
ViperCard: Viper Reference Pal
(Version 3.0 for Emacs 21 and XEmacs 20)

Loading Viper

Just type M-x viper-mode followed by RET

OR put

(setq viper-mode t) (require ’viper)

in .emacs

Viper States

Viper has four states: emacs state, vi state, insert state, replace
state. Mode line tells you which state you are in. In emacs state you
can do all the normal GNU Emacs editing. This card explains only
vi state and insert state (replace state is similar to insert state).
GNU Emacs Reference Card explains emacs state. You can
switch states as follows.

from emacs state to vi state C-z

from vi state to emacs state C-z

from vi state to emacs state for 1 command \
from vi state to insert state i, I, a, A, o, O

from vi state to replace state c, C, R

from insert or replace state to vi state ESC

from insert state to vi state for 1 command C-z

Insert Mode

You can do editing in insert state.

go back to vi state ESC

delete previous character C-h, DEL

delete previous word C-w

delete line word C-u

indent shiftwidth forward C-t

indent shiftwidth backward C-d

delete line word C-u

quote following character C-v

emulate Meta key in emacs state C-\
escape to Vi state for one command C-z

The rest of this card explains commands in vi state.

Getting Information on Viper

Execute info command by typing M-x info and select menu item
viper. Also:

describe function attached to the key x \ C-h k x

Leaving Emacs

suspend Emacs :st or :su

exit Emacs permanently C-xC-c

exit current file :wq or :q

c© 2018 Free Software Foundation, Inc. Permissions on back.

Error Recovery

abort command C-c (user level = 1)

abort command C-g (user level > 1)

redraw messed up screen C-l

recover after system crash :rec file

restore a buffer :e! or M-x revert-buffer

Counts

Most commands in vi state accept a count which can be supplied
as a prefix to the commands. In most cases, if a count is given, the
command is executed that many times. E.g., 5 d d deletes 5 lines.

Registers

There are 26 registers (a to z) that can store texts and marks. You
can append a text at the end of a register (say x) by specifying the
register name in capital letter (say X). There are also 9 read only
registers (1 to 9) that store up to 9 previous changes. We will use
x to denote a register.

Entering Insert Mode

insert at point i

append after cursor a

insert before first non-white I

append at end of line A

open line below o

open line above O

Buffers and Windows

move cursor to next window C-x o

delete current window C-x 0

delete other windows C-x 1

split current window into two windows C-x 2

switch to a buffer in the current window C-x buffer
switch to a buffer in another window :n, :b, or C-x 4 buf
kill a buffer :q! or C-x k

list existing buffers :args or C-x b

Files

visit file in the current window v file or :e file
visit file in another window V file
visit file in another frame C-v file
save buffer to the associated file :w or C-xC-s

write buffer to a specified file :w file or C-xC-w

insert a specified file at point :r file or C-xi

get information on the current file C-c g or :f

run the directory editor :e RET or C-xd

2

Viewing the Buffer

scroll to next screen C-f

scroll to previous screen C-b

scroll down half screen C-d

scroll up half screen C-u

scroll down one line C-e

scroll up one line C-y

put current line on the home line z H or z RET

put current line on the middle line z M or z .

put current line on the last line z L or z -

Marking and Returning

mark point in register x m x
set mark at buffer beginning m <

set mark at buffer end m >

set mark at point m .

jump to mark m ,

exchange point and mark ‘ ‘

... and skip to first non-white on line ’ ’

go to mark x ‘ x
... and skip to first non-white on line ’ x
view contents of marker x [x
view contents of register x] x

Macros

Emacs style macros:

start remembering keyboard macro C-x (

finish remembering keyboard macro C-x)

call last keyboard macro *

start remembering keyboard macro @ #

finish macro and put into register x @ x
execute macro stored in register x @ x
repeat last @x command @ @

Pull last macro into register x @ ! x

Vi-style macros (keys to be hit in quick succession):

define Vi-style macro for Vi state :map

define Vi-style macro for Insert state :map!

toggle case-sensitive search //

toggle regular expression search ///

toggle ‘%’ to ignore parentheses inside com-
ments

%%%

Motion Commands

go backward one character h or C-h

go forward one character l

next line keeping the column j or LF or C-n

previous line keeping the column k

next line at first non-white + or RET or C-p

previous line at first non-white -

beginning of line 0

first non-white on line ^

end of line $

go to n-th column on line n |

go to n-th line n G

go to last line G

find matching parenthesis for (), {} and [] %

go to home window line H

go to middle window line M

go to last window line L

Words, Sentences, Paragraphs, Headings

forward word w or W

backward word b or B

end of word e or E

In the case of capital letter commands, a word is delimited by a
non-white character.

forward sentence)

backward sentence (

forward paragraph }

backward paragraph {

forward heading]]

backward heading [[

end of heading []

Find Characters on the Line

find c forward on line f c
find c backward on line F c
up to c forward on line t c
up to c backward on line T c
repeat previous f, F, t or T ;

... in the opposite direction ,

Searching and Replacing

search forward for pat / pat
search backward with previous pat ? RET

search forward with previous pat / RET

search backward for pat ? pat
repeat previous search n

... in the opposite direction N

query replace Q

replace a character by another character c r c
overwrite n lines n R

buffer search (if enabled) g move command

3

Modifying Commands

Most commands that operate on text regions accept the motion
commands, to describe regions. They also accept the Emacs re-
gion specifications r and R. r describes the region between point
and mark, and R describes whole lines in that region. Motion
commands are classified into point commands and line commands.
In the case of line commands, whole lines will be affected by the
command.

The point commands are as follows:

h l 0 ^ $ w W b B e E () / ? ‘ f F t T % ; ,

The line commands are as follows:

j k + - H M L { } G ’

These region specifiers will be referred to as m below.

Delete/Yank/Change Commands

delete yank change
region determined by m d m y m c m
... into register x " x d m " x y m " x c m
a line d d Y or y y c c

current region d r y r c r

expanded region d R y R c R

to end of line D y $ c $

a character after point x y l c l

a character before point DEL y h c h

Overwrite n lines n R

Put Back Commands

Deleted/yanked/changed text can be put back by the following
commands.

Put back at point/above line P

... from register x " x P

put back after point/below line p

... from register x " x p

Repeating and Undoing Modifications

undo last change u or :und

repeat last change . (dot)

Undo is undoable by u and repeatable by .. For example, u... will
undo 4 previous changes. A . after 5dd is equivalent to 5dd, while
3. after 5dd is equivalent to 3dd.

Miscellaneous Commands

shift left shift right filter shell command indent
region < m > m ! m shell-com = m
line < < > > ! ! shell-com = =

join lines J

toggle case (takes count) ~

view register x] x
view marker x] x

lowercase region # c m
uppercase region # C m
execute last keyboard macro on each line in the
region

g m

insert specified string for each line in the region # q m
check spelling of the words in the region # s m

repeat previous ex substitution &

change to previous file C-^

Viper Meta key _

Customization

By default, search is case sensitive. You can change this by inclu-
ding the following line in your ~/.vip file.

(setq viper-case-fold-search t)

The following is a subset of the variety of options available for
customizing Viper. See the Viper manual for details on these and
other options.

variable default value
viper-search-wrap-around t

viper-case-fold-search nil

viper-re-search t

viper-re-replace t

viper-re-query-replace t

viper-auto-indent nil

viper-shift-width 8

viper-tags-file-name "TAGS"

viper-no-multiple-ESC t

viper-ex-style-motion t

viper-always t

viper-custom-file-name "~/.vip"

ex-find-file-shell "csh"

ex-cycle-other-window t

ex-cycle-through-non-buffers t

blink-matching-paren t

buffer-read-only buffer dependent

To bind keys in Vi command state, put lines like these in your
~/.vip file:

(define-key viper-vi-global-user-map "\C-v" ’scroll-down)

(define-key viper-vi-global-user-map "\C-cm" ’smail)

4

Ex Commands in Viper
In vi state, an Ex command is entered by typing:

: ex-command RET

Ex Addresses

current line . next line with pat / pat /

line n n previous line with pat ? pat ?

last line $ n line before a a - n
next line + a through b a , b
previous line - line marked with x ’ x
entire buffer % previous context ’ ’

Addresses can be specified in front of a command. For example,

:.,.+10m$

moves 11 lines below current line to the end of buffer.

Ex Commands

Avoid Ex text manipulation commands except substitute. There
are better VI equivalents for all of them. Also note that all Ex
commands expand % to current file name. To include a % in the
command, escape it with a \. Similarly, # is replaced by previous
file. For Viper, this is the first file in the :args listing for that
buffer. This defaults to the previous file in the VI sense if you have
one window. Ex commands can be made to have history. See the
manual for details.

Ex Text Commands

mark lines matching pat and execute cmds on
these lines

:g /pat/ cmds

mark lines not matching pat and execute cmds
on these lines

:v /pat/ cmds

move specified lines after addr :m addr
copy specified lines after addr :co (or :t) addr
delete specified lines [into register x] :d [x]
yank specified lines [into register x] :y [x]
put back text [from register x] :pu [x]

substitute repl for first string on line matching
pat

:s /pat/repl/

repeat last substitution :&

repeat previous substitute with previous search
pattern as pat

:~

Ex File and Shell Commands

edit file :e file
reedit messed up current file :e!

edit previous file :e#

read in a file :r file
read in the output of a shell command :r !command
write out specified lines into file :w file
save all modified buffers, ask confirmation :W file
save all modified buffers, no confirmation :WW file
write out specified lines at the end of file :w>> file
write to the input of a shell command :w !command
write out and then quit :wq file

run a subshell in a window :sh

execute shell command command :! command
execute previous shell command with args ap-
pended

:!! args

Ex Miscellaneous Commands

define a macro x that expands to cmd :map x cmd
remove macro expansion associated with x :unma x
define a macro x that expands to cmd in insert
state

:map! x cmd

remove macro expansion associated with x in in-
sert state

:unma! x

print line number :.=

print last line number :=

print version number of Viper :ve

shift specified lines to the right :>

shift specified lines to the left :<

join lines :j

mark specified line to register x :k x
set a variable’s value :se

find first definition of tag tag :ta tag

Current directory :pwd

Copyright c© 2018 Free Software Foundation, Inc.

by Michael Kifer, Viper 3.0

by Aamod Sane, VIP version 4.3

by Masahiko Sato, VIP version 3.5

Released under the terms of the GNU General Public License version 3 or

later.

For more Emacs documentation, and the TEX source for this card, see the

Emacs distribution, or https://www.gnu.org/software/emacs

5

