
Package ‘stacking’
September 1, 2023

Type Package

Title Building Predictive Models with Stacking

Version 0.1.2

Description Building predictive models with stacking which is a type of ensemble learning. Learn-
ers can be specified from those implemented in 'caret'. For more information of the pack-
age, see Nukui and Onogi (2023) <doi:10.1101/2023.06.06.543970>.

License MIT + file LICENSE

NeedsCompilation no

Author Taichi Nukui [aut, cph],
Akio Onogi [aut, cre, cph]

Maintainer Akio Onogi <onogiakio@gmail.com>

Depends caret, parallel

Repository CRAN

Date/Publication 2023-09-01 08:20:02 UTC

R topics documented:
stacking_predict . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
stacking_train . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
train_basemodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
train_basemodel_core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
train_metamodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Index 15

stacking_predict Predict for new data

Description

Return predicted values for newX based on training results of stacking.
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Usage

stacking_predict(newX, stacking_train_result)

Arguments

newX An N x P matrix of explanatory variables of new data where N is the number
of samples and P is the number of explanatory variables. Note that the order of
explanatory variables should be the same as those for training. Column names
of newX are ignored.

stacking_train_result

A list output by stacking_train. When train_basemodel and train_metamodel
are directly used, a list combining each output should be created and given as
stacking_train_result. See examples for this operation.

Details

Prediction processes of this package are as follows. First, newX is given to all base models. As
a result, each base learner returns Nfold predicted values where Nfold is an argument of stack-
ing_train. Then the predicted values are averaged for each learner. Giving these averaged values as
the explanatory variables of the meta model, final predicted values are output.

Value

result Vector of predicted values. When TrainEachFold of stacking_train or train_metamodel
is TRUE (i.e., stacking_train_result$meta$TrainEachFold is TRUE), the values
are the averages of the values predicted from the meta models trained for each
cross-validation fold. In the case of classification, the probabilities of each cat-
egory are returned.

Author(s)

Taichi Nukui, Akio Onogi

Examples

#Create a toy example
##Number of training samples
N1 <- 100

##Number of explanatory variables
P <- 200

##Create X of training data
X1 <- matrix(rnorm(N1 * P), nrow = N1, ncol = P)
colnames(X1) <- 1:P#column names are required by caret

##Assume that the first 10 variables have effects on Y
##Then add noise with rnorm
Y1 <- rowSums(X1[, 1:10]) + rnorm(N1)
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##Test data
N2 <- 100
X2 <- matrix(rnorm(N2 * P), nrow = N2, ncol = P)
colnames(X2) <- 1:P#Ignored (not required)
Y2 <- rowSums(X2[, 1:10])

#Specify base learners
Method <- list(glmnet = data.frame(alpha = c(0.5, 0.8), lambda = c(0.1, 1)),

pls = data.frame(ncomp = 5))
#=>This specifies 5 base learners.
##1. glmnet with alpha = 0.5 and lambda = 0.1
##2. glmnet with alpha = 0.5 and lambda = 1
##3. glmnet with alpha = 0.8 and lambda = 0.1
##4. glmnet with alpha = 0.8 and lambda = 1
##5. pls with ncomp = 5

#The followings are the training and prediction processes
#If glmnet and pls are not installed, please install them in advance.
#Please remove #s before execution

#Training
#stacking_train_result <- stacking_train(X = X1,
# Y = Y1,
# Nfold = 5,
# Method = Method,
# Metamodel = "lm",
# core = 2)

#Prediction
#result <- stacking_predict(newX = X2, stacking_train_result)
#plot(Y2, result)

#Training using train_basemodel and train_metamodel
#base <- train_basemodel(X = X1, Y = Y1, Nfold = 5, Method = Method, core = 3)
#meta <- train_metamodel(base, which_to_use = 1:5, Metamodel = "lm")
#stacking_train_result <- list(base = base, meta = meta)
#=>this list should have elements named as base and meta

#Prediction
#result <- stacking_predict(newX = X2, stacking_train_result)
#plot(Y2, result)

stacking_train Training base and meta models

Description

Training base and meta learners of stacking (an ensemble learning approach). The base and meta
learners can be chosen from supervised methods implemented in caret.
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Usage

stacking_train(X, Y, Nfold, Method, Metamodel, TrainEachFold = FALSE, core = 1)

Arguments

X An N x P matrix of explanatory variables where N is the number of samples and
P is the number of variables. Column names are required by caret.

Y A length N Vector of objective variables. Use a factor for classification.

Nfold Number of folds for cross-validation. This cross-validation is required for train-
ing.

Method A list specifying base learners. Each element of the list is a data.frame that
contains hyperparameter values of base learners. The names of the list elements
specifies the base learners and are passed to caret functions. See details and
examples

Metamodel A strings specifying the meta learner. This strings is passed to caret.

TrainEachFold A logical indicating whether the meta learner learns using the predicted values of
the base models at each cross-validation fold or not. If TRUE, the meta learners
learns Nfold times using the values predicted by the base models at each fold. If
FALSE, the meta learner learns once by pooling the predicted values of the base
models of all folds.

core Number of cores for parallel processing

Details

Stacking by this function consists of the following 2 steps. (1) Nfold cross-validation is conducted
with each base learner.(2) Using the predicted values of each learner as the explanatory variables, the
meta learner is trained. This function conducts steps (1) and (2) at once by calling train_basemodel
and train_metamodel, respectively. But users can conduct these steps separately by directly using
these functions.

In the step (2), there are two options. One is to train the meta learner Nfold times using the predicted
values returned by the base models for each fold. The other is to train the meta learner once pooling
the predicted values by the base models across folds. TrainEachModel swiches these options.

Base learners are specified by Method. For example,
Method = list(glmnet = data.frame(alpha = 0, lambda = 5), pls = data.frame(ncomp = 10))
indicating that the first base learner is glmnet and the second is pls with the corresponding hyper-
parameters.

When the data.frames have multiple rows as
Method = list(glmnet = data.frame(alpha = c(0, 1), lambda = c(5, 10)))
All combinations of hyperparameter values are automatically created as
[alpha, lambda] = [0, 5], [0, 10], [1, 5], [1, 10]
Thus, in total 5 base learners (4 glmnet and 1 pls) are created.

When the number of candidate values differ among hyperparameters, use NA as
Method = list(glmnet = data.frame(alpha = c(0, 0.5, 1), lambda = c(5, 10, NA)))
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resulting in 6 combinations of
[alpha, lambda] = [0, 5], [0, 10], [0.5, 5], [0.5, 10], [1, 5], [1, 10]

When a hyperparameter includes only NA as
Method = list(glmnet = data.frame(alpha = c(0, 0.5, 1), lambda = c(NA, NA, NA)), pls = data.frame(ncomp
= NA))
lambda of glmnet and ncomp of pls are automatically tuned by caret. However, it is notable that
tuning is conducted assuming that all hyperparameters are unknown, and thus, the tuned lambea in
the above example is not the value tuned under the given alpha values (0, 0.5, or 1).

Hyperparameters of meta learners are automatically tuned by caret.

The base and meta learners can be chosen from the methods implemented in caret. The choosable
methods can be seen at https://topepo.github.io/caret/available-models.html or using names(getModelInfo())
after loading caret.

Value

A list containing the following elements is output.

base A list output by train_basemodel. See value of train_basemodel for the details

meta A list output by train_metamodel. See value of train_metamodel for the details

Author(s)

Taichi Nukui, Akio Onogi

See Also

train_basemodel, train_metamodel

Examples

#Create a toy example
##Number of training samples
N1 <- 100

##Number of explanatory variables
P <- 200

##Create X of training data
X1 <- matrix(rnorm(N1 * P), nrow = N1, ncol = P)
colnames(X1) <- 1:P#column names are required by caret

##Assume that the first 10 variables have effects on Y
##Then add noise with rnorm
Y1 <- rowSums(X1[, 1:10]) + rnorm(N1)

##Test data
N2 <- 100
X2 <- matrix(rnorm(N2 * P), nrow = N2, ncol = P)
colnames(X2) <- 1:P#Ignored (not required)
Y2 <- rowSums(X2[, 1:10])
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#Specify base learners
Method <- list(glmnet = data.frame(alpha = c(0.5, 0.8), lambda = c(0.1, 1)),

pls = data.frame(ncomp = 5))
#=>This specifies five base learners.
##1. glmnet with alpha = 0.5 and lambda = 0.1
##2. glmnet with alpha = 0.5 and lambda = 1
##3. glmnet with alpha = 0.8 and lambda = 0.1
##4. glmnet with alpha = 0.8 and lambda = 1
##5. pls with ncomp = 5

#The followings are the training and prediction processes
#If glmnet and pls are not installed, please install them in advance.
#Please remove #s before execution

#stacking_train_result <- stacking_train(X = X1,
# Y = Y1,
# Nfold = 5,
# Method = Method,
# Metamodel = "lm",
# core = 3)

#Prediction
#result <- stacking_predict(newX = X2, stacking_train_result)
#plot(Y2, result)

#Training using train_basemodel and train_metamodel
#base <- train_basemodel(X = X1, Y = Y1, Nfold = 5, Method = Method, core = 3)
#meta <- train_metamodel(base, which_to_use = 1:5, Metamodel = "lm")
#stacking_train_result <- list(base = base, meta = meta)
#=>this list should have elements named as base and meta

#Prediction
#result <- stacking_predict(newX = X2, stacking_train_result)
#plot(Y2, result)

#In the simulations of the reference paper (Nukui and Onogi 2023),
#we use 48 base learners as
Method <- list(ranger = data.frame(mtry = c(10, 100, 200),

splitrule = c("extratrees", NA, NA),
min.node.size = c(1, 5, 10)),

xgbTree = data.frame(colsample_bytree = c(0.6, 0.8),
subsample = c(0.5, 1),
nrounds = c(50, 150),
max_depth = c(6, NA),
eta = c(0.3, NA),
gamma = c(0, NA),
min_child_weight = c(1, NA)),

gbm = data.frame(interaction.depth = c(1, 3, 5),
n.trees = c(50, 100, 150),
shrinkage = c(0.1, NA, NA),
n.minobsinnode = c(10, NA, NA)),

svmPoly = data.frame(C = c(0.25, 0.5, 1),



train_basemodel 7

scale = c(0.001, 0.01, 0.1),
degree = c(1, NA, NA)),

glmnet = data.frame(alpha = c(1, 0.8, 0.6, 0.4, 0.2, 0),
lambda = rep(NA, 6)),

pls = data.frame(ncomp = seq(2, 70, 10))
)
#mtry of ranger and ncomp of pls should be arranged according to data size.

#In the classification example of the reference paper, for RNA features, we used
Method <- list(ranger = data.frame(mtry = c(10, 100, 500),

splitrule = c("extratrees", NA, NA),
min.node.size = c(1, 5, 10)),

xgbTree = data.frame(colsample_bytree = c(0.6, 0.8),
subsample = c(0.5, 1),
nrounds = c(50, 150),
max_depth = c(6, NA),
eta = c(0.3, NA),
gamma = c(0, NA),
min_child_weight = c(1, NA)),

gbm = data.frame(interaction.depth = c(1, 3, 5),
n.trees = c(50, 100, 150),
shrinkage = c(0.1, NA, NA),
n.minobsinnode = c(10, NA, NA)),

svmPoly = data.frame(C = c(0.25, 0.5, 1),
scale = c(0.001, 0.01, 0.1),
degree = c(1, NA, NA)),

glmnet = data.frame(alpha = c(1, 0.8, 0.6, 0.4, 0.2, 0),
lambda = rep(NA, 6)),

pls = data.frame(ncomp = seq(2, 70, 10))
)
#svmRadial was replaced by svmPoly
#These base learners may be a good starting point.

train_basemodel Training base models

Description

Training base models of stacking

Usage

train_basemodel(X, Y, Nfold, Method, core = 1)

Arguments

X An N x P matrix of explanatory variables where N is the number of samples and
P is the number of variables. Column names are required by caret.

Y A length N Vector of objective variables. Use a factor for classification.
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Nfold Number of folds for cross-validation. This cross-validation is required for train-
ing.

Method A list specifying base learners. Each element of the list is a data.frame that
contains hyperparameter values of base learners. The names of the list elements
specifies the base learners and are passed to caret functions. See details and
examples

core Number of cores for parallel processing

Details

Stacking by this package consists of the following 2 steps. (1) Nfold cross-validation is con-
ducted with each base learner.(2) Using the predicted values of each learner as the explanatory
variables, the meta learner is trained. This function conducts step (1). Step (2) is conducted by
train_metamodel. Another function stacking_train conducts both steps at once by calling these
functions (train_basemodel and train_metamodel).

Base learners are specified by Method. For example,
Method = list(glmnet = data.frame(alpha = 0, lambda = 5), pls = data.frame(ncomp = 10))
indicating that the first base learner is glmnet and the second is pls with corresponding hyperparam-
eters.

When the data.frames have multiple rows as
Method = list(glmnet = data.frame(alpha = c(0, 1), lambda = c(5, 10)))
All combinations of hyperparameter values are automatically created as
[alpha, lambda] = [0, 5], [0, 10], [1, 5], [1, 10]
Thus, in total 5 base learners (4 glmnet and 1 pls) are created.

When the number of candidate values differ among hyperparameters, use NA as
Method = list(glmnet = data.frame(alpha = c(0, 0.5, 1), lambda = c(5, 10, NA)))
resulting in 6 combinations of
[alpha, lambda] = [0, 5], [0, 10], [0.5, 5], [0.5, 10], [1, 5], [1, 10]

When a hyperparameter includes only NA as
Method = list(glmnet = data.frame(alpha = c(0, 0.5, 1), lambda = c(NA, NA, NA)), pls = data.frame(ncomp
= NA))
lambda of glmnet and ncomp of pls are automatically tuned by caret. However, it is notable that
tuning is conducted assuming that all hyperparameters are unknown, and thus, the tuned lambea in
the above example is not the value tuned under the given alpha values (0, 0.5, or 1).

Hyperparameters of meta learners are automatically tuned by caret.

The base and meta learners can be chosen from the methods implemented in caret. The choosable
methods can be seen at https://topepo.github.io/caret/available-models.html or using names(getModelInfo())
after loading caret.

Value

A list containing the following elements is output.

train_result A list containing the training results of the base models. The length of this list is
the same as Nfold, and each element is a list of which length is the same as the
number of base models. These elements are the lists output by train function of
caret, but the element "trainingData" is removed to save memory.
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no_base Number of base models.

valpr Predicted values of base models obtained in cross-validation. Used as explana-
tory variables for the meta learner.

Y.randomised Y ans X are randomized when cross-validation. Randomized Y is output to
enable evaluation of prediction accuracy

Order Order in randomization.

Type Type of task (regression or classification).

Nfold Number of cross-validation folds

Author(s)

Taichi Nukui, Akio Onogi

See Also

stacking_train, train_metamodel

Examples

#Create a toy example
##Number of training samples
N1 <- 100

##Number of explanatory variables
P <- 200

##Create X of training data
X1 <- matrix(rnorm(N1 * P), nrow = N1, ncol = P)
colnames(X1) <- 1:P#column names are required by caret

##Assume that the first 10 variables have effects on Y
##Then add noise with rnorm
Y1 <- rowSums(X1[, 1:10]) + rnorm(N1)

##Test data
N2 <- 100
X2 <- matrix(rnorm(N2 * P), nrow = N2, ncol = P)
colnames(X2) <- 1:P#Ignored (not required)
Y2 <- rowSums(X2[, 1:10])

#Specify base learners
Method <- list(glmnet = data.frame(alpha = c(0, 0.5, 1), lambda = rep(NA, 3)),

pls = data.frame(ncomp = 5))
#=>This specifies 4 base learners.
##1. glmnet with alpha = 0 and lambda tuned
##2. glmnet with alpha = 0.5 and lambda tuned
##3. glmnet with alpha = 1 and lambda tuned
##4. pls with ncomp = 5

#The followings are the training and prediction processes
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#If glmnet and pls are not installed, please install them in advance.
#Please remove #s before execution

#Training of base learners
#base <- train_basemodel(X = X1, Y = Y1, Nfold = 5, Method = Method, core = 2)

#Training of a meta learner
#meta <- train_metamodel(base, which_to_use = 1:4, Metamodel = "lm")

#Combine both results
#stacking_train_result <- list(base = base, meta = meta)
#=>this list should have elements named as base and meta

#Prediction
#result <- stacking_predict(newX = X2, stacking_train_result)
#plot(Y2, result)

#Training using stacking_train
#stacking_train_result <- stacking_train(X = X1,
# Y = Y1,
# Nfold = 5,
# Method = Method,
# Metamodel = "lm",
# core = 2)

#Prediction
#result <- stacking_predict(newX = X2, stacking_train_result)
#plot(Y2, result)

train_basemodel_core Internal function called by train_basemodel

Description

Training base models of stacking. This function is called by train_basemodel and designed for the
internal use of train_basemodel.

Usage

train_basemodel_core(repeat.parLapply, division, l, core, x, y, exclude)

Arguments

repeat.parLapply

A scalar indicating the number of repeats of parallel computation. If the number
of base models is 10 and 5 cores are used for computation, repeat.parLapply is
2.
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division A matrix of which the number of columns is equal to repeat.parLapply. The
elements are integers indicating the base models. For example, division[, 1]
indicates the base models trained in the first calculation round.

l A nested list indicating the training method and hyperparameters. The length is
the number of base models. Each element is a list consisting of two elements,
method and hyp, which are strings indicating the training method and a data
frame including hyperparameter values, respectively. The number of columns
of the data frame is the number of hyperparameters of the method, and the hy-
perparameter names should be specified as the column names.

core Number of cores for parallel processing

x An N x P matrix of explanatory variables where N is the number of samples and
P is the number of variables

y A length N Vector of objective variables

exclude A vector of integers indicating the samples excluded from training as testing
data

Details

This function is designed for the internal use and not for direct use by users. Thus, detaled usages
are not provided.

Value

A list containing the training results of base models.

Author(s)

Taichi Nukui, Akio Onogi

See Also

train_basemodel

train_metamodel Training a meta model based on base models

Description

Training a meta model of stacking

Usage

train_metamodel(basemodel_train_result, which_to_use, Metamodel, TrainEachFold = FALSE)
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Arguments

basemodel_train_result

The list output by train_basemodel

which_to_use A vector of integers between 1 and L where L is the number of base models.
These integers specify the base models used for training the meta model.

Metamodel A strings specifying the meta learner

TrainEachFold A logical indicating whether the meta learner learns using the predicted values of
the base models at each cross-validation fold or not. If TRUE, the meta learners
learns Nfold times using the values predicted by the base models at each fold. If
FALSE, the meta learner learns once by pooling the predicted values of the base
models of all folds.

Details

Stacking by this package consists of the following 2 steps. (1) Nfold cross-validation is con-
ducted with each base learner.(2) Using the predicted values of each learner as the explanatory
variables, the meta learner is trained. This function conducts step (2). Step (1) is conducted by
train_basemodel. Another function stacking_train conducts both steps at once by calling these
functions (train_basemodel and train_metamodel).

In the step (2), there are two options. One is to train the meta learner Nfold times using the predicted
values returned by the base models for each fold. The other is to train the meta learner once pooling
the predicted values by the base models across folds. TrainEachModel swiches these options.

Meta learners can be chosen from the methods implemented in caret. The choosable methods
can be seen at https://topepo.github.io/caret/available-models.html or using names(getModelInfo())
after loading caret.

Value

A list containing the following elements is output.

train_result A list containing the training results of the meta model, which is the list output
by train function of caret. When TrainEachFold is TRUE, the length of list is
Nfold because the meta learner is trained Nfold times.

which_to_use which_to_use given as the argument

TrainEachFold TrainEachFold

Author(s)

Taichi Nukui, Akio Onogi

See Also

stacking_train, train_basemodel
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Examples

#Create a toy example
##Number of training samples
N1 <- 100

##Number of explanatory variables
P <- 200

##Create X of training data
X1 <- matrix(rnorm(N1 * P), nrow = N1, ncol = P)
colnames(X1) <- 1:P#column names are required by caret

##Assume that the first 10 variables have effects on Y
##Then add noise with rnorm
Y1 <- rowSums(X1[, 1:10]) + rnorm(N1)

##Test data
N2 <- 100
X2 <- matrix(rnorm(N2 * P), nrow = N2, ncol = P)
colnames(X2) <- 1:P#Ignored (not required)
Y2 <- rowSums(X2[, 1:10])

#Specify base learners
Method <- list(glmnet = data.frame(alpha = c(0, 0.5, 1), lambda = rep(NA, 3)),

pls = data.frame(ncomp = 5))
#=>This specifies four base learners.
##1. glmnet with alpha = 0 and lambda tuned
##2. glmnet with alpha = 0.5 and lambda tuned
##3. glmnet with alpha = 1 and lambda tuned
##4. pls with ncomp = 5

#The followings are the training and prediction processes
#If glmnet and pls are not installed, please install them in advance.
#Please remove #s before execution

#Training of base learners
#base <- train_basemodel(X = X1, Y = Y1, Nfold = 5, Method = Method, core = 2)

#Training of a meta learner
#meta <- train_metamodel(base, which_to_use = 1:4, Metamodel = "lm")

#Combine both results
#stacking_train_result <- list(base = base, meta = meta)
#=>this list should have elements named as base and meta

#Prediction
#result <- stacking_predict(newX = X2, stacking_train_result)
#plot(Y2, result)

#Training using stacking_train
#stacking_train_result <- stacking_train(X = X1,
# Y = Y1,
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# Nfold = 5,
# Method = Method,
# Metamodel = "lm",
# core = 2)

#Prediction
#result <- stacking_predict(newX = X2, stacking_train_result)
#plot(Y2, result)
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