
Package ‘srcr’
October 14, 2022

Type Package

Title Simplify Connections to Database Sources

Version 1.1.0

Maintainer Charles Bailey <baileyc@chop.edu>

Description Connecting to databases requires boilerplate code to specify
connection parameters and to set up sessions properly with the DBMS.
This package provides a simple tool to fill two purposes: abstracting
connection details, including secret credentials, out of your source
code and managing configuration for frequently-used database connections
in a persistent and flexible way, while minimizing requirements on the
runtime environment.

License Artistic-2.0

Encoding UTF-8

ByteCompile TRUE

Imports DBI, dplyr, jsonlite, utils

Suggests knitr, rmarkdown, RSQLite, withr

VignetteBuilder knitr

RoxygenNote 7.1.1

NeedsCompilation no

Author Charles Bailey [aut, cre],
Hanieh Razzaghi [aut]

Repository CRAN

Date/Publication 2021-10-30 20:00:02 UTC

R topics documented:
find_config_files . 2
srcr . 3

Index 6

1

2 find_config_files

find_config_files Locate candidate configuration files

Description

Given vectors of directories, basenames, and suffices, combine them to find existing files.

Usage

find_config_files(
basenames = .basename.defaults(),
dirs = .dir.defaults(),
suffices = .suffix.defaults()

)

Arguments

basenames A vector of file names (without directory or file type) to use in searching for
configuration files.

dirs A vector of directory names to use in searching for configuration files.

suffices A vector of suffices (file "type"s) to use in searching for the configuration file.

Details

This function is intended to support a variety of installation patterns, so it attempts to be flexible in
looking for configuration files. First, environment variables of the form basename_CONFIG, where
basename is the uppercase form of each candidate basename, are examined to see whether any
translate to a file path.

Following this, the path name parts supplied as arguments are used to build potential file names. If
dirs is not specified, the following directories are checked by default:

1. the user’s $HOME directory

2. the directory named .srcr (no leading . on Windows) under $HOME

3. the directory in which the executing script is located

4. the directory in which the calling function’s calling function’s source file is located (typically
an application-level library). For example, if the function my_setup() calls srcr(), which in
turn calls find_config_files(), then the directory of the file containing my_setup() will
be tried.

5. the directory in which the calling function’s source file is located (typically a utility function,
such as srcr())

Note that the current working directory is not part of the search by default. This is done to limit
the potential for accidentally introducing (potentially harmful) configuration files by setting the
working directory.

In each location, the file names given in basenames are checked; if none are specified, several
default file names are tried:

srcr 3

1. the name of the calling function’s source file

2. the name of the executing script

3. the directory in which the calling function’s calling function’s source file is located (typically
an application-level library). For example, if the function my_setup() calls srcr(), which
in turn calls find_config_files(), then the name of the file containing my_setup() will be
tried.

The suffices (file "type"s) of .json, .conf, and nothing, are tried with each candidate path; you
may override this default by using the suffices parameter. Finally, in order to accommodate the
Unix tradition of "hidden" configuration files, each basename is prefixed with a period before trying
the basename alone.

Value

A vector of path specifications, or an empty vector if none are found.

Examples

Not run:
find_config_files() # All defaults
find_config_files(dirs = c(file.path(Sys.getenv('HOME'),'etc'),

'/usr/local/etc', '/etc'),
basenames = c('my_app'),
suffices = c('.conf', '.rc'))

End(Not run)

srcr Connect to database using config file

Description

Set up a or DBI or legacy dplyr database connection using information from a JSON configuration
file, and return the connection.

Connecting to databases requires boilerplate code to specify connection parameters and to set up
sessions properly with the DBMS. This package provides a simple tool to fill two purposes: ab-
stracting connection details, including secret credentials, out of your source code and managing
configuration for frequently-used database connections in a persistent and flexible way, while min-
imizing requirements on the runtime environment.

Usage

srcr(
basenames = NA,
dirs = NA,
suffices = NA,
paths = NA,

4 srcr

config = NA,
allow_post_connect = getOption("srcr.allow_post_connect", c())

)

Arguments

basenames A vector of file names (without directory or file type) to use in searching for
configuration files.

dirs A vector of directory names to use in searching for configuration files.

suffices A vector of suffices (file "type"s) to use in searching for the configuration file.

paths A vector of full path names for the configuration file. If present, only these paths
are checked; find_config_files() is not called.

config A list containing the configuration data, to be used instead of reading a configu-
ration file, should you wish to skip that step.

allow_post_connect

A vector specifying what session setup you will permit after the connection is es-
tablished. If any element of the vector is sql, then the post_connect_sql section
of the configuration file is executed. Similarly, if any element is fun, then the
post_connect_fun section of the config file is executed (after post_connect_sql,
if both are present and allowed).

Details

The configuration file must provide all of the information necessary to set up the DBI connection
or dplyr src. Given the variety of ways a data source can be specified, the JSON must be a hash
containing at least two elements:

• The src_name key points to a string containing name of a DBI driver method (e.g. SQLite),
as one might pass to DBI::dbDriver(), or an old-style dplyr function that sets up the data
source (e.g. dplyr::src_postgres(). If the value associated with src_name begins with
’src_’, it is taken as the latter, otherwise it is taken as the former. In this case, an attempt will
be made to load the appropriate DBI-compliant database library (e.g. RSQLite for the above
example) if it hasn’t already been loaded.

• The src_args key points to a nested hash, whose keys are the arguments to that function, and
whose values are the argument values.

To locate the necessary configuration file, you can use all of the arguments taken by find_config_files(),
but remember that the contents of the file must be JSON, regardless of the file’s name. Alternatively,
if paths is present, only the specified paths are checked. The first file that exists, is readable, and
evaluates as legal JSON is used as the source of configuration data.

If your deployment strategy does not make use of configuration files (e.g. you access configuration
data via a web service or similar API), you may also pass a list containing the configuration data
directly via the config parameter. In this case, no configuration files are used.

Once the connection is established, the post_connect_sql and post_connect_fun elements of
the configuration data can be used to perform additional processing to set session characteristics,
roles, etc. However, because this entails the configuration file providing code that you won’t see
prior to runtime, you need to opt in to these features. You can make this choice globally by setting
the srcr.allow_post_connect option via base::options().

srcr 5

Value

A database connection. The specific class of the object is determined by the src_name in the
configuration data.

Examples

Not run:
Search all the (filename-based) defaults
srcr()

"The usual"
srcr('myproj_prod')

Look around
srcr(dirs = c(Sys.getenv('PROJ_CONF_DIR'), 'var/lib', getwd()),

basenames = c('myproj', Sys.getenv('PROJ_NAME')))

No defaults
srcr(paths = c('/path/to/known/config.json'))
srcr(config =

list(src_name = 'Postgres',
src_args = list(host = 'my.host', dbname = 'my_db', user = 'me'),
post_connect_sql = 'set role project_role;'))

End(Not run)

Index

base::options(), 4

DBI::dbDriver(), 4
dplyr::src_postgres(), 4

find_config_files, 2
find_config_files(), 2–4

srcr, 3
srcr(), 2, 3

6

	find_config_files
	srcr
	Index

