
The tikzfxgraph Package

simplified fi(x) graphics

Version 1.0

Alceu Frigeri*

April 2025

Abstract

This package offers a set of streamlined commands to draw algebraic functions, atop of pgfplots and

gnuplot. Some auxiliary commands are also defined allowing to create sets of functions and user defined

styles.

Contents

1 Introduction 1

2 Requirements 1

3 Commands 2
3.1 Defining Functions’ sets . 2
3.2 User Defined Styles . 2
3.3 Drawing a fi(x) Graph . 3

4 Style’s Default 4

5 Examples 5
5.1 Drawing a Bode Diagram . 5
5.2 A Few Curves at Once . 6
5.3 Further Customization . 7

1 Introduction

The pgfplots[1] package together with gnuplot[3] is extremely flexible, allowing the construction of
very intricate graphics, but said flexibility comes at a cost: the sheer number of parameters to be
set. This package is nothing more than a wrap around pgfplots and gnuplot offering a somewhat
simplified interface.

A command (\fxgraphdraw) and an environment (fxgraph) are provided for drawing one or
more fi(x) curves, as well some auxiliary commands (\fxsetnew and \fxsetappend) to define sets
of functions and one for user defined styles (\fxsetnewstyle).

2 Requirements

One needs to load at least two packages: tikz and pgfplots (it is advisable to set the pgfplots

compatibility to, at least, 1.18 (\pgfplotsset {compat=1.18}). Like

LATEX Code:

\usepackage{tikz}

\usepackage{pgfplots}

\pgfplotsset{compat=1.18}

\usetikzlibrary{pgfplots.units} %this is optional

Besides that the gnuplot must be installed/present.

*https://github.com/alceu-frigeri/tikzfxgraph

1

Note: to be able to call gnuplot you will need to use the --enable-write18 (or
--shell-scape) option in your LATEX run. Keep in mind that gnuplot will create
a set of files that can be used from one run to another, and, unless you change
the domain/functions, --enable-write18 (or --shell-scape) can be kept disable
otherwise.

Warning: As of now, there is a bug on version 6.0.*, under windows, of gnuplot. It
will work, but a series of errors messages will be raised (invalid characters) that’s due
one of the returning files being written in UTF16 instead of UTF8. So, for now, use
at most version 5.4.* https://sourceforge.net/p/gnuplot/bugs/2747/

3 Commands

3.1 Defining Functions’ sets

\fxsetnew {⟨new-fxset⟩}\fxsetnew

This defines/create a ⟨fxset⟩ for later reference. A ⟨fxset⟩ is just a ”repository” of functions
descriptions/specifications.

Note: About dataset’s names: It can be almost anything, the name can contain
strings normally not allowed in a macro name, like spaces, dots, two-dots and so on,
including backslashes, meaning that if someone typesets \XYZ as a dataset, \XYZ will
be it’s name: a backslash isn’t an active character anymore and one can’t use macros
when defining a fxset’s name.

\fxsetappend {⟨fxset⟩} {⟨keyval-list⟩}\fxsetappend

Adds a function description to a given fxset.

Valid Keys when describing a function:

The function itself. It can be any gnuplot valid expression, in terms of x.fx

(optional) An unique identifier. A set of auxiliary files are created by gnuplot using
this as a name suffix. As per the pgfplot manual, they are used to determined if
there is the need to re-run gnuplot.

id

(optional) The name of the function, to appears as a Legend.legend

Besides those, any other pgfplots valid key can be used. (e.g. red , thick : the specific curve will
be in red, using a thick line). For example:

\fxsetnew{set-A} %creating a new 'set'

\fxsetappend{set-A}{

id=f-A0 ,

fx=x^2-x+2 ,

thick %this key comes from tikz/pgf

}

\fxsetappend{set-A}{

id=f-A1 ,

fx=x^2+x+3 ,

red %this key comes from tikz/pgf

}

Note: An error is raised if ⟨fxset⟩ isn’t defined.
Note: Either set a legend for each and every function, or to none of them. Mixing
styles (some with a legend, some without, will result in functions being wrongfully
labelled).

3.2 User Defined Styles

\fxsetnewstyle {⟨style-name⟩} {⟨keyval-list⟩}\fxsetnewstyle

Defines a new pgfplot style key. Which can be later used when drawing fi(x) function graphs (can
be used, for instance, to assure all graphs follow the same style).

Valid Keys when describing a function:

Both x and y axis are linear.linear

Both x and y axis are logarithmic.loglog

2

https://sourceforge.net/p/gnuplot/bugs/2747/

The x axis is logarithmic, the y is linear.semilog x

The y axis is logarithmic, the x is linear.semilog y

Describes the minor ticks to be drawn in the x axis. See below.x ticks

Describes the minor ticks to be drawn in the y axis. See below.y ticks

Besides those, any other pgfplots valid key can be used. (e.g. red , thick : the specific style will
set the lines to be red and thick).

Note that the keys x ticks and y ticks are themselves defined by a set of keyval values, as
follow:

The minimal value (starting value) of the corresponding axis.min

It‘s maximum value.max

(optional) the delta to be used between ticks. Note that, it depends on the kind of
the axis. In case of a linear axis, this is just the delta between ticks. If logarithmic,
it is the geometric distantce between ticks.

delta

(optional) Sets de number of ticks to be calculated. If case of a linear axis it will
set the linear distance to (max−min)/N . In case of a logarithmic axis it will set
the geometric distance to (ln(max)− ln(min))/N . N has precedence over delta.

N

(optional) The units of the corresponding axis.units

The following example will define a style ”my style A”, to be used in a ”semilog x” graph. The
x domain will go from 0.001 up to 100 with ticks at 0.001, 0.01, 0.1, 1.0, 10 and 100. Conversely,
the y domain will go from −π up to +π, with linearly spaced ticks. The ticks will be inside the
graph.

\fxsetnewstyle{my style A}{

semilog x ,

x ticks = {

min = 0.001 ,

max = 100 ,

N = 6 ,

units = rad/s ,

} ,

y ticks = {

min = -3.14159265 ,

max = 3.14159265 ,

N = 8 ,

units = rad ,

} ,

% the following key comes from pgfplot

tick align=inside , %this package's default is outside.

}

Note: The linear, loglog, semilog x and semilog y keys are only used when
setting the ticks (linear or logarithmic). If none is given, it is assumed that both x
and y axis are linear.

Note: If either min or max are missing, no tick list will be generated.

Note: In case of a logarithmic axis, both min and max must greater than zero,
otherwise an error will be raised.

3.3 Drawing a fi(x) Graph

There is a single drawing command \fxgraphdraw and a companion environment fxgraph, both
share the same interface. The graph will be constructed as follow: 1. An outer tikzpicture

environment 2. An inner axis environment 3. The function’s graphs themself 4. (in case of the
fxgraph environment) futher pgfplot commands. The axis environment will first be ”styled” (as
per linear, loglog, semilog x or semilog y, see 4) then the ticks, if defined, will be applied, lastly
any further pgfplot key used when calling those commands.

Note: Given the above construct, generic pgfplot keys used will always have a
precedence over the default styles, regardless of they order of appearance.

\fxgraphdraw {⟨keyval-list⟩}\fxgraphdraw

Creates a graph, and draw one or more functions/sets of functions as describer by ⟨keval-list⟩
(see below).

3

\begin{fxgraph} {⟨keyval-list⟩}
⟨further commands⟩
\end{fxgraph}

fxgraph

Same as \fxgraphdraw, allowing to add further pgfplot and tikz commands.

Valid Keys when describing a graph:

Both x and y axis are linear.linear

Both x and y axis are logarithmic.loglog

The x axis is logarithmic, the y is linear.semilog x

The y axis is logarithmic, the x is linear.semilog y

Describes the minor ticks to be drawn in the x axis. See below.x ticks

Describes the minor ticks to be drawn in the y axis. See below.y ticks

Suppress the outer tikpicture environment.sans tikzpicture

Suppress the outer tikpicture environment.without tikzpicture

Adds a function specification, see 3.1.function

A command separated list of fxsets.fx set

Besides those, any other pgfplots valid key can be used. (e.g. red , thick : the specific style will
set the lines to be red and thick).

The x ticks and y ticks are set the same way as in 3.2 (x tick=⟨keyval-list⟩).
The function key defines (as in 3.1) a function to be draw, it can be used multiple times. Note

that those functions will be drawn before any fx set.
fx set is a comma separated list of ⟨fxset⟩ (as defined in 3.1). All functions fi(x) associated

with each ⟨fxset⟩ will be drawn.
Normally, the \fxgraphdraw command (viz-à-viz fxgraph environment) will insert an axis en-

vironment inside a tizpicture environment. The sans tikzpicture and without tikzpicture keys
will suppress that external tizpicture environment.

4 Style’s Default

For each kind of graph (linear, loglog, semilog) there is a corresponding predefined style:

This is the “base” style. Both axis will be gridded (lines at the corresponding ticks),
with an axis line at the bottom (for x) and the left (for y). Ticks marks will be
outside the graph. The legend (if present) will be at the top right of the graph. The
fi(x) curves will be styled according to two lists: fxgraph color list and fxgraph

line list (see below). The graph width is set to 80% of \textwidth and it’s height
to 35% of \textwidth.

linear axis

It applies the current linear axis style and the log basis is set to 10.loglog axis

It applies the current linear axis style and the log basis is set to 10.semilog x axis

It applies the current linear axis style and the log basis is set to 10.semilog y axis

Those styles can be modified with \pgfplotsset or \pgfkeys (using .style append sub-key, for
instance. See [2] and [1]). If using the \pgfkeys remember to switch first to the pgfplots ‘family’.

When styling a set of functions, two lists are used (cycle multiindex* list from pgfplots):

Function’s color will cycle through red!80!black, green!80!black, blue!80!black,
black, brown!70!black, teal!80!black, orange!80!black, violet!80!black,
cyan!80!black, magenta!80!black, yellow!75!black and black!60!white.

fxgraph color list

Function’s line style will cycle through solid, solid, solid, dashed, dashed, dashed,
dashdotdotted, dashdotdotted and dashdotdotted.

fxgraph line list

Both can be redefined with \pgfplotscreateplotcyclelist from pgfplots.

4

5 Examples

5.1 Drawing a Bode Diagram

\fxsetnewstyle{db style}{

semilog x ,

y ticks = { min = -20 , max = 80 , N = 5 , units = db } ,

}

\fxsetnewstyle{phi style}{

semilog x ,

y ticks = { min = -3.14159265 , max = 3.14159265 , N = 8 , units = rad } ,

}

\fxsetnewstyle{freq range A}{

semilog x ,

x ticks = { min = 0.01 , max = 100000 , N = 7 , units = rad/s } ,

}

%

%%% This is optional, just defining an auxiliary macro with f(x) core expression

%%% Note that this is a valid gnuplot's expression (not LaTeX/TeX/...)

\def\Hs{(x*{0,1}+1)*(x*{0,1}+40000)/((-x^2+0.01*2*400*x*{0,1}+400^2))}

\fxgraphdraw{

semilog x ,

db style ,

freq range A ,

function={fx=20*log10(abs(\Hs))}

}

\fxgraphdraw{

semilog x ,

phi style ,

freq range A ,

function={fx={atan2(imag(\Hs) , real(\Hs))}}

}

10−2 10−1 100 101 102 103 104 105
−20

0

20

40

60

80

[rad/s]

[d
b
]

10−2 10−1 100 101 102 103 104 105
−3.14

−2.36

−1.57

−0.79

0

0.79

1.57

2.36

3.14

[rad/s]

[r
ad

]

5

5.2 A Few Curves at Once

In the example below note that the fx set functions are drawn after the ’Dx’. And that defines
the legend order.

\fxsetnew{set-B}

\fxsetappend{set-B}{id=B0,fx=2*cos(x)+1,legend=B0}

\fxsetappend{set-B}{id=B1,fx=2*sin(2*x)-1,legend=B1,thick}

%the thick (line) keyword comes from tikz

\fxsetnew{set-C}

\fxsetappend{set-C}{id=C0,fx=1.5*cos(x+2)+1,legend=C0}

\fxsetappend{set-C}{id=C1,fx=2*sin(x-2)-1,legend=C1}

\fxgraphdraw{

linear ,

y ticks = {min = -3 , max = 3 , N = 6} ,

x ticks = {min = 0 , max = 3*3.14159265 , N = 6 , units = rad} ,

fx set = {set-B , set-C} ,

function = {id=Dx,fx=x-2,legend=Dx} ,

xlabel = some radians , % from pgfplots

ylabel = This y , % from pgfplots

title = Graph A % from pgfplots

}

\fxgraphdraw{

linear ,

y ticks = {min = -3 , max = 3 , N = 6} ,

x ticks = {min = 0 , max = 3*3.14159265 , N = 6 , units = rad} ,

fx set = {set-C} ,

xlabel = some more , % from pgfplots

ylabel = This y , % from pgfplots

title = Graph B % from pgfplots

}

0 1.57 3.14 4.71 6.28 7.85 9.42
−3

−2

−1

0

1

2

3

some radians [rad]

T
h
is

y

Graph A
Dx

B0

B1

C0

C1

0 1.57 3.14 4.71 6.28 7.85 9.42
−3

−2

−1

0

1

2

3

some more [rad]

T
h
is

y

Graph B
C0

C1

6

5.3 Further Customization

There are many ways, for instance, to have side by side graphs. One could use, for example, a
tabular environment. In the following the tikz library matrix will be used, in which case the
option sans tikzpicture is needed. Furthermore, it is needed to customize the width and height
of each graph. Note: tikz matrix cannot be nested, and since pgfplots legend are created as a
tikz matrix, one can’t have a legend in this case.

\fxsetnew{set-D}

\fxsetappend{set-D}{id=B0,fx=2*cos(x)+1}

\fxsetappend{set-D}{id=B1,fx=2*sin(2*x)-1,thick}

%the thick (line) keyword comes from tikz

\fxsetnew{set-E}

\fxsetappend{set-E}{id=C0,fx=1.5*cos(x+2)+1}

\fxsetappend{set-E}{id=C1,fx=2*sin(x-2)-1}

\begin{tikzpicture}

\matrix{

\fxgraphdraw{

linear ,

y ticks = {min = -3 , max = 3 , N = 6} ,

x ticks = {min = 0 , max = 3*3.14159265 , N = 6} ,

fx set = {set-D} ,

function = {id=Fx,fx=x-2} ,

sans tikzpicture ,

width=0.47\textwidth, % from pgfplots

height=0.30\textwidth , % from pgfplots

} &

\fxgraphdraw{

linear ,

y ticks = {min = -3 , max = 3 , N = 6} ,

x ticks = {min = 0 , max = 3*3.14159265 , N = 6} ,

fx set = {set-E} ,

function = {id=Gx,fx=x-2} ,

sans tikzpicture ,

width=0.47\textwidth, % from pgfplots

height=0.30\textwidth , % from pgfplots

} \\

};

\end{tikzpicture}

0 1.57 3.14 4.71 6.28 7.85 9.42
−3

−2

−1

0

1

2

3

0 1.57 3.14 4.71 6.28 7.85 9.42
−3

−2

−1

0

1

2

3

References

[1] Christian Feuersänger. The PGFPLOTS Package. 2021, p. 573. url: http://mirrors.ctan.
org/graphics/pgf/contrib/pgfplots/doc/pgfplots.pdf (visited on 03/10/2025).

[2] Till Tantau, Mark Wibrow, and Christian Feuersänger. The TikZ and PGF Packages. Institut
für Theoretische Informatik / Universität zu Lübeck. 2023, p. 1321. url: http://mirrors.
ctan.org/graphics/pgf/base/doc/pgfmanual.pdf (visited on 03/10/2025).

[3] Thomas Williams and Colin Kelley. gnuplot 5.4. 2022, p. 316. url: https :/ / gnuplot .
sourceforge.net/docs_5.4/Gnuplot_5_4.pdf (visited on 03/10/2025).

7

http://mirrors.ctan.org/graphics/pgf/contrib/pgfplots/doc/pgfplots.pdf
http://mirrors.ctan.org/graphics/pgf/contrib/pgfplots/doc/pgfplots.pdf
http://mirrors.ctan.org/graphics/pgf/base/doc/pgfmanual.pdf
http://mirrors.ctan.org/graphics/pgf/base/doc/pgfmanual.pdf
https://gnuplot.sourceforge.net/docs_5.4/Gnuplot_5_4.pdf
https://gnuplot.sourceforge.net/docs_5.4/Gnuplot_5_4.pdf

	Introduction
	Requirements
	Commands
	Defining Functions' sets
	User Defined Styles
	Drawing a fi(x) Graph

	Style's Default
	Examples
	Drawing a Bode Diagram
	A Few Curves at Once
	Further Customization

