a "can't open avatar curve file walking.cset" error message when running the avatar example.

Your MAV_HOME environment variable is incorrectly set.

Q8: Why does Maverik run slowly on my old SGI?

For older SGI machines (e.g. a Crimson) which are optimized for IrisGL you need to run the Maverik setup script specifying the IrisGL option:

setup --IrisGL" to generate a version of Maverik based on this

graphics library.

Note: IrisGL is no longer actively supported and its functionality may differ from the OpenGL version of Maverik.

Q9: Sometimes after my Maverik application has finished, the keyboard repeat is disabled.

This problem has been fixed in version 5.4. Thanks to Miklos Szeredi for providing the patch.

Q10: Where are the pull-down menus, sliders and other widgets?

Maverik is intended to be used to display a 3D "VR world" efficiently and flexibly. As such, providing GUI functionality for an application is outside of its scope.

That said, some GUI toolkits provide an OpenGL canvas widget which Maverik can use as its rendering window. GTK+ and Qt are two such toolkits (support for other toolkits should be possible). Support for either of these must be specified to the setup script when compiling Maverik. See README-GTK and README-QT for more information. There are examples of using GTK+ and Qt in the examples/misc/GTK and examples/misc/Qt directories (only compiled if the relevant support is enabled).

Maverik has also been used with xforms. Here the Maverik rendering area and the GUI are separate windows - rather than Maverik being a sub-window forming part of a larger GUI window. There is an example of using xforms in the examples/misc/xforms directory (not compiled by default because it need the xform path specifying).

Q11: Why is there no collision detection?

At first it may appear strange that the standard Maverik navigation does not perform collision detection. What you should remember is that Maverik is a toolkit - it provides you with the functionality to easily detect if a collision has occurred, but does not dictate what happens as a result, that bit is upto you.

Its straightforward to implement navigation which performs collision detection to stop the users movement (an example of this is implemented in the programmers guide). The advantage of Maverik being a C toolkit is that it allows you to apply any additional constraints you wish. For example, collision with an object would only stop the user if:

(1) its volume was greater than some threshold.

(2) its of a certain shape or colour.

(3) its after 5pm on alternate Thursday's.

Q12: Can read in objects defined in <Insert File Format Here>?

Maybe... There are a great number of modelers and file formats out there, but its not our job to support all of these. In fact, we support just three - VRML97 [http://www.vrml.org], Lightwave and AC3D [http://www.ac3d.org].

The VMRL97 parser uses the free CyberVRML97 for C++ library by Satoshi Konno (http://www.cyber.koganei.tokyo.jp/top/index.html). VRML97 support is *not* enabled by default - you must specify its use when installing Maverik. See INSTALL file for more details. Only the geometry of VRML97 files is read, no attempt is made to parse scripts, URL's, viewpoints etc... Furthermore, not all of the numerous ways in which the geometry can be defined are supported, e.g. concave polygons, colour-per-vertex.

AC3D is geometry modeler which, as well as creating and editing objects, can import them from a number of common 3D file formats (including 3DS, DXF, Lightwave and VRML1). Other packages, such as Crossroads and 3DC [there are links to these from the AC3D page], can translate between many different 3D file formats and the AC3D format. Thus, supporting AC3D provides a means of easily creating/editing objects and also indirect support for many common 3D file formats. Here's the rub - a fully working version of AC3D cost $40 US.

Of course, there is nothing stopping you writting your own support for your favorite file format.

Q13: My objects appear to be clipped to planes that don't coincide with the view frustum - I'm getting objects disappearing when they get near the edge of the window.

Your view direction or view up vectors probably aren't normalised.

Q14: Where is Spot The Dog?

Usually under the table. Have a good look.

Q15: Is Maverik thread-safe?

Yes and no. The Maverik kernel is not currently re-entrant. It does not attempt to protect its own data structures from being damaged by multiple threads attempting to access them at once. So in this sense, it's not theadable.

However, on GNU/Linux the system could be compiled using the _REENTRANT libraries and header files, so if you put your own protection around the Maverik calls, it would be safe to use them in threaded programs.

Q16: What about multi-distributed users?

Maverik was designed to provides the management of all the graphics and peripheral driving capabilities *for a single user* in a flexible, customizable and efficient manner.

A complementary system under development, Deva, provides a networked multi-user environment on top of Maverik, with the ability to specify multiple active environments, laws etc.

Q17: Why are there 'get' functions, but no complimentary 'set' functions? For example, there is a mav_callbackGetMatrixExec but no equivalent mav_callbackSetMatrixExec?

Maverik doesn't hold it's own copies of data structures, so once you've 'got' a structure, that really is it. You can do whatever you like with that structure, and Maverik will just use that. There's no need to 'put it back' into Maverik.

Q18: I sometimes see a colour banding effect on objects - I get a saw-tooth pattern around the edges of objects?

These effects are probably due to limited depth buffer resolution and are particularly noticeable when using, but not limited to, Voodoo based cards and Mesa.

There are a limited number of bits comprises the depth buffer with the result that the depth values calculated for two objects whose distance from the eye is large but similar (or indeed the front and back faces of the same object if backface culling has not been enabled) can get quantized to the same value. The result of this is the object or faces may not be correctly depth buffered leading to one "poking through" the other. This "poking through" pattern moves around with the eye point as the depth values of the object/faces get quantized differently.

There are two ways in which you can reduce this effect:

1) Enable backface culling.

2) Reduce the depth range of your model thus allowing it to be more accurately represented with the limited number of bits available. This is achieved through the near and far clip distance set with the function mav_windowPersepectiveSet. It is more beneficial to increase the near clip plane distance that to reduce the far clip plane.

The near and far clip distances can be dynamically modified at run time by pressing Ctrl-F5 to Ctrl-F8 (press Shift-F12 for more information).

Q19: How are MAV_matrix's implemented/ordered?

Easy answer: its unimportant *provided* that you manipulate matrices va the functions Maverik provides and that you use the results of these operations as graphical transformations.

Complex answer:

OpenGL, Maverik and most graphics textbooks use a convention of postmultiplying by column vectors, i.e. v' = M.v

Maverik stores the matrix, M, as a 4x4 array of floats. Maverik follows the standard C convention and uses row-majored access to a 2 dimensional array, i.e. M[i][j] refers to row i column j. Thus, the X translation term of a matrix, the top-right element, is accessed as as M[0][3].

However, OpenGL expects to receive matrices as column-majored, and therefore a 2 dimensional matrix implemented in C needs to be transposed before being passed to OpenGL (see OpenGL programmers guide). Maverik automatically performs this transpose.

Q20: Are applications written for Maverik version 4.x compatible with version 5.x?

Possibly. Version 5 handles matrices in the manner described above, i.e. row majored whereas version 4 used column majored. If you set matrices via the functions Maverik provides, rather than accessing individual elements, then this internal change should not prevent back compatibility. If you do access individual elements, then you will need to transpose the element indices to make a version 4 application work with version 5, i.e. m.mat[2][1] becomes m.mat[1][2].

Also, version 5 fixed a bug in which roll and yaw angles were left rather than right handed. So while the code will still compile and execute, objects may no longer be oriented as before. Replacing mav_matrixSet with mav_matrixSetOld will fix this, but it is recommended that you correct the angles supplied to the mav_matrixSet and mav_matrixRPYSet functions.

In version 4 the avatar's hands were specified relative to his body, version 5 requires them in World coordinates.

Q21: How do I recompile modified Maverik soure code, examples, or demos?

The top level Makefile in the Maverik distribution defines various environment variables before traversing the sub-directories performing a "make" in each. The Makefiles in the sub-directories rely on these environment variables and so will not operate correctly if they are directly executed.

So, if you modify the Maverik source code or examples then to recompile them you must either:

(1) type "make" in the top level directory of the Maverik distribution, or

(2) Manually set the environment variables and type "make" in the sub-directory containing the modifications.

We suggest the first. Traversing the sub-directories where no changes have been made is a fairly quick process.

The examples rely only on two environment variables, MAV_HOME and CC, to indicate where Maverik is installed and what complier options to use (this is documented in the MPG). The demos additionally rely on the OPENGLINCL and OPENGLLIBS environment variables to indicate how to include the OpenGL header files and how to link with the libraries. The Makefiles for the Maverik source code rely on many more environment variables and setting these by hand in not recommended.

Q22: Why are some of the later chapters in the MPG missing?

Maverik is a large system and fully documenting it will take some time. So far we have concentrated our efforts on the MPG and in particular what a beginner to the system needs to know. Advanced usage, such as adding support for new input devices or creating your own types of SMS, has yet to be documented - its coming though.

Q23: Why are some of the functional specifications poorly documented or blank?

See above. We have place holders for all of the functions and types in the MFS, but simply haven't had the time to fully document, and importantly, cross-link them all. As with the MPG, we have concentrated on documenting the most common functions. The others are being steadily added.

Q24: Why do the man pages look horrible on SGI's?

Dunno. If I had to guess I'd say something like they use a different version of groff than pod2man, which created the man pages, was expecting. Live with it or use the HTML versions until this problem is fixed.

Q25: I get an "ld: cannot open -lGL: No such file or directory" error when compiling Maverik

Maverik 5.2 and before linked with -lMesaGL under Linux and FreeBSD. Version 5.3 and later link with -lGL. This change coincides with Mesa changing the name of the library it generates (libMesaGL.so before version 3.1, simply libGL.so after). So, if Maverik can not find libGL.so upgrade to version 3.1 of Mesa or soft link libGL.so to be libMesaGL.so

Q26: Why does mav_matrixRPYGet give the wrong results?

A. It doesn't, it give the correct answer - probably just not the one you want :)

The conversion from an orientation matrix to a set of roll, pitch and yaw values is inherently ill-defined. That is to say there are multiple sets of RPY values which describe a given orientation – there is no one-to-one mapping. For example, a RPY of (0, 0, 145) is mathematically identical to one of (180, 180, 35) in that they both give the same orientation.

mav_matrixRPYGet returns just one of the many possible RPY values which can describe a given orientation. This may or may not be the most "intuitive" set.

If you use all three RPY values together there should not be a problem. What you cant do is modify one of the values in isolation and expect to get sensible behaviour.

Q27: Why are the numbers returned by mav_fps and mav_fps_avg incorrect?

A: mav_fps is based on the elapsed wall-clock time between the start of mav_frameBegin and end of mav_frameEnd. (mav_fps_avg is simply mav_fps averaged over a number of frames).

However, since an OpenGL implementation can buffer commands in several different locations - including network buffers and the graphics accelerator itself - the time recorded by mav_fps may not accurately reflect the time it would take for the commands to complete.

In order to get an accurate time mav_frameEnd must wait until the effects of all previously called OpenGL commands are completed. This can be achieved by setting mav_opt_finish to MAV_TRUE.

Also, this buffering effect needs to be taken into account if you are timing a sequence of graphics commands, for example in order to abort rendering after a given elapsed time. The mav_gfxFinish command can be called to flush the command buffers and wait until their effects have been realised.

Q28: What are the issues when dealing with semi-transparent objects?

A: In order to correctly deal with semi-transparent objects the application must set the mav_opt_trans variable to MAV_TRUE before initialising Maverik.

With this enabled a check is made before each object is rendered to determine if it is semi-transparent. If it is not, the object is rendered immediately; if it is semi-transparent then the object is not rendered but stored in a list for processing later.

At the end of the frame, after all opaque objects have been rendered, the list of semi-transparent objects is traversed. These objects are rendered in back-to-front order - that is the furthest object from the eye point is rendered first, the closest to the eye point last.

In order for Maverik to determine if an object is semi-transparent it executes the getSurfaceParams callback on it. Similarly, the BB callback is executed to obtain the object's bounding box (and hence position) in order to perform the depth sorting. A user-defined class of object would need to provide both of these callbacks if the object is to be correctly treated when semi-transparent.

Note that semi-transparent objects which overlap in space may not appear correctly since the depth sorting effectively treats each object as a point.

Backface culling should be enabled when using semi-transparent objects to avoid the "far-side" of the object being visible.

Q29: Are applications written for Maverik version 5.x compatible with version 6.x?

A: No, but the changes you need to make to a 5.x application in order for it to work with Maverik 6.x are quite small and mechanical:

1. Initialisation - mav_initialise in 5.x has been renamed to be mav_initialiseNoArgs in 6.x and mav_initialiseArgs in 5.x has been renamed to mav_initialise in 6.x.

2. Frame functions - The prototype of MAV_frameFn changed in 6.x to allow arbitrary data to be passed to the function. The easiest way to upgrade any such functions from 5.x to 6.x is to make them take an ignored void * parameter and to call the mav_frameNAdd/Rmv functions with a NULL argument. So,

void fn(void)

mav_frameFn0Add(fn);

in 5.x becomes:

void fn(void *ignored)

mav_frameFn0Add(fn, NULL);

in 6.x.

3. TDM - TDM libraries are now specified at run time and dynamically loaded rather than being statically linked into Maverik. See examples/misc/TDM/tdm.c for an example of how the library is specified.

Q30: Is there a 64 bit version of Maverik?

With Maverik-6.5 it is not important, which sort of an OS you are working with. Either a 32 bit or 64 bit version are now working flawless.

