The solartime
package provides utilities to work with
solar time, i.e. where noon is exactly when sun culminates. It provides
functions to compute
## Loading required package: solartime
The city of Jena is located west of the timezone’s meridian. Hence, the sun culminates around 13 minutes later.
## [1] -13.72
The time difference shifts during the year because of earth orbit’s eccentricity.
doy <- 1:366
locaDiffDoi <- computeSolarToLocalTimeDifference(longDeg, 1L, doy)*60
plot(locaDiffDoi ~ doy, ylab = "time difference solar - local time (min)")
abline(h = localDiff); abline(h = 0, lty = "dotted")
During most days, the sun culminates after noon, but during a few days in autumn the sun culminates earlier than noon of the local time zone.
Using function computeSunPosition
.
times <- seq(
ISOdate(2018, 11, 21, 0, tz = "Etc/GMT-1"), by = "2 hour", length.out = 13)
ans <- computeSunPosition(times, latDeg = latDeg, longDeg = longDeg)
cbind(data.frame(timestamp = times), as.data.frame(ans))
## timestamp hour declination elevation azimuth
## 1 2018-11-21 00:00:00 0.007677319 -0.3428584 -1.02475619 0.003645122
## 2 2018-11-21 02:00:00 2.007677319 -0.3428584 -0.88587017 0.843474263
## 3 2018-11-21 04:00:00 4.007677319 -0.3428584 -0.59048251 1.386239933
## 4 2018-11-21 06:00:00 6.007677319 -0.3428584 -0.26282498 1.793575561
## 5 2018-11-21 08:00:00 8.007677319 -0.3428584 0.03683142 2.188474356
## 6 2018-11-21 10:00:00 10.007677319 -0.3428584 0.25645552 2.635087174
## 7 2018-11-21 12:00:00 12.007677319 -0.3428584 0.33904050 3.143599850
## 8 2018-11-21 14:00:00 14.007677319 -0.3428584 0.25522232 3.651797949
## 9 2018-11-21 16:00:00 16.007677319 -0.3428584 0.03476366 4.097884290
## 10 2018-11-21 18:00:00 18.007677319 -0.3428584 -0.26529678 4.492580298
## 11 2018-11-21 20:00:00 20.007677319 -0.3428584 -0.59297225 4.900381623
## 12 2018-11-21 22:00:00 22.007677319 -0.3428584 -0.88775827 5.444904168
## 13 2018-11-22 00:00:00 0.003498418 -0.3467846 -1.02868424 0.001669479
The return value is a data.frame with polar coordinates of the sun in radian on the horizontal coordinatesystem:
In the example the azimuth increases from slightly more than zero at midnight to 2\(\pi\) at the following midnight. Elevation increases from negative values to 0 at sunset, maximum at noon declining to zero at sunset. Declination in early winter decreases to more negative values until it reaches the negative of the earth axial tilt on December solstice.
Sunrise and sunset are computed in fractional hours after midnight. Neglecting the difference between solar time and local time introduces a bias. Daylength is not biased by neglecting solar time correction.
today <- as.POSIXlt(ISOdate(2018,3,1,0, tz = "Etc/GMT-1"))
(sunrise <- computeSunriseHour(today, latDeg = latDeg
, isCorrectSolartime = FALSE))
## [1] 6.685696
## [1] 7.129989
## [1] 17.7586
## [1] 10.62861
Sunrise is set to 12 for polar nights and 0 for polar days. Similarly, sunset is set to 12 for polar nights and to 0 for polar days.
Functions computeIsDayByHour
and
computeIsDayByLocation
quickly classify daytime and
nighttime records of a dataset.
dateSeq <- seq(
as.POSIXct("2017-03-20", tz = "Etc/GMT-1")
, as.POSIXct("2017-03-21", tz = "Etc/GMT-1")
, by = "30 min")
isDay <- computeIsDayByLocation(dateSeq, latDeg = 50.93, longDeg = 11.59)
Function getHoursAheadOfUTC
provides the integer
timeZone argument of a timestamp, required by other functions of the
package. Similarly, getFractionalHours
provides fractional
hours after midnight of a timestamp.
#around daylight saving time step in Central European time
t1 <- as.POSIXct("2018-10-28 01:30", tz = "Europe/Berlin")
datesCET <- seq(t1, by = "30 min", length.out = 6)
datesUTC <- as.POSIXct(datesCET, tz = "UTC")
#
hoursAheadOfUTC <- getHoursAheadOfUTC(datesCET)
fracHours <- getFractionalHours(datesCET)
#
data.frame(datesUTC, datesCET, hoursAheadOfUTC, fracHours)
## datesUTC datesCET hoursAheadOfUTC fracHours
## 1 2018-10-27 23:30:00 2018-10-28 01:30:00 2 1.5
## 2 2018-10-28 00:00:00 2018-10-28 02:00:00 2 2.0
## 3 2018-10-28 00:30:00 2018-10-28 02:30:00 2 2.5
## 4 2018-10-28 01:00:00 2018-10-28 02:00:00 1 3.0
## 5 2018-10-28 01:30:00 2018-10-28 02:30:00 1 3.5
## 6 2018-10-28 02:00:00 2018-10-28 03:00:00 1 4.0