Package ‘vtreat’

August 19, 2023
Type Package
Title A Statistically Sound 'data.frame' Processor/Conditioner
Version 1.6.4
Date 2023-08-19

URL https://github.com/WinVector/vtreat/,
https://winvector.github.io/vtreat/

BugReports https://github.com/WinVector/vtreat/issues
Maintainer John Mount <jmount@win-vector.com>

Description A 'data.frame' processor/conditioner that prepares real-
world data for predictive modeling in a statistically sound manner.
'vtreat' prepares variables so that data has fewer exceptional cases, making
it easier to safely use models in production. Common problems 'vtreat' defends
against: 'Inf', 'NA', too many categorical levels, rare categorical levels, and new
categorical levels (levels seen during application, but not during training). Reference:
“'vtreat': a data.frame Processor for Predictive Model-
ing", Zumel, Mount, 2016, <DOI:10.5281/zenodo.1173313>.

License GPL-2 | GPL-3
Depends R (>=3.4.0), wrapr (>=2.0.9)
Imports stats, digest

Suggests rquery (>= 1.4.9), rqdatatable (>= 1.3.2), data.table (>=
1.12.2), isotone, lme4, knitr, rmarkdown, parallel, DBI,
RSQLite, datasets, R.rsp, tinytest

VignetteBuilder knitr, R.rsp
RoxygenNote 7.2.3
ByteCompile true
NeedsCompilation no

Author John Mount [aut, cre],
Nina Zumel [aut],
Win-Vector LLC [cph]

Repository CRAN
Date/Publication 2023-08-19 20:00:02 UTC

https://github.com/WinVector/vtreat/
https://winvector.github.io/vtreat/
https://github.com/WinVector/vtreat/issues
https://doi.org/10.5281/zenodo.1173313

2 R topics documented:

R topics documented:

vtreat-package 3
apply_transform L 4
as_rquery_plan e 5
BinomialOutcomeTreatment L 6
buildEvalSets 7
center_scale e 9
classification_parameters L. e e 10
designTreatmentsC 10
designTreatmentsN 13
designTreatmentsZ e e 15
design_missingness_treatment e e e e e e e e e 17
it . e 18
fit prepare e 19
fit_transform e 19
format.vtreatment L 20
getSplitPlanAppLabels L 21
get_feature_names L e e e 21
get_score_frame oL e 22
get_transform L. L e 22
kWayCrossValidation 23
kWayStratifiedY 23
kWayStratifiedYReplace 24
makeCustomCoderCat L 25
makeCustomCoderNum 26
makekWayCrossValidationGroupedByColumn 27
mkCrossFrameCExperiment 0oL 27
mkCrossFrameMExperiment 30
mkCrossFrameNExperiment o 33
MultinomialOutcomeTreatment Lo 36
multinomial_parameterso e e e e e e e e e e 37
novel_value_summary e 38
NumericOutcomeTreatment e 39
oneWayHoldout L 40
patch_columns_into_frame 40
ppCoderC 41
ppCoderN L e e e e 42
PIEPATE . . . o o i e e e e e e e e e e e 42
prepare.multinomial plano o 43
prepare.simple_plan 44
prepare.treatmentplano L Lo 45
pre_comp_xval 47
print.multinomial_plan 48
print.simple_plan L 48
print.treatmentplan L. 49
Print.vtreatmentot e e e e e e e e e e e e 49

problemAppPlan 50

vtreat-package 3

TEEIESSION_PATaAMELErS v v v v v v v e e e e e e e e e e e e e e e e e 50
TQUETY_PIEPATE . . o o v o v e e v e e e e e e e e e e e e e e e e 51
solvelsotone e e e e 52
solveNonDecreasing e 53
solveNonIncreasing L e 54
SOIVE_PIBCEWISE o v i i e e e e e e e e e 55
SOIVE_PIGCEWISEC . . . v v v v i ot e e e e e e e e e e e e 55
spline_variable 56
spline_variablec 56
square_windowo L. oL e e e e e e e e 57
square_windoweC L. Lo e e e e e e e e e e 57
track_values 58
UnsupervisedTreatment e 59
unsupervised_parameterso e i e e e e e 60
value_variables C e 60
value variables N e 62
variable_values e 64
VOAMES .« « ¢ e 64
VOTIZ © o v e e e e e e e e e e 65
Index 66
vtreat-package vtreat: A Statistically Sound 'data.frame’ Processor/Conditioner
Description

A ’data.frame’ processor/conditioner that prepares real-world data for predictive modeling in a sta-
tistically sound manner. ’vtreat’ prepares variables so that data has fewer exceptional cases, making
it easier to safely use models in production. Common problems ’vtreat’ defends against: ’Inf’,
’NA’, too many categorical levels, rare categorical levels, and new categorical levels (levels seen
during application, but not during training). ’vtreat::prepare’ should be used as you would use
’model.matrix’.

Details

For more information:

e vignette('vtreat', package='vtreat')
* vignette(package="'vtreat')

e Website: https://github.com/WinVector/vtreat

https://github.com/WinVector/vtreat

4 apply_transform

Author(s)

Maintainer: John Mount <jmount@win-vector.com>

Authors:
¢ Nina Zumel <nzumel@win-vector.com>
Other contributors:

* Win-Vector LLC [copyright holder]

See Also
Useful links:
* https://github.com/WinVector/vtreat/

* https://winvector.github.io/vtreat/

* Report bugs at https://github.com/WinVector/vtreat/issues

apply_transform Transform second argument by first.

Description

Apply first argument to second as a transform.

Usage

apply_transform(vps, dframe, ..., parallelCluster = NULL)
Arguments

vps vtreat pipe step, object defining transform.

dframe data.frame, data to transform

e not used, forces later arguments to bind by name.

parallelCluster

optional, parallel cluster to run on.

Value

transformed dframe

https://github.com/WinVector/vtreat/
https://winvector.github.io/vtreat/
https://github.com/WinVector/vtreat/issues

as_rquery_plan 5

as_rquery_plan Convert vtreatment plans into a sequence of rquery operations.

Description

Convert vtreatment plans into a sequence of rquery operations.

Usage

as_rquery_plan(treatmentplans, ..., var_restriction = NULL)

Arguments

treatmentplans vtreat treatment plan or list of vtreat treatment plan sharing same outcome and
outcome type.

not used, force any later arguments to bind to names.
var_restriction
character, if not null restrict to producing these variables.

Value

list(optree_generator (ordered list of functions), temp_tables (named list of tables))

See Also

rquery_prepare

Examples

if(requireNamespace("rquery”, quietly = TRUE)) {
dTrainC <- data.frame(x= c('a', 'a', 'a', 'b' ,NA , 'b'),
z= c(1, 2, NA, 4, 5, 6),
y= c(FALSE, FALSE, TRUE, FALSE, TRUE, TRUE),
stringsAsFactors = FALSE)
dTrainC$id <- seg_len(nrow(dTrainC))
treatmentsC <- designTreatmentsC(dTrainC, c("x", "z"), 'y', TRUE)
print(prepare(treatmentsC, dTrainC))
rgplan <- as_rquery_plan(list(treatmentsC))
ops <- flatten_fn_list(rquery::local_td(dTrainC), rgplan$optree_generators)
cat(format(ops))
if(requireNamespace("rqdatatable”, quietly = TRUE)) {
treated <- rqdatatable::ex_data_table(ops, tables = rgplan$tables)
print(treated[])
}
if(requireNamespace("DBI", quietly = TRUE) &&
requireNamespace("RSQLite"”, quietly = TRUE)) {
db <- DBI::dbConnect(RSQLite::SQLite(), ":memory:")
source_data <- rquery::rq_copy_to(db, "dTrainC", dTrainC,

6 BinomialOutcomeTreatment

overwrite = TRUE, temporary = TRUE)

rest <- rquery_prepare(db, rgplan, source_data, "dTreatedC”,
extracols = "id")

resd <- DBI::dbReadTable(db, rest$table_name)

print(resd)

rquery: :rqg_remove_table(db, source_data$table_name)
rquery::rg_remove_table(db, rest$table_name)
DBI: :dbDisconnect(db)

BinomialOutcomeTreatment

Stateful object for designing and applying binomial outcome treat-
ments.

Description

Hold settings and results for binomial classification data preparation.

Usage

BinomialOutcomeTreatment (
var_list,
outcome_name,
outcome_target = TRUE,
cols_to_copy = NULL,
params = NULL,
imputation_map = NULL

)
Arguments
not used, force arguments to be specified by name.
var_list Names of columns to treat (effective variables).

outcome_name Name of column holding outcome variable. dframe[[outcomename]] must be
only finite and non-missing values.

outcome_target Value/level of outcome to be considered "success", and there must be a cut such
that dframe[[outcomename]]==outcometarget at least twice and dframe[[outcomename]]!=outcometar
at least twice.

cols_to_copy list of extra columns to copy.
params parameters list from classification_parameters

imputation_map map from column names to functions of signature f(values: numeric, weights:
numeric), simple missing value imputers.

buildEvalSets 7

Details

Please see https://github.com/WinVector/vtreat/blob/main/Examples/fit_transform/fit_
transform_api.md, mkCrossFrameCExperiment, designTreatmentsC, and prepare. treatmentplan
for details.

buildEvalSets Build set carve-up for out-of sample evaluation.

Description

Return a carve-up of seq_len(nRows). Very useful for any sort of nested model situation (such as
data prep, stacking, or super-learning).

Usage
buildEvalSets(

nRows,

D

dframe = NULL,

y = NULL,
splitFunction = NULL,
nSplits = 3
)
Arguments
nRows scalar, >=1 number of rows to sample from.
no additional arguments, declared to forced named binding of later arguments.
dframe (optional) original data.frame, passed to user splitFunction.
y (optional) numeric vector, outcome variable (possibly to stratify on), passed to

user splitFunction.

splitFunction (optional) function taking arguments nSplits,nRows,dframe, and y; returning a
user desired split.

nSplits integer, target number of splits.

Details

Also sets attribute "splitmethod" on return value that describes how the split was performed. attr(returnValue, splitmethod’)
is one of: ’notsplit’ (data was not split; corner cases like single row data sets), ’oneway’ (leave one

out holdout), "’kwaycross’ (a simple partition), *userfunction’ (user supplied function was actually

used), or a user specified attribute. Any user desired properties (such as stratification on y, or

preservation of groups designated by original data row numbers) may not apply unless you see that

“userfunction’ has been used.

The intent is the user splitFunction only needs to handle "easy cases" and maintain user invari-
ants. If the user splitFunction returns NULL, throws, or returns an unacceptable carve-up then

https://github.com/WinVector/vtreat/blob/main/Examples/fit_transform/fit_transform_api.md
https://github.com/WinVector/vtreat/blob/main/Examples/fit_transform/fit_transform_api.md

8 buildEvalSets

vtreat::buildEvalSets returns its own eval set plan. The signature of splitFunction should be split-
Function(nRows,nSplits,dframe,y) where nSplits is the number of pieces we want in the carve-up,
nRows is the number of rows to split, dframe is the original dataframe (useful for any group control
variables), and y is a numeric vector representing outcome (useful for outcome stratification).

Note that buildEvalSets may not always return a partition (such as one row dataframes), or if the
user split function chooses to make rows eligible for application a different number of times.

Value

list of lists where the app portion of the sub-lists is a disjoint carve-up of seq_len(nRows) and each
list as a train portion disjoint from app.

See Also
kWayCrossValidation, kWayStratifiedY, and makekWayCrossValidationGroupedByColumn

Examples

use
buildEvalSets(200)

longer example
helper fns
fit models using experiment plan to estimate out of sample behavior
fitModelAndApply <- function(trainData,applicaitonData) {
model <- 1lm(y~x,data=trainData)
predict(model,newdata=applicaitonData)
3
simulateQutOfSampleTrainEval <- function(d,fitApplyFn) {
eSets <- buildEvalSets(nrow(d))
evals <- lapply(eSets,
function(ei) { fitApplyFn(d[ei$train,],d[ei$app,]) })
pred <- numeric(nrow(d))
for(eii in seqg_len(length(eSets))) {
pred[eSets[[eii]]$app] <- evals[[eiil]
}
pred
3

run the experiment

set.seed(2352356)

example data

d <- data.frame(x=rnorm(5),y=rnorm(5),
outOfSampleEst=NA, inSampleEst=NA)

fit model on all data

d$inSampleEst <- fitModelAndApply(d,d)

compute in-sample R*2 (above zero, falsely shows a
relation until we adjust for degrees of freedom)
1-sum((d$y-d$inSampleEst)*2)/sum((d$y-mean(d$y))*2)

center_scale

d$outOfSampleEst <-

simulateOutOfSampleTrainEval(d, fitModelAndApply)

compute out-sample R*2 (not positive,
evidence of no relation)
1-sum((d$y-d$outOfSampleEst)*2)/sum((d$y-mean(d$y))*2)

center_scale

Center and scale a set of variables.

Description

Center and scale a set of variables. Other columns are passed through.

Usage

center_scale(d, center, scale)

Arguments
d data.frame to work with
center named vector of variables to center
scale named vector of variables to scale
Value

d with centered and scaled columns altered

Examples

d <- data.frame(x =

y =
vars_to_transform =
t <- base::scale(as

1:5,
C('al, la" lbl, Ib', |bl))

X
.matrix(d[, vars_to_transform, drop = FALSE]),

center = TRUE, scale = TRUE)

centering <- attr(t
scaling <- attr(t,

, "scaled:center"”)

"scaled:scale")

center_scale(d, center = centering, scale = scaling)

10 designTreatmentsC

classification_parameters
vtreat classification parameters.

Description

A list of settings and values for vtreat binomial classification fitting. Please see https://github.
com/WinVector/vtreat/blob/main/Examples/fit_transform/fit_transform_api.md, mkCrossFrameCExperiment,
designTreatmentsC, and prepare. treatmentplan for details.

Usage

classification_parameters(user_params = NULL)

Arguments

user_params list of user overrides.

Value

filled out parameter list

designTreatmentsC Build all treatments for a data frame to predict a categorical outcome.

Description

Function to design variable treatments for binary prediction of a categorical outcome. Data frame
is assumed to have only atomic columns except for dates (which are converted to numeric). Note:
re-encoding high cardinality categorical variables can introduce undesirable nested model bias, for
such data consider using mkCrossFrameCExperiment.

Usage

designTreatmentsC(
dframe,
varlist,
outcomename,
outcometarget = TRUE,

weights = c(),
minFraction = 0.02,
smFactor = 0,
rareCount = 0,
rareSig = NULL,

https://github.com/WinVector/vtreat/blob/main/Examples/fit_transform/fit_transform_api.md
https://github.com/WinVector/vtreat/blob/main/Examples/fit_transform/fit_transform_api.md

designTreatmentsC 11

collarProb = 0,
codeRestriction = NULL,
customCoders = NULL,
splitFunction = NULL,
ncross = 3,

forceSplit = FALSE,
catScaling = TRUE,
verbose = TRUE,
parallelCluster = NULL,
use_parallel = TRUE,
missingness_imputation = NULL,
imputation_map = NULL

)
Arguments
dframe Data frame to learn treatments from (training data), must have at least 1 row.
varlist Names of columns to treat (effective variables).
outcomename Name of column holding outcome variable. dframe[[outcomename]] must be

only finite non-missing values.

outcometarget Value/level of outcome to be considered "success", and there must be a cut such
that dframe[[outcomename]]==outcometarget at least twice and dframe[[outcomename]]!=outcometarget
at least twice.

no additional arguments, declared to forced named binding of later arguments

weights optional training weights for each row

minFraction optional minimum frequency a categorical level must have to be converted to an
indicator column.

smFactor optional smoothing factor for impact coding models.

rareCount optional integer, allow levels with this count or below to be pooled into a shared
rare-level. Defaults to O or off.

rareSig optional numeric, suppress levels from pooling at this significance value greater.
Defaults to NULL or off.

collarProb what fraction of the data (pseudo-probability) to collar data at if doCollar is set

during prepare. treatmentplan.

codeRestriction
what types of variables to produce (character array of level codes, NULL means
no restriction).

customCoders map from code names to custom categorical variable encoding functions (please
see https://github.com/WinVector/vtreat/blob/main/extras/CustomLevelCoders.
md).

splitFunction (optional) see vtreat::buildEvalSets .

ncross optional scalar >=2 number of cross validation splits use in rescoring complex
variables.

forceSplit logical, if TRUE force cross-validated significance calculations on all variables.

https://github.com/WinVector/vtreat/blob/main/extras/CustomLevelCoders.md
https://github.com/WinVector/vtreat/blob/main/extras/CustomLevelCoders.md

12 designTreatmentsC

catScaling optional, if TRUE use glm() linkspace, if FALSE use Im() for scaling.
verbose if TRUE print progress.
parallelCluster

(optional) a cluster object created by package parallel or package snow.

use_parallel logical, if TRUE use parallel methods (when parallel cluster is set).

missingness_imputation
function of signature f(values: numeric, weights: numeric), simple missing
value imputer.

imputation_map map from column names to functions of signature f(values: numeric, weights:
numeric), simple missing value imputers.

Details

The main fields are mostly vectors with names (all with the same names in the same order):

- vars : (character array without names) names of variables (in same order as names on the other
diagnostic vectors) - varMoves : logical TRUE if the variable varied during hold out scoring, only
variables that move will be in the treated frame - #’ - sig : an estimate significance of effect

See the vtreat vignette for a bit more detail and a worked example.
Columns that do not vary are not passed through.

Note: re-encoding high cardinality on training data can introduce nested model bias, consider using
mkCrossFrameCExperiment instead.

Value

treatment plan (for use with prepare)

See Also

prepare.treatmentplan, designTreatmentsN, designTreatmentsZ, mkCrossFrameCExperiment

Examples

dTrainC <- data.frame(x=c('a','a','a','b','b','b"),
z=c(1,2,3,4,5,6),
y=c(FALSE, FALSE, TRUE, FALSE, TRUE, TRUE))
dTestC <- data.frame(x=c('a','b','c',NA),
2=c(10,20,30,NA))
treatmentsC <- designTreatmentsC(dTrainC,colnames(dTrainC),'y"',TRUE)
dTestCTreated <- prepare(treatmentsC,dTestC,pruneSig=0.99)

designTreatmentsN 13

designTreatmentsN build all treatments for a data frame to predict a numeric outcome

Description

Function to design variable treatments for binary prediction of a numeric outcome. Data frame
is assumed to have only atomic columns except for dates (which are converted to numeric). Note:
each column is processed independently of all others. Note: re-encoding high cardinality on training
data categorical variables can introduce undesirable nested model bias, for such data consider using
mkCrossFrameNExperiment.

Usage

designTreatmentsN(
dframe,
varlist,
outcomename,

weights = c(),
minFraction = 0.02,
smFactor = 0,

rareCount = 0,

rareSig = NULL,
collarProb = 0,
codeRestriction = NULL,
customCoders = NULL,
splitFunction = NULL,
ncross = 3,

forceSplit = FALSE,
verbose = TRUE,
parallelCluster = NULL,
use_parallel = TRUE,
missingness_imputation = NULL,
imputation_map = NULL

)
Arguments
dframe Data frame to learn treatments from (training data), must have at least 1 row.
varlist Names of columns to treat (effective variables).
outcomename Name of column holding outcome variable. dframe[[outcomename]] must be

only finite non-missing values and there must be a cut such that dframe[[outcomename]]
is both above the cut at least twice and below the cut at least twice.

no additional arguments, declared to forced named binding of later arguments

weights optional training weights for each row

14 designTreatmentsN

minFraction optional minimum frequency a categorical level must have to be converted to an
indicator column.

smFactor optional smoothing factor for impact coding models.

rareCount optional integer, allow levels with this count or below to be pooled into a shared
rare-level. Defaults to O or off.

rareSig optional numeric, suppress levels from pooling at this significance value greater.
Defaults to NULL or off.

collarProb what fraction of the data (pseudo-probability) to collar data at if doCollar is set
during prepare.treatmentplan.

codeRestriction

what types of variables to produce (character array of level codes, NULL means
no restriction).

customCoders map from code names to custom categorical variable encoding functions (please
see https://github.com/WinVector/vtreat/blob/main/extras/CustomLevelCoders.
md).

splitFunction (optional) see vtreat::buildEvalSets .

ncross optional scalar >=2 number of cross validation splits use in rescoring complex
variables.

forceSplit logical, if TRUE force cross-validated significance calculations on all variables.

verbose if TRUE print progress.

parallelCluster

(optional) a cluster object created by package parallel or package snow.

use_parallel logical, if TRUE use parallel methods (when parallel cluster is set).
missingness_imputation
function of signature f(values: numeric, weights: numeric), simple missing
value imputer.

imputation_map map from column names to functions of signature f(values: numeric, weights:
numeric), simple missing value imputers.
Details

The main fields are mostly vectors with names (all with the same names in the same order):

- vars : (character array without names) names of variables (in same order as names on the other
diagnostic vectors) - varMoves : logical TRUE if the variable varied during hold out scoring, only
variables that move will be in the treated frame - sig : an estimate significance of effect

See the vtreat vignette for a bit more detail and a worked example.

Columns that do not vary are not passed through.

Value

treatment plan (for use with prepare)

See Also

prepare.treatmentplan, designTreatmentsC, designTreatmentsZ, mkCrossFrameNExperiment

https://github.com/WinVector/vtreat/blob/main/extras/CustomLevelCoders.md
https://github.com/WinVector/vtreat/blob/main/extras/CustomLevelCoders.md

designTreatmentsZ 15

Examples

dTrainN <- data.frame(x=c('a','a','a','a','b','b"','b"),
z=c(1,2,3,4,5,6,7),y=c(0,0,0,1,0,1,1))
dTestN <- data.frame(x=c('a','b','c',NA),
z=c(10,20,30,NA))
treatmentsN = designTreatmentsN(dTrainN,colnames(dTrainN),'y")
dTestNTreated <- prepare(treatmentsN,dTestN,pruneSig=0.99)

designTreatmentsZ Design variable treatments with no outcome variable.

Description

Data frame is assumed to have only atomic columns except for dates (which are converted to nu-
meric). Note: each column is processed independently of all others.

Usage

designTreatmentsZ(
dframe,
varlist,
minFraction = 0,
weights = c(),
rareCount = 0,
collarProb = 0,
codeRestriction = NULL,
customCoders = NULL,
verbose = TRUE,
parallelCluster = NULL,
use_parallel = TRUE,
missingness_imputation = NULL,
imputation_map = NULL

)
Arguments
dframe Data frame to learn treatments from (training data), must have at least 1 row.
varlist Names of columns to treat (effective variables).
no additional arguments, declared to forced named binding of later arguments
minFraction optional minimum frequency a categorical level must have to be converted to an

indicator column.

weights optional training weights for each row

16 designTreatmentsZ

rareCount optional integer, allow levels with this count or below to be pooled into a shared
rare-level. Defaults to O or off.

collarProb what fraction of the data (pseudo-probability) to collar data at if doCollar is set
during prepare. treatmentplan.

codeRestriction

what types of variables to produce (character array of level codes, NULL means
no restriction).

customCoders map from code names to custom categorical variable encoding functions (please
see https://github.com/WinVector/vtreat/blob/main/extras/CustomLevelCoders.
md).
verbose if TRUE print progress.
parallelCluster
(optional) a cluster object created by package parallel or package snow.
use_parallel logical, if TRUE use parallel methods (if parallel cluster is set).
missingness_imputation
function of signature f(values: numeric, weights: numeric), simple missing
value imputer.

imputation_map map from column names to functions of signature f(values: numeric, weights:
numeric), simple missing value imputers.

Details

The main fields are mostly vectors with names (all with the same names in the same order):

- vars : (character array without names) names of variables (in same order as names on the other
diagnostic vectors) - varMoves : logical TRUE if the variable varied during hold out scoring, only
variables that move will be in the treated frame

See the vtreat vignette for a bit more detail and a worked example.

Columns that do not vary are not passed through.

Value

treatment plan (for use with prepare)

See Also

prepare.treatmentplan, designTreatmentsC, designTreatmentsN

Examples

dTrainZ <- data.frame(x=c('a','a','a','a"','b','b',NA,'e"','e"),
z=c(1,2,3,4,5,6,7,NA,9))
dTestZ <- data.frame(x=c('a','x"','c',NA),
z=c(10,20,30,NA))
treatmentsZ = designTreatmentsZ(dTrainZ, colnames(dTrainZ),
rareCount=0)
dTrainZTreated <- prepare(treatmentsZ, dTrainZ)

https://github.com/WinVector/vtreat/blob/main/extras/CustomLevelCoders.md
https://github.com/WinVector/vtreat/blob/main/extras/CustomLevelCoders.md

design_missingness_treatment 17

dTestZTreated <- prepare(treatmentsZ, dTestZ)

design_missingness_treatment

Design a simple treatment plan to indicate missingingness and per-
Sform simple imputation.

Description

Design a simple treatment plan to indicate missingingness and perform simple imputation.

Usage

design_missingness_treatment(
dframe,
varlist = colnames(dframe),
invalid_mark = "_invalid_",
drop_constant_columns = FALSE,
missingness_imputation = NULL,
imputation_map = NULL

)
Arguments
dframe data.frame to drive design.
not used, forces later arguments to bind by name.
varlist character, names of columns to process.

invalid_mark character, name to use for NA levels and novel levels.
drop_constant_columns

logical, if TRUE drop columns that do not vary from the treatment plan.
missingness_imputation

function of signature f(values: numeric), simple missing value imputer.

imputation_map map from column names to functions of signature f(values: numeric), simple
missing value imputers.

Value

simple treatment plan.

See Also

prepare.simple_plan

18 fit

Examples

d <- wrapr: :build_frame(
"x1", "x2", "x3" |
AT

NA , 5 , "B" |

3 , 6, NA)

plan <- design_missingness_treatment(d)
prepare(plan, d)

prepare(plan, data.frame(x1=NA, x2=NA, x3="E"))

fit Fit first arguemnt to data in second argument.

Description

Update the state of first argument to have learned or fit from second argument.

Usage
fit(vps, dframe, ..., weights = NULL, parallelCluster = NULL)
Arguments
vps vtreat pipe step, object specifying fit
dframe data.frame, data to fit from.
not used, forces later arguments to bind by name.
weights optional, per-dframe data weights.
parallelCluster
optional, parallel cluster to run on.
Details

Note: input vps is not altered, fit is in returned value.

Value

new fit object

fit_prepare 19

fit_prepare Fit and prepare in a cross-validated manner.

Description

Update the state of first argument to have learned or fit from second argument, and compute a cross
validated example of such a transform.

Usage
fit_prepare(vps, dframe, ..., weights = NULL, parallelCluster = NULL)
Arguments
vps vtreat pipe step, object specifying fit.
dframe data.frame, data to fit from.
not used, forces later arguments to bind by name.
weights optional, per-dframe data weights.
parallelCluster
optional, parallel cluster to run on.
Details

Note: input vps is not altered, fit is in returned list.

Value

@return named list containing: treatments and cross_frame

fit_transform Fit and transform in a cross-validated manner.

Description

Update the state of first argument to have learned or fit from second argument, and compute a cross
validated example of such a transform.

Usage

fit_transform(vps, dframe, ..., weights = NULL, parallelCluster = NULL)

20
Arguments
vps vtreat pipe step, object specifying fit.
dframe data.frame, data to fit from.
not used, forces later arguments to bind by name.
weights optional, per-dframe data weights.
parallelCluster
optional, parallel cluster to run on.
Details

Note: input vps is not altered, fit is in returned list.

Value

@return named list containing: treatments and cross_frame

format.vtreatment

format.vtreatment Display treatment plan.

Description

Display treatment plan.

Usage
S3 method for class 'vtreatment'
format(x, ...)

Arguments
X treatment plan

additional args (to match general signature).

getSplitPlanAppLabels 21

getSplitPlanAppLabels read application labels off a split plan.

Description

read application labels off a split plan.

Usage
getSplitPlanAppLabels(nRow, plan)

Arguments
nRow number of rows in original data.frame.
plan split plan

Value

vector of labels

See Also

kWayCrossValidation, kWayStratifiedY, and makekWayCrossValidationGroupedByColumn

Examples

plan <- kWayStratifiedY(3,2,NULL,NULL)
getSplitPlanAppLabels(3,plan)

get_feature_names Return feasible feature names.

Description

Return previously fit feature names.

Usage

get_feature_names(vps)

Arguments

vps vtreat pipe step, mutable object to read from.

Value

feature names

22

get_transform

get_score_frame Return score frame from vps.

Description

Return previously fit score frame.

Usage

get_score_frame(vps)

Arguments

vps vtreat pipe step, mutable object to read from.

Value

score frame

get_transform Return underlying transform from vps.

Description

Return previously fit transform.

Usage

get_transform(vps)

Arguments

vps vtreat pipe step, mutable object to read from.

Value

transform

kWayCross Validation 23

kWayCrossValidation k-fold cross validation, a splitFunction in the sense of
vtreat::buildEvalSets

Description

k-fold cross validation, a splitFunction in the sense of vtreat::buildEvalSets

Usage

kWayCrossValidation(nRows, nSplits, dframe, y)

Arguments
nRows number of rows to split (>1).
nSplits number of groups to split into (>1,<=nRows).
dframe original data frame (ignored).
y numeric outcome variable (ignored).
Value
split plan
Examples

kWayCrossValidation(7,2,NULL,NULL)

kWayStratifiedY k-fold cross validation stratified on y, a splitFunction in the sense of
vtreat::buildEvalSets

Description

k-fold cross validation stratified on y, a splitFunction in the sense of vtreat::buildEvalSets

Usage

kWayStratifiedY(nRows, nSplits, dframe, y)

Arguments
nRows number of rows to split (>1)
nSplits number of groups to split into (<nRows,>1).
dframe original data frame (ignored).

y numeric outcome variable try to have equidistributed in each split.

24 kWayStratifiedYReplace

Value

split plan

Examples

set.seed(23255)

d <- data.frame(y=sin(1:100))

pStrat <- kWayStratifiedY(nrow(d),5,d,ds$y)
problemAppPlan(nrow(d),5,pStrat, TRUE)

d$stratGroup <- vtreat::getSplitPlanAppLabels(nrow(d),pStrat)
pSimple <- kWayCrossValidation(nrow(d),5,d,d$y)
problemAppPlan(nrow(d),5,pSimple, TRUE)

d$simpleGroup <- vtreat::getSplitPlanAppLabels(nrow(d),pSimple)
summary (tapply (dy,dsimpleGroup,mean))

summary (tapply(dy,dstratGroup,mean))

kWayStratifiedYReplace
k-fold cross validation stratified with replacement on 'y, a splitFunction
in the sense of vtreat::buildEvalSets .

Description

Build a k-fold cross validation sample where training sets are the same size as the original data, and
built by sampling disjoint from test/application sets (sampled with replacement).

Usage

kWayStratifiedYReplace(nRows, nSplits, dframe, y)

Arguments

nRows number of rows to split (>1)

nSplits number of groups to split into (<nRows,>1).

dframe original data frame (ignored).

y numeric outcome variable try to have equidistributed in each split.
Value

split plan

makeCustomCoderCat

Examples

set.seed(23255)
d <- data.frame(y=sin(1:100))
pStrat <- kWayStratifiedYReplace(nrow(d),5,d,d$y)

25

makeCustomCoderCat Make a categorical input custom coder.

Description

Make a categorical input custom coder.

Usage

makeCustomCoderCat (
customCode,
coder,
codeSeq,
v,
vcolin,
zoY,
zC,
zTarget,
weights = NULL,
catScaling = FALSE

)
Arguments
not used, force arguments to be set by name
customCode code name
coder user supplied variable re-coder (see vignette for type signature)
codeSeq argments to custom coder
v variable name
vcolin data column, character
zoY outcome column as numeric
zC if classification outcome column as character
zTarget if classification target class
weights per-row weights

catScaling optional, if TRUE use glm() linkspace, if FALSE use Im() for scaling.

26 makeCustomCoderNum

Value

wrapped custom coder

makeCustomCoderNum Make a numeric input custom coder.

Description

Make a numeric input custom coder.

Usage

makeCustomCoderNum(
customCode,
coder,
codeSeq,
V!
vcolin,
zoY,
zC,
zTarget,
weights = NULL,
catScaling = FALSE

)

Arguments
not used, force arguments to be set by name

customCode code name

coder user supplied variable re-coder (see vignette for type signature)

codeSeq argments to custom coder

v variable name

vecolin data column, numeric

zoY outcome column as numeric

zC if classification outcome column as character

zTarget if classification target class

weights per-row weights

catScaling optional, if TRUE use glm() linkspace, if FALSE use Im() for scaling.
Value

wrapped custom coder

makekWayCross ValidationGroupedByColumn 27

makekWayCrossValidationGroupedByColumn
Build a k-fold cross validation splitter, respecting (never splitting)
grouping Column.

Description

Build a k-fold cross validation splitter, respecting (never splitting) groupingColumn.

Usage

makekWayCrossValidationGroupedByColumn(groupingColumnName)

Arguments
groupingColumnName
name of column to group by.
Value

splitting function in the sense of vtreat::buildEvalSets.

Examples

d <- data.frame(y=sin(1:100))

d$group <- floor(seq_len(nrow(d))/5)

splitter <- makekWayCrossValidationGroupedByColumn('group')
split <- splitter(nrow(d),5,d,ds$y)

d$splitLabel <- vtreat::getSplitPlanAppLabels(nrow(d),split)
rowSums (table(d$group,d$splitlabel)>0)

mkCrossFrameCExperiment
Run categorical cross-frame experiment.

Description

Builds a designTreatmentsC treatment plan and a data frame prepared from dframe that is "cross"
in the sense each row is treated using a treatment plan built from a subset of dframe disjoint from
the given row. The goal is to try to and supply a method of breaking nested model bias other than
splitting into calibration, training, test sets.

28 mkCrossFrameCExperiment

Usage

mkCrossFrameCExperiment(
dframe,
varlist,
outcomename,
outcometarget,

weights = c(),
minFraction = 0.02,
smFactor = 0,
rareCount = 0,

rareSig = 1,

collarProb = 0,
codeRestriction = NULL,
customCoders = NULL,

scale = FALSE,

doCollar = FALSE,
splitFunction = NULL,

ncross = 3,

forceSplit = FALSE,

catScaling = TRUE,

verbose = TRUE,
parallelCluster = NULL,
use_parallel = TRUE,
missingness_imputation = NULL,
imputation_map = NULL

)
Arguments
dframe Data frame to learn treatments from (training data), must have at least 1 row.
varlist Names of columns to treat (effective variables).
outcomename Name of column holding outcome variable. dframe[[outcomename]] must be

only finite non-missing values.

outcometarget Value/level of outcome to be considered "success"”, and there must be a cut such
that dframe[[outcomename]]==outcometarget at least twice and dframe[[outcomename]]!=outcometarget
at least twice.

no additional arguments, declared to forced named binding of later arguments

weights optional training weights for each row

minFraction optional minimum frequency a categorical level must have to be converted to an
indicator column.

smFactor optional smoothing factor for impact coding models.

rareCount optional integer, allow levels with this count or below to be pooled into a shared

rare-level. Defaults to O or off.

rareSig optional numeric, suppress levels from pooling at this significance value greater.
Defaults to NULL or off.

mkCrossFrameCExperiment 29

collarProb what fraction of the data (pseudo-probability) to collar data at if doCollar is set
during prepare.treatmentplan.
codeRestriction
what types of variables to produce (character array of level codes, NULL means
no restriction).
customCoders map from code names to custom categorical variable encoding functions (please
see https://github.com/WinVector/vtreat/blob/main/extras/CustomLevelCoders.

md).

scale optional if TRUE replace numeric variables with regression ("move to outcome-
scale").

doCollar optional if TRUE collar numeric variables by cutting off after a tail-probability

specified by collarProb during treatment design.

splitFunction (optional) see vtreat::buildEvalSets .

ncross optional scalar>=2 number of cross-validation rounds to design.

forceSplit logical, if TRUE force cross-validated significance calculations on all variables.
catScaling optional, if TRUE use glm() linkspace, if FALSE use Im() for scaling.

verbose if TRUE print progress.

parallelCluster

(optional) a cluster object created by package parallel or package snow.

use_parallel logical, if TRUE use parallel methods.

missingness_imputation
function of signature f(values: numeric, weights: numeric), simple missing
value imputer.

imputation_map map from column names to functions of signature f(values: numeric, weights:
numeric), simple missing value imputers.
Value

named list containing: treatments, crossFrame, crossWeights, method, and evalSets

See Also

designTreatmentsC, designTreatmentsN, prepare. treatmentplan

Examples

categorical example
set.seed(23525)

we set up our raw training and application data
dTrainC <- data.frame(

x =c('a', 'a', 'a', 'b', 'b', NA, NA),

z=c(, 2, 3, 4, NA, 6, NA),

y = c(FALSE, FALSE, TRUE, FALSE, TRUE, TRUE, TRUE))

https://github.com/WinVector/vtreat/blob/main/extras/CustomLevelCoders.md
https://github.com/WinVector/vtreat/blob/main/extras/CustomLevelCoders.md

30 mkCrossFrameMExperiment

dTestC <- data.frame(
x =c('a', 'b', 'c', NA),
z = c(10, 20, 30, NA))

we perform a vtreat cross frame experiment
and unpack the results into treatmentsC
and dTrainCTreated
unpack[
treatmentsC = treatments,
dTrainCTreated = crossFrame
1 <- mkCrossFrameCExperiment (
dframe = dTrainC,
varlist = setdiff(colnames(dTrainC), 'y'),
outcomename = 'y',
outcometarget = TRUE,
verbose = FALSE)

the treatments include a score frame relating new

derived variables to original columns

treatmentsC$scoreFrame[, c('origName', 'varName', 'code', 'rsq', 'sig', 'extraModelDegrees')] %.>%
print(.)

the treated frame is a "cross frame"” which

is a transform of the training data built

as if the treatment were learned on a different
disjoint training set to avoid nested model
bias and over-fit.

dTrainCTreated %.>%

head(.) %.>%

print(.)

T

Any future application data is prepared with
the prepare method.
dTestCTreated <- prepare(treatmentsC, dTestC, pruneSig=NULL)

dTestCTreated %.>%
head(.) %.>%
print(.)

mkCrossFrameMExperiment
Function to build multi-outcome vtreat cross frame and treatment plan.

Description

Please see vignette(”"MultiClassVtreat"”, package = "vtreat”) https://winvector.github.
io/vtreat/articles/MultiClassVtreat.html.

https://winvector.github.io/vtreat/articles/MultiClassVtreat.html
https://winvector.github.io/vtreat/articles/MultiClassVtreat.html

mkCrossFrameMExperiment 31

Usage

mkCrossFrameMExperiment
dframe,
varlist,
outcomename,

weights = c(),
minFraction = 0.02,
smFactor = @
rareCount =
rareSig = 1,
collarProb = 0,

codeRestriction = NULL,

customCoders = NULL,

scale = FALSE,

doCollar = FALSE,

splitFunction = vtreat::kWayCrossValidation,
ncross = 3,

forceSplit = FALSE,

catScaling = FALSE,

y_dependent_treatments = c("catB"),

verbose = FALSE,

parallelCluster = NULL,

use_parallel = TRUE,

0,

missingness_imputation = NULL,
imputation_map = NULL
)
Arguments
dframe data to learn from
varlist character, vector of indpendent variable column names.
outcomename character, name of outcome column.
not used, declared to forced named binding of later arguments
weights optional training weights for each row
minFraction optional minimum frequency a categorical level must have to be converted to an
indicator column.
smFactor optional smoothing factor for impact coding models.
rareCount optional integer, allow levels with this count or below to be pooled into a shared
rare-level. Defaults to O or off.
rareSig optional numeric, suppress levels from pooling at this significance value greater.
Defaults to NULL or off.
collarProb what fraction of the data (pseudo-probability) to collar data at if doCollar is set

during prepare.multinomial_plan.

32

mkCrossFrameMExperiment

codeRestriction
what types of variables to produce (character array of level codes, NULL means
no restriction).

customCoders map from code names to custom categorical variable encoding functions (please
see https://github.com/WinVector/vtreat/blob/main/extras/CustomLevelCoders.

md).

scale optional if TRUE replace numeric variables with regression ("move to outcome-
scale").

doCollar optional if TRUE collar numeric variables by cutting off after a tail-probability

specified by collarProb during treatment design.

splitFunction (optional) see vtreat::buildEvalSets .

ncross optional scalar>=2 number of cross-validation rounds to design.
forceSplit logical, if TRUE force cross-validated significance calculations on all variables.
catScaling optional, if TRUE use glm() linkspace, if FALSE use Im() for scaling.

y_dependent_treatments
character what treatment types to build per-outcome level.

verbose if TRUE print progress.
parallelCluster
(optional) a cluster object created by package parallel or package snow.

use_parallel logical, if TRUE use parallel methods.

missingness_imputation
function of signature f(values: numeric, weights: numeric), simple missing
value imputer.

imputation_map map from column names to functions of signature f(values: numeric, weights:
numeric), simple missing value imputers.

Value

a names list containing cross_frame, treat_m, score_frame, and fit_obj_id

See Also

prepare.multinomial_plan

Examples

numeric example
set.seed(23525)

we set up our raw training and application data
dTrainM <- data.frame(

X = C(‘a', lal, laV’ lal, lb|y |bl, NA’ NA)’
z=c(l, 2, 3, 4,5, NA, 7, NA),
y =c¢(9, 0, 0,1,0,1,2, 1))

dTestM <- data.frame(

https://github.com/WinVector/vtreat/blob/main/extras/CustomLevelCoders.md
https://github.com/WinVector/vtreat/blob/main/extras/CustomLevelCoders.md

mkCrossFrameNExperiment 33

C(‘a', lbl, IC', NA),
c(10, 20, 30, NA))

we perform a vtreat cross frame experiment
and unpack the results into treatmentsM,
dTrainMTreated, and score_frame
unpack[
treatmentsM = treat_m,
dTrainMTreated = cross_frame,
score_frame = score_frame
1 <- mkCrossFrameMExperiment (
dframe = dTrainM,
varlist = setdiff(colnames(dTrainM), 'y'),
outcomename = 'y',
verbose = FALSE)

the score_frame relates new

derived variables to original columns

score_frame[, c('origName', 'varName', 'code', 'rsq', 'sig', 'outcome_level')] %.>%
print(.)

the treated frame is a "cross frame” which
is a transform of the training data built
as if the treatment were learned on a different
disjoint training set to avoid nested model
bias and over-fit.
dTrainMTreated %.>%
head(.) %.>%
print(.)

Any future application data is prepared with
the prepare method.
dTestMTreated <- prepare(treatmentsM, dTestM, pruneSig=NULL)

dTestMTreated %.>%
head(.) %.>%
print(.)

mkCrossFrameNExperiment
Run a numeric cross frame experiment.

Description

Builds a designTreatmentsN treatment plan and a data frame prepared from dframe that is "cross"
in the sense each row is treated using a treatment plan built from a subset of dframe disjoint from
the given row. The goal is to try to and supply a method of breaking nested model bias other than
splitting into calibration, training, test sets.

34 mkCrossFrameNExperiment

Usage

mkCrossFrameNExperiment
dframe,
varlist,
outcomename,

weights = c(),
minFraction = 0.02,
smFactor = @
rareCount =
rareSig = 1,
collarProb = 0,
codeRestriction = NULL,
customCoders = NULL,

scale = FALSE,

doCollar = FALSE,
splitFunction = NULL,

ncross = 3,

forceSplit = FALSE,

verbose = TRUE,
parallelCluster = NULL,
use_parallel = TRUE,
missingness_imputation = NULL,
imputation_map = NULL

0,

)
Arguments

dframe Data frame to learn treatments from (training data), must have at least 1 row.

varlist Names of columns to treat (effective variables).

outcomename Name of column holding outcome variable. dframe[[outcomename]] must be
only finite non-missing values and there must be a cut such that dframe[[outcomename]]
is both above the cut at least twice and below the cut at least twice.
no additional arguments, declared to forced named binding of later arguments

weights optional training weights for each row

minFraction optional minimum frequency a categorical level must have to be converted to an
indicator column.

smFactor optional smoothing factor for impact coding models.

rareCount optional integer, allow levels with this count or below to be pooled into a shared
rare-level. Defaults to O or off.

rareSig optional numeric, suppress levels from pooling at this significance value greater.
Defaults to NULL or off.

collarProb what fraction of the data (pseudo-probability) to collar data at if doCollar is set

during prepare. treatmentplan.

mkCrossFrameNExperiment 35

codeRestriction

customCoders

scale

doCollar

splitFunction

Nncross

forceSplit

verbose

parallelCluster

use_parallel

what types of variables to produce (character array of level codes, NULL means
no restriction).

map from code names to custom categorical variable encoding functions (please
see https://github.com/WinVector/vtreat/blob/main/extras/CustomLevelCoders.
md).

optional if TRUE replace numeric variables with regression ("move to outcome-
scale").

optional if TRUE collar numeric variables by cutting off after a tail-probability
specified by collarProb during treatment design.

(optional) see vtreat::buildEvalSets .
optional scalar>=2 number of cross-validation rounds to design.
logical, if TRUE force cross-validated significance calculations on all variables.

if TRUE print progress.

(optional) a cluster object created by package parallel or package snow.

logical, if TRUE use parallel methods.

missingness_imputation

function of signature f(values: numeric, weights: numeric), simple missing
value imputer.

imputation_map map from column names to functions of signature f(values: numeric, weights:

Value

numeric), simple missing value imputers.

named list containing: treatments, crossFrame, crossWeights, method, and evalSets

See Also

designTreatmentsC, designTreatmentsN, prepare.treatmentplan

Examples

numeric example
set.seed(23525)

we set up our raw training and application data
dTrainN <- data.frame(

X =
zZ =
y =

c('a',
c(1, 2,
c(o, o,

'
’

’

’

lav’ |a|, 'b‘, ‘b', NA, NA),
4, 5, NA, 7, NA),
1,0,1,1, 1)

dTestN <- data.frame(

X =
zZ =

c('a',

lbl,

‘c', NA),

c(10, 20, 30, NA))

https://github.com/WinVector/vtreat/blob/main/extras/CustomLevelCoders.md
https://github.com/WinVector/vtreat/blob/main/extras/CustomLevelCoders.md

36 MultinomialOutcome Treatment

we perform a vtreat cross frame experiment
and unpack the results into treatmentsN
and dTrainNTreated
unpack[
treatmentsN = treatments,
dTrainNTreated = crossFrame
1 <- mkCrossFrameNExperiment (
dframe = dTrainN,
varlist = setdiff(colnames(dTrainN), 'y'),
outcomename = 'y',
verbose = FALSE)

the treatments include a score frame relating new

derived variables to original columns

treatmentsN$scoreFrame[, c('origName', 'varName', 'code', 'rsq', 'sig', 'extraModelDegrees')] %.>%
print(.)

the treated frame is a "cross frame” which

is a transform of the training data built

as if the treatment were learned on a different
disjoint training set to avoid nested model
bias and over-fit.

dTrainNTreated %.>%

head(.) %.>%

print(.)

*od o

Any future application data is prepared with
the prepare method.
dTestNTreated <- prepare(treatmentsN, dTestN, pruneSig=NULL)

dTestNTreated %.>%
head(.) %.>%
print(.)

MultinomialOutcomeTreatment

Stateful object for designing and applying multinomial outcome treat-
ments.

Description

Hold settings and results for multinomial classification data preparation.

Usage

MultinomialOutcomeTreatment(

e,
var_list,
outcome_name,

multinomial_parameters 37

cols_to_copy = NULL,
params = NULL,
imputation_map = NULL

)
Arguments
not used, force arguments to be specified by name.
var_list Names of columns to treat (effective variables).

outcome_name Name of column holding outcome variable. dframe[[outcomename]] must be
only finite non-missing values.

cols_to_copy list of extra columns to copy.
params parameters list from multinomial_parameters

imputation_map map from column names to functions of signature f(values: numeric, weights:
numeric), simple missing value imputers.

Details

Please see https://github.com/WinVector/vtreat/blob/main/Examples/fit_transform/fit_
transform_api.md, mkCrossFrameMExperiment and prepare.multinomial_plan for details.

Note: there currently is no designTreatmentsM, so MultinomialOutcomeTreatment$fit() is
implemented in terms of MultinomialOutcomeTreatment$fit_transform()

multinomial_parameters
vtreat multinomial parameters.

Description

A list of settings and values for vtreat multinomial classification fitting. Please see https://
github.com/WinVector/vtreat/blob/main/Examples/fit_transform/fit_transform_api.md,
mkCrossFrameMExperiment and prepare.multinomial_plan for details.

Usage

multinomial_parameters(user_params = NULL)

Arguments

user_params list of user overrides.

Value

filled out parameter list

https://github.com/WinVector/vtreat/blob/main/Examples/fit_transform/fit_transform_api.md
https://github.com/WinVector/vtreat/blob/main/Examples/fit_transform/fit_transform_api.md
https://github.com/WinVector/vtreat/blob/main/Examples/fit_transform/fit_transform_api.md
https://github.com/WinVector/vtreat/blob/main/Examples/fit_transform/fit_transform_api.md

38 novel_value_summary

novel_value_summary Report new/novel appearances of character values.

Description

Report new/novel appearances of character values.

Usage

novel_value_summary(dframe, trackedValues)

Arguments

dframe Data frame to inspect.

trackedValues optional named list mapping variables to know values, allows warnings upon
novel level appearances (see track_values)

Value

frame of novel occurrences

See Also

prepare.treatmentplan, track_values

Examples

set.seed(23525)
zip <- c(NA, paste('z', 1:10, sep = "_"))
N <- 10
d <- data.frame(zip = sample(zip, N, replace=TRUE),
zip2 = sample(zip, N, replace=TRUE),
y = runif(N))
dSample <- d[1:5, , drop = FALSE]
trackedValues <- track_values(dSample, c("zip”, "zip2"))
novel_value_summary(d, trackedValues)

NumericOutcomeTreatment 39

NumericOutcomeTreatment

Stateful object for designing and applying numeric outcome treat-
ments.

Description

Hold settings and results for regression data preparation.

Usage

NumericOutcomeTreatment
var_list,
outcome_name,
cols_to_copy = NULL,
params = NULL,
imputation_map = NULL

)
Arguments
not used, force arguments to be specified by name.
var_list Names of columns to treat (effective variables).

outcome_name Name of column holding outcome variable. dframe[[outcomename]] must be
only finite non-missing values.

cols_to_copy list of extra columns to copy.
params parameters list from regression_parameters

imputation_map map from column names to functions of signature f(values: numeric, weights:
numeric), simple missing value imputers.

Details

Please see https://github.com/WinVector/vtreat/blob/main/Examples/fit_transform/fit_
transform_api.md, mkCrossFrameNExperiment, designTreatmentsN, and prepare. treatmentplan
for details.

https://github.com/WinVector/vtreat/blob/main/Examples/fit_transform/fit_transform_api.md
https://github.com/WinVector/vtreat/blob/main/Examples/fit_transform/fit_transform_api.md

40 patch_columns_into_frame

oneWayHoldout One way holdout, a splitFunction in the sense of vtreat::buildEvalSets.

Description
Note one way holdout can leak target expected values, so it should not be preferred in nested mod-
eling situations. Also, doesn’t respect nSplits.

Usage
oneWayHoldout (nRows, nSplits, dframe, y)

Arguments
nRows number of rows to split (integer >1).
nSplits number of groups to split into (ignored).
dframe original data frame (ignored).
y numeric outcome variable (ignored).
Value
split plan
Examples

oneWayHoldout (3,NULL,NULL,NULL)

patch_columns_into_frame
Patch columns into data.frame.

Description
Add columns from new_frame into old_frame, replacing any columns with matching names in
orig_frame with values from new_frame.

Usage

patch_columns_into_frame(orig_frame, new_frame)

Arguments

orig_frame data.frame to patch into.

new_frame data.frame to take replacement columns from.

ppCoderC 41

Value

patched data.frame

Examples

orig_frame <- data.frame(x =1, y = 2)
new_frame <- data.frame(y = 3, z = 4)
patch_columns_into_frame(orig_frame, new_frame)

ppCoderC Solve a categorical partial pooling problem.

Description

Please see https://win-vector.com/2017/@09/25/custom-level-coding-in-vtreat/ and https:
//win-vector.com/2017/09/28/partial-pooling-for-lower-variance-variable-encoding/.

Usage

ppCoderC(v, vcol, y, w = NULL)

Arguments
v character variable name
vcol character, independent or input variable
y logical, dependent or outcome variable to predict
w row/example weights
Value

scored training data column

https://win-vector.com/2017/09/25/custom-level-coding-in-vtreat/
https://win-vector.com/2017/09/28/partial-pooling-for-lower-variance-variable-encoding/
https://win-vector.com/2017/09/28/partial-pooling-for-lower-variance-variable-encoding/

42 prepare

ppCoderN Solve a numeric partial pooling problem.

Description

Please see https://win-vector.com/2017/@9/25/custom-level-coding-in-vtreat/ and https:
//win-vector.com/2017/09/28/partial-pooling-for-lower-variance-variable-encoding/.

Usage
ppCoderN(v, vcol, y, w = NULL)

Arguments
v character variable name
vcol character, independent or input variable
y numeric, dependent or outcome variable to predict
w row/example weights
Value

scored training data column

prepare Apply treatments and restrict to useful variables.

Description

Apply treatments and restrict to useful variables.

Usage

prepare(treatmentplan, dframe, ...)

Arguments

treatmentplan Plan built by designTreantmentsC() or designTreatmentsN()
dframe Data frame to be treated

no additional arguments, declared to forced named binding of later arguments

See Also

prepare.treatmentplan, prepare.simple_plan, prepare.multinomial_plan

https://win-vector.com/2017/09/25/custom-level-coding-in-vtreat/
https://win-vector.com/2017/09/28/partial-pooling-for-lower-variance-variable-encoding/
https://win-vector.com/2017/09/28/partial-pooling-for-lower-variance-variable-encoding/

prepare.multinomial_plan 43

prepare.multinomial_plan
Function to apply mkCrossFrameMExperiment treatemnts.

Description

Please see vignette(”"MultiClassVtreat”, package = "vtreat"”) https://winvector.github.
io/vtreat/articles/MultiClassVtreat.html.

Usage

S3 method for class 'multinomial_plan'
prepare(
treatmentplan,
dframe,
pruneSig = NULL,
scale = FALSE,
doCollar = FALSE,
varRestriction = NULL,
codeRestriction = NULL,
trackedValues = NULL,
extracols = NULL,
parallelCluster = NULL,
use_parallel = TRUE,
check_for_duplicate_frames = TRUE

Arguments

treatmentplan multinomial_plan from mkCrossFrameMExperiment.
dframe new data to process.

not used, declared to forced named binding of later arguments
pruneSig suppress variables with significance above this level

scale optional if TRUE replace numeric variables with single variable model regres-
sions ("move to outcome-scale"). These have mean zero and (for variables with
significant less than 1) slope 1 when regressed (Im for regression problems/glm
for classification problems) against outcome.

doCollar optional if TRUE collar numeric variables by cutting off after a tail-probability
specified by collarProb during treatment design.

varRestriction optional list of treated variable names to restrict to

codeRestriction
optional list of treated variable codes to restrict to

trackedValues optional named list mapping variables to know values, allows warnings upon
novel level appearances (see track_values)

https://winvector.github.io/vtreat/articles/MultiClassVtreat.html
https://winvector.github.io/vtreat/articles/MultiClassVtreat.html

44 prepare.simple_plan

extracols extra columns to copy.
parallelCluster
(optional) a cluster object created by package parallel or package snow.

use_parallel logical, if TRUE use parallel methods.
check_for_duplicate_frames
logical, if TRUE check if we called prepare on same data.frame as design step.
Value

prepared data frame.

See Also

mkCrossFrameMExperiment, prepare

prepare.simple_plan Prepare a simple treatment.

Description

Prepare a simple treatment.

Usage
S3 method for class 'simple_plan'
prepare(treatmentplan, dframe, ...)
Arguments

treatmentplan A simple treatment plan.
dframe data.frame to be treated.

not used, present for S3 signature consistency.

See Also

design_missingness_treatment, prepare

Examples

d <- wrapr::build_frame(
IIX1 II’ HX2II’ IIX3N |

N
NA 5o
3,6 ,NA)

plan <- design_missingness_treatment(d)

prepare.treatmentplan

prepare(plan, d)

prepare(plan, data.frame(x1=NA, x2=NA, x3="E"))

45

prepare.treatmentplan Apply treatments and restrict to useful variables.

Description

Use a treatment plan to prepare a data frame for analysis. The resulting frame will have new
effective variables that are numeric and free of NaN/NA. If the outcome column is present it will be
copied over. The intent is that these frames are compatible with more machine learning techniques,
and avoid a lot of corner cases (NA,NaN, novel levels, too many levels). Note: each column is
processed independently of all others. Also copies over outcome if present. Note: treatmentplan’s
are not meant for long-term storage, a warning is issued if the version of vtreat that produced the

plan differs from the version running prepare().

Usage

S3 method for class 'treatmentplan'
prepare(
treatmentplan,
dframe,
pruneSig = NULL,
scale = FALSE,
doCollar = FALSE,
varRestriction = NULL,
codeRestriction = NULL,
trackedValues = NULL,
extracols = NULL,
parallelCluster = NULL,
use_parallel = TRUE,
check_for_duplicate_frames = TRUE

Arguments

treatmentplan Plan built by designTreantmentsC() or designTreatmentsN()
dframe Data frame to be treated

no additional arguments, declared to forced named binding of later arguments

pruneSig suppress variables with significance above this level

scale optional if TRUE replace numeric variables with single variable model regres-

sions ("move to outcome-scale"). These have mean zero and (for variables with
significant less than 1) slope 1 when regressed (Im for regression problems/glm
for classification problems) against outcome.

46 prepare.treatmentplan

doCollar optional if TRUE collar numeric variables by cutting off after a tail-probability
specified by collarProb during treatment design.
varRestriction optional list of treated variable names to restrict to
codeRestriction
optional list of treated variable codes to restrict to
trackedValues optional named list mapping variables to know values, allows warnings upon
novel level appearances (see track_values)
extracols extra columns to copy.
parallelCluster
(optional) a cluster object created by package parallel or package snow.
use_parallel logical, if TRUE use parallel methods.
check_for_duplicate_frames
logical, if TRUE check if we called prepare on same data.frame as design step.

Value

treated data frame (all columns numeric- without NA, NaN)

See Also

mkCrossFrameCExperiment, mkCrossFrameNExperiment, designTreatmentsC designTreatmentsN
designTreatmentsZ, prepare

Examples

categorical example
set.seed(23525)

we set up our raw training and application data
dTrainC <- data.frame(

x =c('a', 'a', 'a', 'b', 'b", NA, NA),

z =c(1, 2, 3, 4, NA, 6, NA),

y = c(FALSE, FALSE, TRUE, FALSE, TRUE, TRUE, TRUE))

dTestC <- data.frame(
x =c('a', 'b', 'c', NA),
z = c(10, 20, 30, NA))

we perform a vtreat cross frame experiment
and unpack the results into treatmentsC
and dTrainCTreated
unpack[
treatmentsC = treatments,
dTrainCTreated = crossFrame
1 <- mkCrossFrameCExperiment(
dframe = dTrainC,
varlist = setdiff(colnames(dTrainC), 'y'),
outcomename = 'y',

pre_comp_xval 47

outcometarget = TRUE,
verbose = FALSE)

the treatments include a score frame relating new

derived variables to original columns

treatmentsC$scoreFrame[, c('origName', 'varName', 'code', 'rsq', 'sig', 'extraModelDegrees')] %.>%
print(.)

the treated frame is a "cross frame"” which

is a transform of the training data built

as if the treatment were learned on a different
disjoint training set to avoid nested model
bias and over-fit.

dTrainCTreated %.>%

head(.) %.>%

print(.)

*od o

Any future application data is prepared with
the prepare method.
dTestCTreated <- prepare(treatmentsC, dTestC, pruneSig=NULL)

dTestCTreated %.>%
head(.) %.>%

print(.)
pre_comp_xval Pre-computed cross-plan (so same split happens each time).
Description

Pre-computed cross-plan (so same split happens each time).

Usage

pre_comp_xval(nRows, nSplits, splitplan)

Arguments
nRows number of rows to split (integer >1).
nSplits number of groups to split into (ignored).
splitplan split plan to actually use

Value

splitplan

48

Examples

p1 <- oneWayHoldout(3,NULL,NULL,NULL)
p2 <- pre_comp_xval(3, 3, p1)
p2(3, 3)

print.simple_plan

print.multinomial_plan
Print treatmentplan.

Description

Print treatmentplan.

Usage

S3 method for class 'multinomial_plan'

print(x, ...)
Arguments

X treatmentplan

additional args (to match general signature).
print.simple_plan Print treatmentplan.

Description

Print treatmentplan.

Usage
S3 method for class 'simple_plan'
print(x, ...)

Arguments
X treatmentplan

additional args (to match general signature).

print.treatmentplan

49

print.treatmentplan Print treatmentplan.

Description

Print treatmentplan.

Usage
S3 method for class 'treatmentplan'
print(x, ...)
Arguments
X treatmentplan
additional args (to match general signature).
See Also

designTreatmentsC, designTreatmentsN, designTreatmentsZ, prepare.treatmentplan

print.vtreatment Print treatmentplan.

Description

Print treatmentplan.

Usage
S3 method for class 'vtreatment'
print(x, ...)
Arguments
X treatmentplan
additional args (to match general signature).
See Also

designTreatmentsC, designTreatmentsN, designTreatmentsZ, prepare.treatmentplan

50 regression_parameters

problemAppPlan check if appPlan is a good carve-up of 1:nRows into nSplits groups

Description

check if appPlan is a good carve-up of 1:nRows into nSplits groups

Usage

problemAppPlan(nRows, nSplits, appPlan, strictCheck)

Arguments
nRows number of rows to carve-up
nSplits number of sets to carve-up into
appPlan carve-up to critique
strictCheck logical, if true expect application data to be a carve-up and training data to be a
maximal partition and to match nSplits.
Value

problem with carve-up (null if good)

See Also

kWayCrossValidation, kWayStratifiedY, and makekWayCrossValidationGroupedByColumn

Examples

plan <- kWayStratifiedY(3,2,NULL,NULL)
problemAppPlan(3,3,plan, TRUE)

regression_parameters vtreat regression parameters.

Description

A list of settings and values for vtreat regression fitting. Please see https://github.com/WinVector/
vtreat/blob/main/Examples/fit_transform/fit_transform_api.md, mkCrossFrameCExperiment,
designTreatmentsC, and mkCrossFrameNExperiment, designTreatmentsN, prepare.treatmentplan
for details.

https://github.com/WinVector/vtreat/blob/main/Examples/fit_transform/fit_transform_api.md
https://github.com/WinVector/vtreat/blob/main/Examples/fit_transform/fit_transform_api.md

rquery_prepare

Usage

regression_parameters(user_params = NULL)

Arguments

user_params list of user overrides.

Value

filled out parameter list

51

rquery_prepare

Materialize a treated data frame remotely.

Description

Materialize a treated data frame remotely.

Usage

rquery_prepare(
db,
rgplan,
data_source,
result_table_name,
extracols = NULL,
temporary = FALSE,
overwrite = TRUE,

attempt_nan_inf_mapping = FALSE,

col_sample = NULL,

return_ops = FALSE
)
materialize_treated(

db,

rgplan,

data_source,

result_table_name,
extracols = NULL,
temporary FALSE,
overwrite = TRUE,
attempt_nan
col_sample = NULL,
return_ops = FALSE

inf_mapping = FALSE,

52 solvelsotone

Arguments
db a db handle.
rgplan an query plan produced by as_rquery_plan().
data_source relop, data source (usually a relop_table_source).

result_table_name
character, table name to land result in

force later arguments to bind by name.

extracols extra columns to copy.
temporary logical, if TRUE try to make result temporary.
overwrite logical, if TRUE try to overwrite result.

attempt_nan_inf_mapping
logical, if TRUE attempt to map NaN and Infnity to NA/NULL (goot on Post-
greSQL, not on Spark).

col_sample sample of data to determine column types.
return_ops logical, if TRUE return operator tree instead of materializing.
Value

description of treated table.

Functions

* materialize_treated(): old name for rquery_prepare function

See Also

as_rquery_plan, rqdatatable_prepare

solveIsotone Solve for best single-direction (non-decreasing or non-increasing) fit.

Description

Return a vector of length y that is a function of x (differs at must where x differs) obeying the either
the same order contraints or the opposite order constraints as x. This vector is picked as close to y
(by square-distance) as possible.

Usage

solvelsotone(varName, x, y, w = NULL)

solveNonDecreasing 53

Arguments
varName character, name of variable
X numeric, factor, or character input (not empty, no NAs).
numeric (same length as x no NAs), output to match
numeric positive, same length as x (weights, can be NULL)
Details

Please see https://github.com/WinVector/vtreat/blob/main/extras/MonotoneCoder.md.

Value

isotonicly adjusted y (non-decreasing)

Examples

if(requireNamespace("isotone”, quietly = TRUE)) {
solvelsotone('v', 1:3, c(1,2,1))

3
solveNonDecreasing Solve for best non-decreasing fit using isotone regression (from
the '"isotone" package https://CRAN.R-project.org/package=
isotone).
Description

Return a vector of length y that is a function of x (differs at must where x differs) obeying the same
order constraints as x. This vector is picked as close to y (by square-distance) as possible.

Usage

solveNonDecreasing(varName, x, y, w = NULL)

Arguments
varName character, name of variable
X numeric, factor, or character input (not empty, no NAs).
numeric or castable to such (same length as x no NAs), output to match
numeric positive, same length as x (weights, can be NULL)
Details

Please see https://github.com/WinVector/vtreat/blob/main/extras/MonotoneCoder.md.

https://github.com/WinVector/vtreat/blob/main/extras/MonotoneCoder.md
https://CRAN.R-project.org/package=isotone
https://CRAN.R-project.org/package=isotone
https://github.com/WinVector/vtreat/blob/main/extras/MonotoneCoder.md

54 solveNonlIncreasing

Value

isotonicly adjusted y (non-decreasing)

Examples

if(requireNamespace("”isotone”, quietly = TRUE)) {
solveNonDecreasing('v', 1:3, c(1,2,1))

}

solveNonIncreasing Solve for best non-increasing fit.

Description
Return a vector of length y that is a function of x (differs at must where x differs) obeying the
opposite order constraints as x. This vector is picked as close to y (by square-distance) as possible.
Usage

solveNonIncreasing(varName, x, y, w = NULL)

Arguments
varName character, name of variable
X numeric, factor, or character input (not empty, no NAs).
numeric (same length as x no NAs), output to match
numeric positive, same length as x (weights, can be NULL)
Details

Please see https://github.com/WinVector/vtreat/blob/main/extras/MonotoneCoder.md.

Value

isotonicly adjusted y (non-decreasing)
Examples
if(requireNamespace("isotone”, quietly = TRUE)) {

solveNonIncreasing('v', 1:3, c(1,2,1))

}

https://github.com/WinVector/vtreat/blob/main/extras/MonotoneCoder.md

solve_piecewise 55

solve_piecewise Solve as piecewise linear problem, numeric target.

Description

Return a vector of length y that is a piecewise function of x. This vector is picked as close to y (by
square-distance) as possible for a set of x-only determined cut-points. Cross-validates for a good
number of segments.

Usage

solve_piecewise(varName, x, y, w = NULL)

Arguments
varName character, name of variable
X numeric input (not empty, no NAs).
y numeric or castable to such (same length as x no NAs), output to match
w numeric positive, same length as x (weights, can be NULL)
Value

segmented y prediction

solve_piecewisec Solve as piecewise logit problem, categorical target.

Description

Return a vector of length y that is a piecewise function of x. This vector is picked as close to y (by
square-distance) as possible for a set of x-only determined cut-points. Cross-validates for a good
number of segments.

Usage

solve_piecewisec(varName, x, y, w = NULL)

Arguments
varName character, name of variable
X numeric input (not empty, no NAs).
y numeric or castable to such (same length as x no NAs), output to match
w numeric positive, same length as x (weights, can be NULL)
Value

segmented y prediction

56 spline_variablec

spline_variable Spline variable numeric target.

Description

Return a spline approximation of data.

Usage

spline_variable(varName, x, y, w = NULL)

Arguments
varName character, name of variable
X numeric input (not empty, no NAs).
numeric or castable to such (same length as x no NAs), output to match
numeric positive, same length as x (weights, can be NULL)
Value

spline y prediction

spline_variablec Spline variable categorical target.

Description

Return a spline approximation of the change in log odds.

Usage

spline_variablec(varName, x, y, w = NULL)

Arguments
varName character, name of variable
X numeric input (not empty, no NAs).
numeric or castable to such (same length as x no NAs), output to match
w numeric positive, same length as x (weights, can be NULL)
Value

spline y prediction

square_window 57

square_window Build a square windows variable, numeric target.

Description

Build a square moving average window (KNN in 1d). This is a high-frequency feature.

Usage

square_window(varName, x, y, w = NULL)

Arguments
varName character, name of variable
X numeric input (not empty, no NAs).
y numeric or castable to such (same length as x no NAs), output to match
w numeric positive, same length as x (weights, can be NULL) IGNORED
Value

segmented y prediction

Examples

d <- data.frame(x = c(NA, 1:6), y = c(0, 0, @, 1, 1, 0, 0))
square_window("v", dx, dy)

square_windowc Build a square windows variable, categorical target.

Description

Build a square moving average window (KNN in 1d). This is a high-frequency feature. Approxi-
mation of the change in log odds.

Usage

square_windowc(varName, x, y, w = NULL)

58 track values

Arguments
varName character, name of variable
X numeric input (not empty, no NAs).
y numeric or castable to such (same length as x no NAs), output to match
W numeric positive, same length as x (weights, can be NULL) IGNORED
Value

segmented y prediction

Examples

d <- data.frame(x = c(NA, 1:6), y = c(0, @, 0, 1, 1, 0, 0))
square_window("v", d$x, dsy)

track_values Track unique character values for variables.

Description

Builds lists of observed unique character values of varlist variables from the data frame.

Usage

track_values(dframe, varlist)

Arguments
dframe Data frame to learn treatments from (training data), must have at least 1 row.
varlist Names of columns to treat (effective variables).

Value

named list of values seen.

See Also

prepare.treatmentplan, novel_value_summary

UnsupervisedTreatment 59
Examples

set.seed(23525)
zip <- c(NA, paste('z', 1:100, sep = "_"))
N <- 500
d <- data.frame(zip = sample(zip, N, replace=TRUE),
zip2 = sample(zip, N, replace=TRUE),
y = runif(N))
dSample <- d[1:300, , drop = FALSE]
tplan <- designTreatmentsN(dSample,
c("zip", "zip2"), "y",
verbose = FALSE)
trackedValues <- track_values(dSample, c("zip"”, "zip2"))
don't normally want to catch warnings,
doing it here as this is an example
and must not have unhandled warnings.
tryCatch(
prepare(tplan, d, trackedValues = trackedValues),
warning = function(w) { cat(paste(w, collapse = "\n")) })

UnsupervisedTreatment Stateful object for designing and applying unsupervised treatments.

Description

Hold settings and results for unsupervised data preparation.

Usage

UnsupervisedTreatment (
var_list,
cols_to_copy = NULL,
params = NULL,
imputation_map = NULL

)
Arguments
not used, force arguments to be specified by name.
var_list Names of columns to treat (effective variables).

cols_to_copy list of extra columns to copy.
params parameters list from unsupervised_parameters

imputation_map map from column names to functions of signature f(values: numeric, weights:
numeric), simple missing value imputers.

60 value_variables_ C

Details

Please see https://github.com/WinVector/vtreat/blob/main/Examples/fit_transform/fit_
transform_api.md, designTreatmentsZ and prepare. treatmentplan for details.

Note: for UnsupervisedTreatment fit_transform(d) is implemented as fit(d)$transform(d).

unsupervised_parameters
vtreat unsupervised parameters.

Description

A list of settings and values for vtreat unsupervised fitting. Please see https://github.com/
WinVector/vtreat/blob/main/Examples/fit_transform/fit_transform_api.md, designTreatmentsz,
and prepare. treatmentplan for details.

Usage

unsupervised_parameters(user_params = NULL)

Arguments

user_params list of user overrides.

Value

filled out parameter list

value_variables_C Value variables for prediction a categorical outcome.

Description

Value variables for prediction a categorical outcome.

Usage

value_variables_C(
dframe,
varlist,
outcomename,
outcometarget,
weights = c(),
minFraction = 0.02,
smFactor = 0,

https://github.com/WinVector/vtreat/blob/main/Examples/fit_transform/fit_transform_api.md
https://github.com/WinVector/vtreat/blob/main/Examples/fit_transform/fit_transform_api.md
https://github.com/WinVector/vtreat/blob/main/Examples/fit_transform/fit_transform_api.md
https://github.com/WinVector/vtreat/blob/main/Examples/fit_transform/fit_transform_api.md

value_variables_C

rareCount

rareSig = 1

’

61

0,

collarProb = 0,
scale = FALSE,

doCollar

F

ALSE,

splitFunction = NULL,

ncross 3,
forceSplit
catScaling
verbose

FALSE,
TRUE,

FALSE,
parallelCluster

NULL,

use_parallel = TRUE,

customCoders = list(c.PiecewiseV.num = vtreat::solve_piecewisec, n.PiecewiseV.num =
vtreat::solve_piecewise, c.knearest.num = vtreat::square_windowc, n.knearest.num =

vtreat: :square_window),
codeRestriction = c("PiecewiseV"”, "knearest”, "clean”, "isBAD", "catB", "catP"),
missingness_imputation = NULL,
imputation_map = NULL

)

Arguments

dframe
varlist

outcomename

outcometarget

weights

minFraction

smFactor

rareCount

rareSig

collarProb

scale

doCollar

splitFunction

Data frame to learn treatments from (training data), must have at least 1 row.
Names of columns to treat (effective variables).

Name of column holding outcome variable. dframe[[outcomename]] must be
only finite non-missing values.

Value/level of outcome to be considered "success", and there must be a cut such

that dframe[[outcomename]]==outcometarget at least twice and dframe[[outcomename]]!=outcometarget

at least twice.
no additional arguments, declared to forced named binding of later arguments
optional training weights for each row

optional minimum frequency a categorical level must have to be converted to an
indicator column.

optional smoothing factor for impact coding models.

optional integer, allow levels with this count or below to be pooled into a shared
rare-level. Defaults to O or off.

optional numeric, suppress levels from pooling at this significance value greater.
Defaults to NULL or off.

what fraction of the data (pseudo-probability) to collar data at if doCollar is set
during prepare. treatmentplan.

optional if TRUE replace numeric variables with regression ("move to outcome-
scale").

optional if TRUE collar numeric variables by cutting off after a tail-probability
specified by collarProb during treatment design.

(optional) see vtreat::buildEvalSets .

62

value_variables N

ncross optional scalar>=2 number of cross-validation rounds to design.

forceSplit logical, if TRUE force cross-validated significance calculations on all variables.
catScaling optional, if TRUE use glm() linkspace, if FALSE use Im() for scaling.

verbose if TRUE print progress.

parallelCluster

(optional) a cluster object created by package parallel or package snow.
use_parallel logical, if TRUE use parallel methods.

customCoders additional coders to use for variable importance estimate.
codeRestriction
codes to restrict to for variable importance estimate.
missingness_imputation
function of signature f(values: numeric, weights: numeric), simple missing
value imputer.

imputation_map map from column names to functions of signature f(values: numeric, weights:
numeric), simple missing value imputers.

Value

table of variable valuations

value_variables_N Value variables for prediction a numeric outcome.

Description

Value variables for prediction a numeric outcome.

Usage

value_variables_N(
dframe,
varlist,
outcomename,

weights = c(),
minFraction = 0.02,
smFactor = @
rareCount =
rareSig = 1,
collarProb = 0,

scale = FALSE,
doCollar = FALSE,
splitFunction = NULL,
ncross = 3,
forceSplit = FALSE,

0,

value_variables N 63

verbose = FALSE,

parallelCluster = NULL,

use_parallel = TRUE,

customCoders = list(c.PiecewiseV.num = vtreat::solve_piecewisec, n.PiecewiseV.num =
vtreat::solve_piecewise, c.knearest.num = vtreat::square_windowc, n.knearest.num =

vtreat: :square_window),

codeRestriction = c("PiecewiseV"”, "knearest”, "clean"”, "isBAD", "catB", "catP"),
missingness_imputation = NULL,

imputation_map = NULL

)
Arguments

dframe Data frame to learn treatments from (training data), must have at least 1 row.

varlist Names of columns to treat (effective variables).

outcomename Name of column holding outcome variable. dframe[[outcomename]] must be
only finite non-missing values and there must be a cut such that dframe[[outcomename]]
is both above the cut at least twice and below the cut at least twice.
no additional arguments, declared to forced named binding of later arguments

weights optional training weights for each row

minFraction optional minimum frequency a categorical level must have to be converted to an
indicator column.

smFactor optional smoothing factor for impact coding models.

rareCount optional integer, allow levels with this count or below to be pooled into a shared
rare-level. Defaults to O or off.

rareSig optional numeric, suppress levels from pooling at this significance value greater.
Defaults to NULL or off.

collarProb what fraction of the data (pseudo-probability) to collar data at if doCollar is set
during prepare.treatmentplan.

scale optional if TRUE replace numeric variables with regression ("move to outcome-
scale").

doCollar optional if TRUE collar numeric variables by cutting off after a tail-probability

specified by collarProb during treatment design.

splitFunction (optional) see vtreat::buildEvalSets .

ncross optional scalar>=2 number of cross-validation rounds to design.

forceSplit logical, if TRUE force cross-validated significance calculations on all variables.
verbose if TRUE print progress.

parallelCluster

(optional) a cluster object created by package parallel or package snow.
use_parallel logical, if TRUE use parallel methods.

customCoders additional coders to use for variable importance estimate.
codeRestriction
codes to restrict to for variable importance estimate.

64 vnames

missingness_imputation
function of signature f(values: numeric, weights: numeric), simple missing
value imputer.

imputation_map map from column names to functions of signature f(values: numeric, weights:
numeric), simple missing value imputers.

Value

table of variable valuations

variable_values Return variable evaluations.

Description

Return variable evaluations.

Usage

variable_values(sf)

Arguments

sf scoreFrame from from vtreat treatments

Value

per-original varaible evaluations

vhames New treated variable names from a treatmentplan$treatment item.

Description

New treated variable names from a treatmentplan$treatment item.

Usage

vnames (x)

Arguments

X vtreatment item

See Also

designTreatmentsC designTreatmentsN designTreatmentsZ

vorig

65

vorig Original variable name from a treatmentplan$treatment item.

Description

Original variable name from a treatmentplan$treatment item.

Usage

vorig(x)

Arguments

X vtreatment item.

See Also

designTreatmentsC designTreatmentsN designTreatmentsZ

Index

apply_transform, 4
as_rquery_plan, 5, 52

BinomialOutcomeTreatment, 6
buildEvalSets, 7

center_scale, 9
classification_parameters, 10

design_missingness_treatment, 17, 44

designTreatmentsC, 7, 10, 10, 14, 16, 27, 29,
35,46, 49, 50, 64, 65

designTreatmentsN, 12, 13, 16, 29, 33, 35,
39,46, 49, 50, 64, 65

designTreatmentsZ, 12, 14, 15, 46, 49, 60,
64, 65

fit, 18
fit_prepare, 19
fit_transform, 19
format.vtreatment, 20

get_feature_names, 21
get_score_frame, 22
get_transform, 22
getSplitPlanApplabels, 21

kWayCrossValidation, 8, 21, 23, 50
kWayStratifiedy, 8, 21, 23, 50
kWayStratifiedYReplace, 24

makeCustomCoderCat, 25
makeCustomCoderNum, 26
makekWayCrossValidationGroupedByColumn,
8, 21,27, 50
materialize_treated (rquery_prepare), 51
mkCrossFrameCExperiment, 7, 10, 12, 27, 46,
50
mkCrossFrameMExperiment, 30, 37, 44
mkCrossFrameNExperiment, 13, 14, 33, 39,
46, 50

multinomial_parameters, 37
MultinomialOutcomeTreatment, 36

novel_value_summary, 38, 58
NumericOutcomeTreatment, 39

oneWayHoldout, 40

patch_columns_into_frame, 40
ppCodercC, 41
ppCoderN, 42
pre_comp_xval, 47
prepare, 42, 44, 46
prepare.multinomial_plan, 31, 32, 37, 42,
43
prepare.simple_plan, 17,42, 44
prepare.treatmentplan, 7, 10-12, 14, 16,
29, 34, 35, 38, 39,42, 45, 49, 50, 58,
60, 61, 63
print.multinomial_plan, 48
print.simple_plan, 48
print.treatmentplan, 49
print.vtreatment, 49
problemAppPlan, 50

regression_parameters, 50
rqdatatable_prepare, 52
rquery_prepare, 5, 51

solve_piecewise, 55
solve_piecewisec, 55
solvelsotone, 52
solveNonDecreasing, 53
solveNonIncreasing, 54
spline_variable, 56
spline_variablec, 56
square_window, 57
square_windowc, 57

track_values, 38, 43, 46, 58

INDEX

unsupervised_parameters, 60
UnsupervisedTreatment, 59

value_variables_C, 60
value_variables_N, 62
variable_values, 64
vnhames, 64

vorig, 65

vtreat (vtreat-package), 3
vtreat-package, 3

67

	vtreat-package
	apply_transform
	as_rquery_plan
	BinomialOutcomeTreatment
	buildEvalSets
	center_scale
	classification_parameters
	designTreatmentsC
	designTreatmentsN
	designTreatmentsZ
	design_missingness_treatment
	fit
	fit_prepare
	fit_transform
	format.vtreatment
	getSplitPlanAppLabels
	get_feature_names
	get_score_frame
	get_transform
	kWayCrossValidation
	kWayStratifiedY
	kWayStratifiedYReplace
	makeCustomCoderCat
	makeCustomCoderNum
	makekWayCrossValidationGroupedByColumn
	mkCrossFrameCExperiment
	mkCrossFrameMExperiment
	mkCrossFrameNExperiment
	MultinomialOutcomeTreatment
	multinomial_parameters
	novel_value_summary
	NumericOutcomeTreatment
	oneWayHoldout
	patch_columns_into_frame
	ppCoderC
	ppCoderN
	prepare
	prepare.multinomial_plan
	prepare.simple_plan
	prepare.treatmentplan
	pre_comp_xval
	print.multinomial_plan
	print.simple_plan
	print.treatmentplan
	print.vtreatment
	problemAppPlan
	regression_parameters
	rquery_prepare
	solveIsotone
	solveNonDecreasing
	solveNonIncreasing
	solve_piecewise
	solve_piecewisec
	spline_variable
	spline_variablec
	square_window
	square_windowc
	track_values
	UnsupervisedTreatment
	unsupervised_parameters
	value_variables_C
	value_variables_N
	variable_values
	vnames
	vorig
	Index

