Package ‘swiscDAS’

August 10, 2023
Title Southwest Fisheries Science Center Shipboard DAS Data Processing
Version 0.6.2

Description Process and summarize shipboard
'DAS' <https://swfsc-publications.fisheries.noaa.gov/publications/TM/SWFSC/
NOAA-TM-NMFS-SWFSC-305.PDF> data
produced by the Southwest Fisheries Science Center (SWFSC) program "'WinCruz'
<https://www.fisheries.noaa.gov/west-coast/science-data/
california-current-marine-mammal-assessment-program>.
This package standardizes and streamlines basic DAS data processing,
and includes a PDF with the DAS data format requirements.

URL https://smwoodman.github.io/swfscDAS/,

https://github.com/smwoodman/swfscDAS/

BugReports https://github.com/smwoodman/swfscDAS/issues/
Depends R (>=4.0.0)

Imports dplyr (>= 1.1.0), lubridate, magrittr, methods, parallel,
purrr, readr, rlang, sf, swfscMisc, tidyr

Suggests knitr, rmarkdown, stringr, testthat (>=2.1.0)

License CCO

Encoding UTF-8

RoxygenNote 7.2.3

VignetteBuilder knitr

NeedsCompilation no

Author Sam Woodman [aut, cre] (<https://orcid.org/0000-0001-6071-8186>)
Maintainer Sam Woodman <sam.woodman@noaa. gov>

Repository CRAN

Date/Publication 2023-08-10 07:00:02 UTC

https://swfsc-publications.fisheries.noaa.gov/publications/TM/SWFSC/NOAA-TM-NMFS-SWFSC-305.PDF
https://swfsc-publications.fisheries.noaa.gov/publications/TM/SWFSC/NOAA-TM-NMFS-SWFSC-305.PDF
https://www.fisheries.noaa.gov/west-coast/science-data/california-current-marine-mammal-assessment-program
https://www.fisheries.noaa.gov/west-coast/science-data/california-current-marine-mammal-assessment-program
https://smwoodman.github.io/swfscDAS/
https://github.com/smwoodman/swfscDAS/
https://github.com/smwoodman/swfscDAS/issues/
https://orcid.org/0000-0001-6071-8186

2

R topics documented:

swfscDAS-package,
as das df
as das dfr.
das check
das_chop_condition
das_chop_equallength
das_chop_section
das comments.
das df-class
das_dfr-class
das_effort
das_effort_sight
das_effort strata.
das_format_pdf
das_intersects_strata
das_process
das_read
das_segdata
das_sight
distance_greatcircle L.
randpicks_convert
subsetting
swfscAirDAS-internals

Index

swfscDAS-package

swfscDAS-package Southwest Fisheries Science Center DAS

Description

Process and summarize shipboard DAS data

Details

This package contains functions designed for processing and analyzing DAS data generated using
the WinCruz program by the Southwest Fisheries Science Center. It is intended to standardize and

streamline basic DAS data processing.

Author(s)

Sam Woodman <sam.woodman@noaa. gov>

See Also

https://smwoodman.github.io/swfscDAS/

https://smwoodman.github.io/swfscDAS/

as_das_df 3

as_das_df Coerce object to a das_df object

Description

Check if an object is of class das_df, or coerce it if possible.

Usage
as_das_df (x)

S3 method for class 'das_df'
as_das_df (x)

S3 method for class 'data.frame'
as_das_df (x)
Arguments

X an object to be coerced to class das_df

Details

Only data frames can be coerced to an object of class das_df. If x does not have column names and
classes as specified in das_df-class, then the function returns an error message detailing the first
column that does not meet the requirements of a das_df object.

Value

An object of class ‘das_df*

See Also

das_df-class

as_das_dfr Coerce object to a das_dfr object

Description

Check if an object is of class das_dfr, or coerce it if possible.

4 das_check

Usage

as_das_dfr(x)

S3 method for class 'das_dfr'
as_das_dfr(x)

S3 method for class 'data.frame'
as_das_dfr(x)
Arguments

X an object to be coerced to class das_dfr

Details

Only data frames can be coerced to an object of class das_dfr. If x does not have column names
and classes as specified in das_dfr-class, then the function returns an error message detailing the
first column that does not meet the requirements of a das_dfr object.

Value

An object of class ‘das_dfr*

See Also

das_dfr-class

das_check Check DAS file

Description

Check that DAS file has accepted formatting and values

Usage
das_check(
file,
skip = 0,

file.out = NULL,
sp.codes = NULL,
print.cruise.nums = TRUE

das_check 5

Arguments
file filename(s) of one or more DAS files
skip integer: see read_fwf. Default is O
file.out filename to which to write the error log; default is NULL
sp.codes character; filename of .dat file from which to read accepted species codes. If

NULL, species codes will not be checked. Default is NULL
print.cruise.nums

logical; indicates if a table with all the cruise numbers in the x should be printed
using table. Default is TRUE

Details

Precursor to a more comprehensive DASCHECK program. This function checks that the following
is true:

* Event codes are one of the following: #, *, ?,1,2,3,4,5,6,7,8, A,B,C,E,F kK, K,N, P, Q,
LR, S, S, t,V,W,gGp,X,Y,Z

* Latitude values are between -90 and 90 (inclusive; NA values are ignored)

* Longitude values are between -180 and 180 (inclusive; NA values are ignored)

* The effort dot matches effort determined using B, R, and E events

* There are an equal number of R and E events, and they alternate occurrences

* A BR event series or R event does not occur while already on effort

* An E event does not occur while already off effort

* All Data# columns for non-C events are right-justified

* Only C events have data past the 99th column in the DAS file

* The following events have NA (blank) Data# columns: *

e Allof *, B,R,E, V, W, N, P, and Q events have NA Data# columns where specified (see format
pdf for more details)

» Event/column pairs meet the following requirements:

Item Event Column Requirement

Cruise number B Datal Can be converted to a numeric value

Mode B Data2 Must be one of C, P, c, p, or NA (blank)

Echo sounder B Data4 Must be one of Y, N, y, n, or NA (blank)

Effort type R Datal Must be one of F, N, S, or NA (blank)

ESW sides R Data2 Effective strip width; must be one of F, H, or NA (blank)
Course N Datal Can be converted to a numeric value

Speed N Data2 Can be converted to a numeric value

Beaufort \" Datal Must be a whole number between 0 and 9

Swell height v Data2 Can be converted to a numeric value

Wind speed v Data5 Can be converted to a numeric value

Rain or fog w Datal Must be between 0 and 5 and either a whole number or have decima
Horizontal sun W Data2 Must be a whole number between 0 and 12

Vertical sun W Data3 Must be a whole number between 0 and 12

6 das_check

Visibility w Data5 Can be converted to a numeric value

Sighting (mammal) S, K,M Data3-7 Can be converted to a numeric value

Sighting (mammal) G Data5-7 Can be converted to a numeric value

Sighting cue (mammal) S, K, M Data3 Must be a whole number between 1 and 6

Sighting method (mammal) S, K, M, G Data4 Must be a whole number between 1 and 7

Bearing (mammal) S,K,M,G Data5 Must be a whole number between 0 and 360

Photos A Data3 Must be one of N, Y, n, y, or NA (blank)

Birds A Data4 Must be one of N, Y, n, y, or NA (blank)

Calibration school S, K, M DatalO Must be one of N, Y, n, y, or NA (blank)

Aerial photos taken S, K, M Datall Must be one of N, Y, n, y, or NA (blank)

Biopsy taken S, K, M Datal2 Must be one of N, Y, n, y, or NA (blank)

Species codes A Data5-8 If a species codes file is provided, must be one of the provided code:
Resight s, k Data2-5 Can be converted to a numeric value

Turtle species t Data2 If a species codes file is provided, must be one of the provided code:
Turtle sighting t Data3-5,7 Can be converted to a numeric value

Turtle JFR t Data6 Must be one of F, J, N, R, or NA (blank)

Fishing vessel F Data2-4 Can be converted to a numeric value

Sighting info 1-8 Data2-8 Can be converted to a numeric value

Sighting info 1-8 Data9 The Data9 column must be NA (blank) for events 1-8

In the table above, ’between’ means inclusive.
Long-term items, and checks that are not performed:
* Check that datetimes are sequential, meaning they 1) are the same as or 2) come after the
previous event

* Check that A events only come immediately after a G/S/K/M event, and all G/S/K/M events
have an A after them. And that each has at least one group size estimate (1:8 event)

Value

A data frame with columns: the file name, line number, cruise number, ’ID’ (columns 4-39 from
the DAS file), and description of the issue

If file.out is not NULL, then the error log data frame is also written to file.out using write.csv

A warning is printed if any events are r events; see das_process for details about r events

Examples

y <- system.file("das_sample.das”, package = "swfscDAS")
if (interactive()) das_check(y)

das_chop_condition 7

das_chop_condition Chop DAS data - condition

Description

Chop DAS data into a new effort segment every time a specified condition changes

Usage

das_chop_condition(x, ...)

S3 method for class 'data.frame'
das_chop_condition(x, ...)

S3 method for class 'das_df'
das_chop_condition(
X,
conditions,
seg.min.km = 0.1,
distance.method = NULL,
num.cores = NULL,

)
Arguments

X an object of class das_df, or a data frame that can be coerced to class das_df.
This data must be filtered for continuous effort sections; see the Details section
below
ignored

conditions the conditions that trigger a new segment; see das_effort

seg.min.km numeric; minimum allowable segment length (in kilometers). Default is 0.1.

See the Details section below for more information
distance.method

character; see das_effort. Default is NULL since these distances should have
already been calculated

num.cores see das_effort

Details

WARNING - do not call this function directly! It is exported for documentation purposes, but is
intended for internal package use only.

This function is intended to be called by das_effort when the "condition" method is specified.
Thus, x must be filtered for events (rows) where either the ’OnEffort” column is TRUE or the ’Event’
column is "E"; see das_effort for more details. This function chops each continuous effort section

8 das_chop_equallength

(henceforth ’effort sections’) in x into modeling segments (henceforth ’segments’) by creating a
new segment every time a specified condition changes. Each effort section runs from an "R" event
to its corresponding "E" event. After chopping, das_segdata is called (with segdata.method =
"maxdist") to get relevant segdata information for each segment.

Changes in the one of the conditions specified in the conditions argument triggers a new segment.
One exception is if the event at which this condition change occurs is part of an event series, mean-
ing one of several events in a row at the same lat/lon points (such as a PVNW event series). In this
situation, the final event of the event series is considered the last event of the current effort segment,
and thus also the start of the next effort segment.

Related, when multiple condition changes happen at the same lat/lon points, such as a "RPVNW"
series of events at the beginning of the effort section. When this happens, no segments of length
zero are created; rather, a single segment is created that includes all of the condition changes (i.e. all
of the events in the event series) that happened during the series of events (i.e. at the same location).
Note that this combining of events at the same position happens even if seg.min.km = 0.

In addition, (almost) all segments whose length is less than seg.min.km are combined with the
segment immediately following them to ensure that the length of (almost) all segments is at least
seg.min.km. This allows users to account for situations where multiple conditions, such as Beaufort
and the visibility, change in rapid succession, for instance <0.1 km apart. When segments are
combined, a message is printed, and the condition that was recorded for the maximum distance
within the new segment is reported. See das_segdata, segdata.method = "maxdist”, for more
details about how the segdata information is determined. The only exception to this rule is if the
short segment ends in an "E" event, meaning it is the last segment of the effort section. Since in this
case there is no 'next’ segment, this short segment is left as-is.

If the column dist_from_prev does not exist, the distance between subsequent events is calculated
as described in das_effort

Value

List of two data frames:

* X, with columns added for the corresponding unique segment code and number

* segdata: data frame with one row for each segment, and columns with relevant data (see
das_effort for specifics)

das_chop_equallength Chop DAS data - equal length

Description

Chop DAS data into approximately equal-length effort segments, averaging conditions by segment

das_chop_equallength 9

Usage
das_chop_equallength(x, ...)

S3 method for class 'data.frame'
das_chop_equallength(x, ...)

S3 method for class 'das_df'
das_chop_equallength(
X,
conditions,
seg.km,
randpicks.load = NULL,
distance.method = NULL,
num.cores = NULL,

Arguments
X an object of class das_df, or a data frame that can be coerced to class das_df.
This data must be filtered for ’continuous effort sections; see the Details section
below
ignored
conditions see das_effort
seg.km numeric; target segment length in kilometers

randpicks.load character, data frame, or NULL. If character, must be filename of past randpicks
output to load and use (passed to file argument of read.csv). If data frame,
randpicks values will be extracted from the data frame. If NULL, new randpicks
values will be generated by the function

distance.method

character; see das_effort. Default is NULL since these distances should have
already been calculated

num.cores see das_effort

Details

WARNING - do not call this function directly! It is exported for documentation purposes, but is
intended for internal package use only.

This function is intended to be called by das_effort when the "equallength" method is specified.
Thus, x must be filtered for events (rows) where either the ’OnEffort” column is TRUE or the ’Event’
column is "E"; see das_effort for more details. This function chops each continuous effort sec-
tion (henceforth ’effort sections’) in x into modeling segments (henceforth ’segments’) of equal
length. Each effort section runs from an "R" event to its corresponding "E" event. After chopping,
das_segdata is called to get relevant segdata information for each segment.

When chopping the effort sections in segments of length seg. km, there are several possible scenar-
ios:

10 das_chop_section

* The extra length remaining after chopping is greater than or equal to half of the target segment
length (i.e. >=@.5*seg.km): the extra length is assigned to a random portion of the effort
section as its own segment (see Fig. 1a)

* The extra length remaining after chopping is less than half of the target segment length (i.e.
< 0.5*seg.km): the extra length is added to one of the (randomly selected) equal-length seg-
ments (see Fig. 1b)

* The length of the effort section is less than or equal to the target segment length: the entire
segment becomes a segment (see Fig. 1c)

* The length of the effort section is zero: a segment of length zero. If there are more than two
events (the "B"/R" and "E" events), the function throws a warning

Therefore, the length of each segment is constrained to be between one half and one and one half of
seg.km (i.e. 0.5*seg.km <= segment length >=1.5xseg.km), and the central tendency is approxi-
mately equal to the target segment length. The only exception is when a continuous effort section
is less than one half of the target segment length (i.e. < @.5*seg.km; see Fig. lc).

Note the PDF with Figs. 1a - 1cis included in the package, and can be found at: system. file("DAS_chop_equal_figures.j
package = "swfscDAS")

’Randpicks’ is a record of the random assignments that were made when chopping the effort sec-
tions into segments, and can be saved to allow users to recreate the same random allocation of extra
km when chopping. The randpicks returned by this function is a data frame with two columns:
the number of the effort section and the randpick value. Users should save the randpicks out-
put to a CSV file, which then can be specified using the randpicks.load argument to recreate
the same effort segments from x (i.e., using the same DAS data) in the future. Note that when
saving with write.csv, users must specify row.names = FALSE so that the CSV file only has
two columns. For an example randpicks file, see system.file("das_sample_randpicks.csv",
package = "swfscDAS")

If the column dist_from_prev does not exist, the distance between subsequent events is calculated
as described in das_effort

Value
List of three data frames:

* X, with columns added for the corresponding unique segment code and number

» segdata: data frame with one row for each segment, and columns with relevant data (see
das_effort for specifics)

* randpicks: data frame with record of length allocations (see Details section above)

das_chop_section Chop DAS data - section

Description

Chop DAS data into effort segments by continuous effort section

https://github.com/smwoodman/swfscDAS/blob/master/inst/DAS_chop_equallength_figures.pdf
https://github.com/smwoodman/swfscDAS/blob/master/inst/DAS_chop_equallength_figures.pdf
https://github.com/smwoodman/swfscDAS/blob/master/inst/DAS_chop_equallength_figures.pdf
https://github.com/smwoodman/swfscDAS/blob/master/inst/DAS_chop_equallength_figures.pdf

das_chop_section 11
Usage
das_chop_section(x, ...)

S3 method for class 'data.frame'
das_chop_section(x, ...)

S3 method for class 'das_df'

das_chop_section(x, conditions, distance.method = NULL, num.cores = NULL, ...)
Arguments
X an object of class das_df, or a data frame that can be coerced to class das_df

This data must be filtered for ’OnEffort’ events; see the Details section below
ignored

conditions see das_effort
distance.method

character; see das_effort. Default is NULL since these distances should have
already been calculated

num.cores see das_effort

Details

WARNING - do not call this function directly! It is exported for documentation purposes, but is
intended for internal package use only.

This function is simply a wrapper for das_chop_equallength. It calls das_chop_equallength,
with seg.km set to a value larger than the longest continuous effort section in x. Thus, the effort is
’chopped’ into the continuous effort sections and then summarized.

See the Examples section for an example where the two methods give the same output. Note that
the longest continuous effort section in the sample data is ~22km.

Value

See das_chop_equallength. The randpicks values will all be NA

Examples

y <- system.file("das_sample.das”, package = "swfscDAS")
y.proc <- das_process(y)

y.eff1 <- das_effort(y.proc, method = "equallength”, seg.km = 25, num.cores = 1)
y.eff2 <- das_effort(y.proc, method = "section”, num.cores = 1)

all.equal(y.eff1, y.eff2)

12 das_comments

das_comments Extract comments from DAS data

Description

Extract comments from DAS data
Usage
das_comments(x)

S3 method for class 'data.frame'
das_comments(x)

S3 method for class 'das_df'
das_comments(x)

S3 method for class 'das_dfr'
das_comments(x)

Arguments
X an object of class das_dfr or das_df, or a data frame that can be coerced to a
das_dfr object
Details

This function recreates the comment strings by pasting the Data# columns back together for the C
events (comments). See the examples section for how to search for comments with certain phrases

Value

x, filtered for C events and with the added column comment_str containing the concatenated com-
ment strings

Examples
y <- system.file("das_sample.das”, package = "swfscDAS")
y.proc <- das_process(y)

das_comments(y.proc)

Extract all comments containing "record” - could also use stringr pacakge
y.comm <- das_comments(y.proc)
y.comm[grepl(”"record”, y.comm$comment_str, ignore.case = TRUE),]

Join comments with processed data
dplyr::left_join(y.proc, y.comm[, c("file_das”, "line_num”, "comment_str")],

das_df-class

by = c("file_das”, "line_num"))

13

das_df-class

das_df class

Description

The das_df class is a subclass of data.frame, created to provide a concise and robust way to
ensure that the input to downstream DAS processing functions, such as das_sight, adheres to

certain requirements. Specifically, objects of class das_df are data frames with specific column
names and classes, as detailed in the *Properties of das_df’ section. Objects of class das_df are

created by das_process or as_das_df, and are intended to be passed directly to DAS processing
functions such as das_sight.

Subsetting, say for a specific date or cruise number, or otherwise altering an object of class das_df
will cause the object to drop its das_df class attribute. If this object is then passed to a DAS
processing function such as das_sight, the function will try to coerce the object to a das_df

object.

Properties of das_df objects

All values in the Event column must not be NA.

Objects of class das_df have a class attribute of c("das_df", "data.frame”). In addition, they
must have the following column names and classes:

Column name

Event
DateTime
Lat

Lon
OnEffort
Cruise
Mode
EffType
Course
SpdKt
Bft
SwellHght
WindSpdKt
RainFog
HorizSun
VertSun
Glare

Vis

ObsL
Rec
ObsR

Column class

"character”

c("POSIXct", "POSIXt")

"numeric"
"numeric"”
"logical"
"numeric"”
"character"
"character"
"numeric"”
"numeric"”
"numeric"”
"numeric"”
"numeric"
"numeric"”
"numeric"”
"numeric"”
"logical"
"numeric"
"character"
"character"
"character"

14 das_dfr-class

ObsInd "character"
Datal "character"
Data2 "character"
Data3 "character"
Data4 "character"
Data5 "character"
Data6 "character"
Data7 "character"
Data8 "character"
Data9 "character"
Datal0 "character"
Datall "character"
Datal?2 "character"
EffortDot "logical"
EventNum "integer"
file_das "character"
line_num "integer"
See Also
as_das_df
das_dfr-class das_dfr class
Description

The das_dfr class is a subclass of data.frame, created to provide a concise and robust way to
ensure that the input to das_process adheres to certain requirements. Specifically, objects of class
das_dfr are data frames with specific column names and classes, as detailed in the 'Properties
of das_dfr’ section. Objects of class das_dfr are created by das_read or as_das_dfr, and are
intended to be passed directly to das_process.

Subsetting or otherwise altering an object of class das_dfr will cause the object to drop its das_dfr
class attribute. das_process will then try to coerce the object to a das_dfr object. It is strongly
recommended to pass an object of class das_dfr to das_process before subsetting, e.g. for events
from a certain date range.

Properties of das_dfr objects

Objects of class das_dfr have a class attribute of c("das_dfr”, "data.frame"). In addition, they
must have the following column names and classes:

Column name Column class

Event "character"

EffortDot "logical"

DateTime c("POSIXct", "POSIXt")

das_effort 15

Lat "numeric"”
Lon "numeric"”
Datal "character"
Data2 "character"
Data3 "character"
Data4 "character"
Data5 "character"
Data6 "character”
Data7 "character"
Data8 "character"
Data9 "character"
Datal0 "character"
Datall "character"
Datal2 "character"
EventNum "integer"

file_das "character"
line_num "integer"

See Also
as_das_dfr
das_effort Summarize DAS effort
Description

Chop DAS data into effort segments

Usage
das_effort(x, ...)

S3 method for class 'data.frame'
das_effort(x, ...)

S3 method for class 'das_df'
das_effort(
X,
method = c("condition”, "equallength”, "section"),
conditions = NULL,
strata.files = NULL,
distance.method = c("greatcircle”, "lawofcosines”, "haversine”, "vincenty"),
seg@.drop = FALSE,
comment.drop = FALSE,
event.touse = NULL,

16 das_effort

num.cores = NULL,

)
Arguments

X an object of class das_df, or a data frame that can be coerced to class das_df
arguments passed to the specified chopping function, such as seg.kmor seg.min.km

method character; method to use to chop DAS data into effort segments Can be "condi-
tion", "equallength", "section", or any partial match thereof (case sensitive)

conditions character vector of names of conditions to include in segdata output. These val-
ues must be column names from the output of das_process, e.g. *Bft’, *Swell-
Hght’, etc. If method == "condition”, then these also are the conditions which

trigger segment chopping when they change. Only the following conditions can
be used for chopping: ’Bft’, ’SwellHght’, ’RainFog’, HorizSun’, ’VertSun’,
*Glare’, *Vis’, ’Course’, ’SpdKt’

strata.files list of path(s) of the CSV file(s) with points defining each stratum. The CSV
files must contain headers and be a closed polygon. The list should be named;
see the Details section. If NULL (the default), then no effort segments are not
classified by strata.

distance.method
character; method to use to calculate distance between lat/lon coordinates. Can
be "greatcircle", "lawofcosines", "haversine", "vincenty", or any partial match
thereof (case sensitive). Default is "greatcircle"

segd.drop logical; flag indicating whether or not to drop segments of length O that contain
no sighting (S, K, M, G, t) events. Default is FALSE

comment.drop logical; flag indicating if comments ("C" events) should be ignored (i.e. position
information should not be used) when segment chopping. Default is FALSE

event. touse character vector of events to use to determine segment lengths; overrides comment . drop.
If NULL (the default), then all on effort events are used. If used, this argument
must include at least R, E, S, and A events, and cannot include ? or 1:8 events

num.cores Number of CPUs to over which to distribute computations. Defaults to NULL,
which uses one fewer than the number of cores reported by detectCores. Using
1 core likely will be faster for smaller datasets

Details

This is the top-level function for chopping processed DAS data into modeling segments (hence-
forth ’segments’), and assigning sightings and related information (e.g., weather conditions) to each
segment. This function returns data frames with all relevant information for the effort segments
and associated sightings (’segdata’ and ’sightinfo’, respectively). Before chopping, the DAS data is
filtered for events (rows) where either the ’OnEffort’ column is TRUE or the ’Event’ column "E". In
other words, the data is filtered for continuous effort sections (henceforth ’effort sections’), where
effort sections run from "R" to "E" events (inclusive), and then passed to the chopping function
specified using method. Note that while B events immediately preceding an R are on effort, they
are ignored during effort chopping. In addition, all on effort events (other than ? and numeric
events) with NA DateTime, Lat, or Lon values are verbosely removed.

das_effort 17

If strata.filesis not NULL, then the effort lines will be split by the user-provided stratum (strata).
In this case, a column ’stratum’ will be added to the end of the segdata data frame with the user-
provided name of the stratum that the segment was in, or NA if the segment was not in any of the
strata. If no name was provided for the stratum in strata.files, then the value will be "Stra-
tum#", where "#" is the index of the applicable stratum in strata.files. While the user can
provide as many strata as they want, these strata can share boundaries but they cannot overlap. See
das_effort_strata for more details.

non

The following chopping methods are currently available: "condition", "equallength", and "section.
When using the "condition" method, effort sections are chopped into segments every time a con-
dition changes, thereby ensuring that the conditions are consistent across the entire segment. See
das_chop_condition for more details about this method, including arguments that must be passed
to it via the argument . . .

The "equallength" method consists of chopping effort sections into equal-length segments of length
seg.km, and doing a weighted average of the conditions for the length of that segment. See
das_chop_equallength for more details about this method, including arguments that must be
passed to it via the argument . . .

The "section" method involves ’chopping’ the effort into continuous effort sections, i.e. each con-
tinuous effort section is a single effort segment. See das_chop_section for more details about this
method.

The distance between the lat/lon points of subsequent events is calculated using the method specified
in distance.method. If "greatcircle", distance_greatcircle is used, while distance is used
otherwise. See das_sight for how the sightings are processed.

The sightinfo data frame includes the column ’included’, which is used in das_effort_sight
when summarizing the number of sightings and animals for selected species. das_effort_sight
is a separate function to allow users to personalize the included values as desired for their analysis.
By default, i.e. in the output of this function, ’included’ is TRUE if: the sighting was made when on
effort, by a standard observer (see das_sight), and in a Beaufort sea state less than or equal to five.

Value
List of three data frames:

* segdata: one row for every segment, and columns for information including unique segment
number (segnum), the corresponding effort section (section_id), the segment index within the
corresponding effort section (section_sub_id), the starting and ending line of the segment in
the DAS file (stlin, endlin), start/end/midpoint coordinates(lat1/lon1, lat2/lon2, and mlat/mlon,
respectively), the start/end/midpoint date/time of the segment (DateTimel, DateTime2, and
mDateTime, respectively; mDateTime is the average of DateTimel and DateTime2), segment
length (dist), conditions (e.g. Beaufort), and, if applicable, stratum (InStratumName).

* sightinfo: details for all sightings in x, including: the unique segment number it is associated
with, segment mid points (lat/lon), the ’included’ column described in the *Details’ section,
and the output information described in das_sight for return.format is "default"

* randpicks: see das_chop_equallength; NULL if using "condition" method
See Also

Internal functions called by das_effort: das_chop_condition, das_chop_equallength, das_chop_section,
das_segdata

18 das_effort_sight

Examples

y <- system.file("das_sample.das"”, package = "swfscDAS")
y.proc <- das_process(y)

Using "condition” method

das_effort(
y.proc, method = "condition”, conditions = c("Bft"”, "SwellHght", "Vis"),
seg.min.km = 0.05, num.cores = 1

)

Using "section” method
das_effort(y.proc, method = "section”, num.cores = 1)

Using "equallength” method
y.rand <- system.file("das_sample_randpicks.csv"”, package = "swfscDAS")
das_effort(
y.proc, method = "equallength”, seg.km = 10, randpicks.load = y.rand,
num.cores = 1

)

Using "section” method and chop by strata

stratum.file <- system.file("das_sample_stratum.csv”, package = "swfscDAS")

das_effort(
y.proc, method = "section”, strata.files = list(Polyl = stratum.file),
num.cores = 1

)

das_effort_sight Summarize DAS sightings by effort segment
Description

Summarize number of sightings and animals for selected species by segment

Usage

das_effort_sight(
x.list,
sp.codes,
sp.events = c("S", "G", "K", "M", "t", "p"),
gs.columns = c("GsSpBest”, "GsSpLow"”, "GsSpHigh")

das_effort_sight 19

Arguments
x.list output of das_effort; a list of three data frames named ’segdata’, ’sightinfo’,
and ’randpicks’, respectively
sp.codes character; species code(s) to include in segdata output. These must exactly
match the species codes in the data, such as including leading zeros
sp.events character; event code(s) to include in the sightinfo output. This argument super-
sedes the ’included’ value when determining whether a sighting is included in
the segment summaries. Must be one or more of: "S", "K", "M", "G", "t", "p"
(case-sensitive). The default is that all of these event codes are kept
gs.columns character; the column(s) to use to get the group size values that will be summa-
rized in the segdata output. Must be one or more of *GsSpBest’, *’GsSpLow’,
and *GsSpBest’ (case-sensitive). See Details section for more information
Details

This function takes the output of das_effort and adds columns for the number of sightings (nSI)
and number of animals (ANI) for selected species (selected via sp. codes) for each segment to the
segdata element of x.1list. However, only sightings with an included value of TRUE (included is
a column in sightinfo) are included in the summaries. Having this step separate from das_effort
allows users to personalize the included values as desired for their analysis.

The ANI columns are the sum of the *GsSp...” column(s) from das_sight specified using gs.columns.
If gs. columns specifies more than one column, then the secondary columns will only be used if the
values for the previous columns are NA. For instance, if gs.columns = c('GsSpBest', 'GsSpLow'),
then for each row in sightinfo, the value from GsSpLow will be used only if the value from GsSpBest

is NA

Value

A list, identical to x.1list except for 1) the nSI and ANI columns added to x.list$segdata, one
each for each element of sp.codes, and 2) the ’included’ column of x.list$sightinfo, which
has been set as FALSE for sightings of species not listed in sp.codes. Thus, the ’included’ column
in the output accurately reflects the sightings that were included in the effort segment summaries

Examples

y <- system.file("das_sample.das”, package = "swfscDAS")

y.proc <- das_process(y)

y.eff.cond <- das_effort(
y.proc, method = "condition”, conditions = "Bft"”, seg.min.km = 0.05,
num.cores = 1

)

das_effort_sight(y.eff.cond, sp.codes = c("013", "@76", "DC"), sp.events = c("S", "t"))

das_effort_strata

das_effort_strata Split effort by strata

Description

Split DAS effort where it intersects with a stratum boundary

Usage

das_effort_strata(x, ...)

S3 method for class 'data.frame'
das_effort_strata(x, ...)

S3 method for class 'das_df'

das_effort_strata(x, strata.files, ...)
Arguments
X an object of class das_df, or a data frame that can be coerced to class das_df
ignored

strata.files list of path(s) of the stratum CSV file(s); see das_effort

Details

This function should only be called by das_effort, i.e. it should not be called by users in their per-
sonal scripts. Practically speaking, this functions splits the effort line wherever it crosses a stratum
line. This point of intersection is interpolated; specifically, it is determined using st_intersection.
Thus, any effort will be first split at these effort-stratum boundary intersection points, and then using
the specified method (e.g. condition).

Value

The data frame x, with 1) columns added that indicate a) if the point was in a particular stratum
(see das_intersects_strata), and b) the index of the stratum in strata.files (column name
’stratum’; O if the point intersects with no strata), and 2) two rows added for each strata crossing
that occurs between something other than an E and R. These rows are necessary because of how
das_effort processes effort. The added rows are the same as the event previous to the strata
crossing, except:

* They have the event code "strataE" and "strataR", respectively

e Their coordinates are the coordinates of the intersection of the effort line and the stratum
boundary

* Their ’idx_eff’ values are plus 0.4 and 0.5, respectively

* The second added row has the same stratum info as the point immediately after the stratum
boundary crossing

das_format_pdf 21

das_format_pdf DAS format requirements

Description

Save the PDF document describing the DAS format required by swfscDAS to a specified file

Usage
das_format_pdf(file, ...)
Arguments
file character, the name of the file where the PDF will be saved
passed on to file.copy; might included named argument overwrite
Details

A wrapper function for file. copy. This function saves the PDF document describing the DAS data
format requirements by copying the PDF document located at system.file(”"DAS_Format.pdf"”,
package = "swfscDAS") to file

This file can also be downloaded from https://github.com/smwoodman/swfscDAS/blob/master/
inst/DAS_Format.pdf

Value

output of file.copy; TRUE if writing of file was successful, and FALSE otherwise

Examples

das_format_pdf(file.path(tempdir(), "DAS_Format.pdf"”), overwrite = FALSE)

das_intersects_strata DAS strata - points

Description

Determine if swfscDAS outputs intersect with strata polygons

https://github.com/smwoodman/swfscDAS/blob/master/inst/DAS_Format.pdf
https://github.com/smwoodman/swfscDAS/blob/master/inst/DAS_Format.pdf

22 das_intersects_strata
Usage
das_intersects_strata(x, ...)

S3 method for class 'list'
das_intersects_strata(x, strata.files, ...)

S3 method for class 'data.frame'
das_intersects_strata(

X’

strata.files,
x.lon = "Lon",
x.lat = "Lat",

strata.which = FALSE,

Arguments

X a data frame (such as an object of class das_df) or a list. If x is a list, then it
must be the output of das_effort or das_effort_sight. If x is a data frame,
the user must also specify the coordinate columns of x using x.lon and x.1lat

ignored

strata.files list of path(s) of the CSV file(s) with points defining each stratum. The CSV
files must contain headers and be a closed polygon. The list may be named; see
’Value’ section for how these names are used

x.lon character; name of the longitude column of x. Ignored if x is a list; default is
llLonH
x.lat character; name of the latitude column of x. Ignored if x is a list; default is "Lat"

strata.which logical; indicates if the numeric column ’strata_which’ should be included in the
output data frame. Ignored if x is a list; default is FALSE. See ’Value’ section for
more details

Details

Assigns DAS event points or segment midpoints to strata polygons using st_intersects.

If x is a list, then 1) it must be the output of das_effort or das_effort_sight and 2) the segment
midpoints (column names mlon and mlat, respectively) are the points checked if they intersect with
each provided stratum. If x is a data frame, then the user must provide the columns that specify the
point coordinates to check.

x should not be an object of class das_dfr, or an object of class das_df created with add.dt1l.sight
= FALSE, because the ? and numeric event codes will have NA latitude and longitude values.
Value

If x is a data frame, then logical columns are added to x indicating if each point intersected with
the corresponding stratum polygon. The names of these columns are the names of strata.files;

das_process 23

the element(s) of strata.files will have the name InPoly#, where '# is the index of that stratum
polygonin strata.files. If strata.which, then the column ’strata_which’ is added to the end of
the data frame. This column contains either a O if the point intersects with no strata or 2) a numeric
indicating the index (in strata.files) of the (first) strata polygon that the point intersects with.

Otherwise, i.e. if x is a list and thus the output of one of the effort functions, then the stratum
columns are added to both the segdata and sightinfo data frames. However, note that the columns
added to the sightinfo data frame still indicate whether or not the segment midpoint was in the
corresponding stratum, rather than the sighting point itself.

Examples

y <- system.file("das_sample.das”, package = "swfscDAS")
y.proc <- das_process(y)
y.eff <- das_effort(y.proc, method = "section”, num.cores = 1)

stratum.file <- system.file("das_sample_stratum.csv”, package = "swfscDAS")
das_intersects_strata(y.eff, list(InPoly = stratum.file), x.lon = "Lon", x.lat = "Lat")

das_intersects_strata(y.proc, list(stratum.file))

Visualize effort midpoints and stratum polygon

require(sf)

y.eff.strata <- das_intersects_strata(y.eff, list(InPoly = stratum.file))
segdata <- st_as_sf(y.eff.strata$segdata, coords = c("mlon”, "mlat"), crs = 4326)

Make stratum polygon

stratum.df <- read.csv(stratum.file