
Package ‘supc’
October 14, 2022

Type Package

Title The Self-Updating Process Clustering Algorithms

Version 0.2.6.2

Maintainer Wush Wu <wush978@gmail.com>

Description Implements the self-updating process clustering algorithms proposed
in Shiu and Chen (2016) <doi:10.1080/00949655.2015.1049605>.

URL https://github.com/wush978/supc

License GPL (>= 3)

LazyData TRUE

Depends R (>= 3.6.0)

Imports stats, Rcpp

Suggests amap, knitr, rmarkdown, fields, dbscan

LinkingTo Rcpp(>= 0.12), BH(>= 1.62)

VignetteBuilder knitr, rmarkdown

RoxygenNote 7.1.2

SystemRequirements C++11

Encoding UTF-8

NeedsCompilation yes

Author Wush Wu [aut, cre],
Shang-Ying Shiu [aut, ctb]

Repository CRAN

Date/Publication 2021-12-11 15:30:02 UTC

R topics documented:
D31 . 2
dist.mode . 2
dist.parallelization . 3
freq.poly . 3

1

https://doi.org/10.1080/00949655.2015.1049605
https://github.com/wush978/supc

2 dist.mode

freq.poly.supc . 4
golub . 5
plot.supc . 5
shape . 6
supc.random . 7
supc1 . 9

Index 13

D31 The Artificial Data of Consisting of as Many as 31 Randomly Placed
Gaussian Clusters

Description

This artificial data was generated to show the strength of SUPC. Clustering D31 dataset is difficult
for the partition type of clustering algorithms that require an initial set. However, SUP correctly
identifies the 31 major clusters.

References

Veenman, C. J., M. J. T. Reinders, and E. Backer. 2002. A Maximum Variance Cluster Algorithm.
IEEE Trans. Pattern Analysis and Machine Intelligence 24 (9): 1273–80.

dist.mode Configure which package is used to compute the distance matrix

Description

Configure which package is used to compute the distance matrix or register one. Note that the speed
depends on the data and the hardware.

Usage

dist.mode(mode = c("stats", "amap"), FUN = NULL)

Arguments

mode string. The available modes are "stats" and "amap" by default.

FUN a function which has one argument x or NULL. The function should compute the
pairwise distance of x and return a dist object. The user can skip this argument
if the mode is registered. For example, "stats" and "amap" are registered by
default.

Value

NULL. The function is called for side effects.

dist.parallelization 3

Examples

use stats::dist to compute the pairwise distance
dist.mode("stats")
use amap::Dist to compute the pairwise distance
dist.mode("amap")

dist.parallelization Configure how many cores will be used to calculate the distance matrix

Description

Only affect Dist.

Usage

dist.parallelization(i)

Arguments

i integer.

Value

NULL. The function is called for side effects.

freq.poly Plot the frequency polygon of pairwise distance

Description

Plot the frequency polygon of the pairwise distance.

Usage

freq.poly(x, ...)

Arguments

x either dist object or matrix.

... other parameters to be passed through to hist.

4 freq.poly.supc

Value

an object of class "histogram" which is a list with components:

breaks the n+1 cell boundaries (= breaks if that was a vector). These are the nominal
breaks, not with the boundary fuzz.

counts n integers; for each cell, the number of x[] inside.

density values f̂(xi), as estimated density values. If all(diff(breaks) == 1), they are
the relative frequencies counts/n and in general satisfy

∑
i f̂(xi)(bi+1 − bi) =

1, where bi = breaks[i].

mids the n cell midpoints.

xname a character string with the actual x argument name.

equidist logical, indicating if the distances between breaks are all the same.

freq.poly.supc Plot the frequency polygon of pairwise distance

Description

Plot the frequency polygon of the pairwise distance. The red dashed line is the used parameter r.

Usage

S3 method for class 'supc'
freq.poly(x, ...)

Arguments

x either dist object or matrix.

... other parameters to be passed through to hist.

Value

NULL. The function is called for side effects.

golub 5

golub Gene expression dataset from Golub et al. (1999)

Description

Gene expression data (3051 genes and 38 tumor mRNA samples) from the leukemia microarray
study of Golub et al. (1999). Each row (gene) is scaled to mean 0 and standard deviation 1.

Value

golub The matrix of scaled gene expression data.

golub.supc The result of golub.supc <- supc1(golub, r = c(4, 4.3, 4.6, 4.7, 4.8), t
= "dynamic")

References

Golub, T. R., D. K. Slonim, P. Tamayo P., C. Huard C, M. Gaasenbeek M., J.P. J. P. Mesirov, H. H.
Coller, et al. 1999. Molecular Classification of Cancer: Class Discovery and Class Prediction by
Gene Expression Monitoring. Science 286 (5439): 531–37.

plot.supc Draw plots of the clustering result

Description

General function to draw plots for analysis

Usage

S3 method for class 'supc'
plot(x, type = "heatmap", ...)

Arguments

x supc object to plot.

type character value.

• "heatmap"draw a heatmap to show the result of clustering. The clusters
whose size is greater than parameter major.size are treated as major clus-
ters.

... other parameters to be passed through.

Value

NULL. The function is called for side effects.

6 shape

Examples

data(golub, package = "supc")
golub.supc <- supc1(golub, rp = 0.0005, t = "dynamic", implementation = "R")
table(golub.supc$size)
plot(golub.supc, type = "heatmap", major.size = 10)

shape The Artificial Data of Five Different Clusters

Description

This artificial data was generated to have five clusters: one big circle, two small circles, and two
ellipses. It was to test if the clustering algorithm could identify and distinguish between the five
different clusters or not. The dataset is generated from the following script:

makecircle <- function(N, seed) {
n <- 0
x <- NULL
set.seed(seed)
while(n < N) {
tmp <- runif(2, min = -1, max = 1)
if (t(tmp) %*% tmp < 1) {
n <- n + 1
x <- rbind(x, tmp)

}
}
return (x)

}

makedata <- function(n, seed) {
f <- c(10, 3, 3, 1, 1)
center <- matrix(
c(-.3, -.3, -.55, .8, .55, .8, .9, 0, .9, -.6),
nrow = 5, ncol = 2, byrow = TRUE

)
s <- matrix(
c(.7, .7, .45, .2, .45, .2, .1, .1, .1, .1),
nrow = 5, ncol = 2, byrow = TRUE

)
x <- NULL
for (i in 1:5) {
tmp <- makecircle(n * f[i], seed + i)
tmp[,1] <- tmp[,1] * s[i,1] + center[i,1]
tmp[,2] <- tmp[,2] * s[i,2] + center[i,2]

supc.random 7

x <- rbind(x, tmp)
}
line <- cbind(runif(floor(n / 3), min = -.1, max = .1), rep(.8, floor(n / 3)))
noise <- matrix(runif(8 * n, min = -1, max = 1), nrow = 4 * n, ncol = 2)
return(rbind(x, line, noise))

}

shape <- makedata(50, 1000)

References

Guha, S., R. Rastogi, and K. Shim. 2001. Cure: An Efficient Clustering Algorithm for Large
Databases. Information Systems 26 (1): 35–38.

supc.random Randomized Self-Updating Process Clustering

Description

The Randomized Self-Updating Process Clustering (randomized SUP) is a modification of the orig-
inal SUP algorithm. The randomized SUP randomly generates the partition of the instances during
each iterations. At each iteration, the self updating process is conducted independently in each
partition in order to reduce the computation and the memory.

Usage

supc.random(
x,
r = NULL,
rp = NULL,
t = c("static", "dynamic"),
k = NULL,
groups = NULL,
tolerance = 1e-04,
cluster.tolerance = 10 * tolerance,
drop = TRUE,
implementation = c("cpp", "R"),
sort = TRUE,
verbose = (nrow(x) > 10000)

)

Arguments

x data matrix. Each row is an instance of the data.

r numeric vector or NULL. The parameter r of the self-updating process.

8 supc.random

rp numeric vector or NULL. If r is NULL, then rp will be used. The corresponding
r is the rp-percentile of the pairwise distances of the data. If both r and rp are
NULL, then the default value is rp = c(0.0005, 0.001, 0.01, 0.1, 0.3).

t either numeric vector, list of function, or one of "static" or "dynamic". The
parameter T (t) of the self-updating process.

k integer value. The number of the partitions.

groups list. The first element is the partition of the first iteration, and the second element
is the partition of the second iteration, etc. If the number of the iteration exceeds
length(groups), then new partition will be generated.

tolerance numeric value. The threshold of convergence.
cluster.tolerance

numeric value. After iterations, if the distance of two points are smaller than
cluster.tolerance, then they are identified as in the same cluster.

drop logical value. Whether to delete the list structure if its length is 1.

implementation eithor "R" or "cpp". Choose the engine to calculate result.

sort logical value. Whether to sort the cluster id by size.

verbose logical value. Whether to show the iteration history.

Details

Please check the vignettes via vignette("supc", package = "supc") for details.

Value

supc1 returns a list of objects of class "supc".

Each "supc" object contains the following elements:

x The input matrix.

d0 The pairwise distance matrix of x.

r The value of r of the clustering.

t The function T (t) of the clustering.

cluster The cluster id of each instance.

centers The center of each cluster.

size The size of each cluster.

iteration The number of iterations before convergence.

groups The partition of each iteration.

result The position of data after iterations.

References

Shiu, Shang-Ying, and Ting-Li Chen. 2016. "On the Strengths of the Self-Updating Process
Clustering Algorithm." Journal of Statistical Computation and Simulation 86 (5): 1010–1031.
doi: 10.1080/00949655.2015.1049605.

https://doi.org/10.1080/00949655.2015.1049605

supc1 9

Examples

The shape data has a structure of five clusters and a number of noise data points.

makecircle=function(N, seed){
n=0
x=matrix(NA, nrow=N, ncol=2)
while (n<N){
tmp=runif(2, min=0, max=1)*2-1
if (sum(tmp^2)<1) {

n=n+1
x[n,]=tmp

}
}
return(x)

}

makedata <- function(ns, seed) {
size=c(10,3,3,1,1)
mu=rbind(c(-0.3, -0.3), c(-0.55, 0.8), c(0.55, 0.8), c(0.9, 0), c(0.9, -0.6))
sd=rbind(c(0.7, 0.7), c(0.45, 0.2), c(0.45, 0.2), c(0.1, 0.1), c(0.1, 0.1))
x=NULL

for (i in 1:5){
tmp=makecircle(ns*size[i], seed+i)
tmp[,1]=tmp[,1]*sd[i,1]+mu[i,1]
tmp[,2]=tmp[,2]*sd[i,2]+mu[i,2]
x=rbind(x, tmp)

}

tmp=runif(floor(ns/3), min=0, max=1)/5-0.1
tmp=cbind(tmp, 0.8*rep(1, floor(ns/3)))
x=rbind(x, tmp)
x=rbind(x, matrix(1, nrow=2*ns, ncol=2)*2-1)
return(x)

}

shape1 <- makedata(250, 100)
dim(shape1)
plot(shape1)

X.supc=supc.random(shape1, r=0.5, t="dynamic", k = 500, implementation = "R")
plot(shape1, col=X.supc$cluster)

supc1 Self-Updating Process Clustering

10 supc1

Description

The SUP is a distance-based method for clustering. The idea of this algorithm is similar to gravi-
tational attraction: every sample gravitates towards one another. The algorithm mimics the process
of gravitational attraction iteratively that eventually merges the samples into clusters on the sample
space. During the iterations, all samples continue moving until the system becomes stable.

Usage

supc1(
x,
r = NULL,
rp = NULL,
t = c("static", "dynamic"),
tolerance = 1e-04,
cluster.tolerance = 10 * tolerance,
drop = TRUE,
implementation = c("cpp", "R", "cpp2"),
sort = TRUE,
verbose = (nrow(x) > 10000)

)

Arguments

x data matrix. Each row is an instance of the data.

r numeric vector or NULL. The parameter r of the self-updating process.

rp numeric vector or NULL. If r is NULL, then rp will be used. The corresponding
r is the rp-percentile of the pairwise distances of the data. If both r and rp are
NULL, then the default value is rp = c(0.0005, 0.001, 0.01, 0.1, 0.3).

t either numeric vector, list of function, or one of "static" or "dynamic". The
parameter T (t) of the self-updating process.

tolerance numeric value. The threshold of convergence.
cluster.tolerance

numeric value. After iterations, if the distance of two points are smaller than
cluster.tolerance, then they are identified as in the same cluster.

drop logical value. Whether to delete the list structure if its length is 1.

implementation eithor "R", "cpp" or "cpp2". Choose the engine to calculate result. The "cpp2"
parallelly computes the distance in C++ with OpenMP, which is not supported
under OS X, and uses the early-stop to speed up calculation.

sort logical value. Whether to sort the cluster id by size.

verbose logical value. Whether to show the iteration history.

Details

Please check the vignettes via vignette("supc", package = "supc") for details.

supc1 11

Value

supc1 returns a list of objects of class "supc".

Each "supc" object contains the following elements:

x The input matrix.

d0 The pairwise distance matrix of x or NULL.

r The value of r of the clustering.

t The function T (t) of the clustering.

cluster The cluster id of each instance.

centers The center of each cluster.

size The size of each cluster.

iteration The number of iterations before convergence.

result The position of data after iterations.

References

Shiu, Shang-Ying, and Ting-Li Chen. 2016. "On the Strengths of the Self-Updating Process
Clustering Algorithm." Journal of Statistical Computation and Simulation 86 (5): 1010–1031.
doi: 10.1080/00949655.2015.1049605.

Examples

set.seed(1)
X <- local({
mu <- list(

x = c(0, 2, 1, 6, 8, 7, 3, 5, 4),
y = c(0, 0, 1, 0, 0, 1, 3, 3, 4)

)
X <- lapply(1:5, function(i) {

cbind(rnorm(9, mu$x, 1/5), rnorm(9, mu$y, 1/5))
})
X <- do.call(rbind, X)
n <- nrow(X)
X <- rbind(X, matrix(0, 20, 2))
k <- 1
while(k <= 20) {

tmp <- c(13*runif(1)-2.5, 8*runif(1)-2.5)
y1 <- mu$x - tmp[1]
y2 <- mu$y - tmp[2]
y <- sqrt(y1^2+y2^2)
if (min(y)> 2){

X[k+n,] <- tmp
k <- k+1

}
}
X

})
X.supcs <- supc1(X, r = c(0.9, 1.7, 2.5), t = "dynamic", implementation = "R")

https://doi.org/10.1080/00949655.2015.1049605

12 supc1

X.supcs$cluster
plot(X.supcs[[1]], type = "heatmap", major.size = 2)
plot(X.supcs[[2]], type = "heatmap", col = cm.colors(24), major.size = 5)

X.supcs <- supc1(X, r = c(1.7, 2.5), t = list(
function(t) {1.7 / 20 + exp(t) * (1.7 / 50)},
function(t) {exp(t)}

), implementation = "R")
plot(X.supcs[[1]], type = "heatmap", major.size = 2)
plot(X.supcs[[2]], type = "heatmap", col = cm.colors(24), major.size = 5)

Index

class, 8, 11

D31, 2
Dist, 3
dist.mode, 2
dist.parallelization, 3

freq.poly, 3
freq.poly.subclist (freq.poly.supc), 4
freq.poly.supc, 4

golub, 5

hist, 3, 4

plot.supc, 5

shape, 6
supc.random, 7
supc1, 9

13

	D31
	dist.mode
	dist.parallelization
	freq.poly
	freq.poly.supc
	golub
	plot.supc
	shape
	supc.random
	supc1
	Index

