sleev: Semiparametric Likelihood Estimation with Errors in Variables

Jiangmei Xiong, Sarah C. Lotspeich, Gustavo Amorim, Bryan E. Shepherd and Ran Tao
May 4, 2022

1 Introduction

Due to the nature of routine data collection, errors in outcomes and covariates can be inevitable in observational studies; for
added complexity, these errors can be correlated. To correct the errors, validation studies are often conducted, but usually
only for subsets of the database due to their monetarily and time-wise expensive nature, especially for large datasets. In this
vignette, we introduce the sleev package, which implements the sieve maximum likelihood estimation (SMLE) of Tao et al.
(2021) and Lotspeich et al. (2021b) to conduct valid and efficient inference using the partially validated, error-prone data.
The SMLE is robust as it models the distribution of errors nonparametrically. It allows for non-random validation sample
selection mechanisms. The main functions in sleev are linear2ph() and logistic2ph(), which handle linear and logistic
regression, respectively, in the presence of errors in both the outcome and covariates.

2 Overview of SMLE

2.1 Linear regression

Suppose we want to fit a standard linear regression model for a continuous outcome Y and vector of covariates X: Y =
a + XB + €, where € follows a normal distribution with mean zero and variance o2. When we have errors in variables, Y
and X are unobserved except for a few subjects whose records are validated. For the majority of subjects whose records are
not validated, only the error-prone outcome Y* =Y + W and covariates X* = X + U are observed, where W and U are
the additive errors for the outcome and covariates, respectively. It is assumed that the measurement errors W and U are
independent of e. With potential errors in our data, a naive regression analysis using error-prone variables Y* and X* could
render misleading results.
We assume that the joint density of (Y*, X* W,U) takes the form

P(Y*, X*, W,U) = P(Y*|X*, W,U)P(W,U|X*)P(X")
— P(Y|X)P(W,U|X*)P(X*).

Define = (a, BT, 02)T. Now consider the indicator variable V, with V; = 1 if subject i received a data audit and 0 otherwise.
For subjects who did not receive the data audit, measurement errors (W,U) are not available, so the contributions of these
subjects to the log-likelihood can be obtained by integrating out W and U:

S Vi{log Po(¥;[X) + log P(Wi, U3 [X7)} + 3 (1 — Vi) log { [[potr —uix: - u)P(Wi,Uixndwdu} NG

i=1 i=1

Expression is the log-likelihood of the observed data. For estimates of 8 that are robust to assumptions about the
measurement error mechanism, P(W;,U;|X7), an approach like nonparametric maximum likelihood estimation (NPMLE)
would be ideal. However, this method requires discrete estimation of P(W,U|X* = x*) based on the empirical density.
This estimator will have too few observations to be applicable since a small number of subjects will have X* = &* and
even fewer will have the different values of (W,U). Instead, SMLE is used, wherein log P(W;,U;|X) and P(W;,U;|X) are
approximated by >0 I(w = wy,u = uy) 325" B (X})pr; and 35,0 H(w = wy,u = uy) 325 BY(X7)logpy;, respectively.
Here: m is the number of distinct pmbzx™ values; B;?(-) represents the jth B-spline function of order ¢; s, is determined by
first-phase sample size n; and py; is coefficient with constraints Z;"’Zl Prj = 1,pr; > 0, k here indicates correspondence to kth
distinct £* value and j indicates correspondence to jth B-spline. A B-spline basis is a type of piecewise polynomial function,
and can be taken as a fitted curve on the data points. This can be seen as “smoothing” on the continuous (X*, Y*) to make

estimation of the density tractable. The log-likelihood expression [1|is now being approximated by

n m Sn
> Vi{logPo(YVi|X:) + Y T(w = wy,u =uy) > BHX])p;
i=1 k=1 j=1
+> (1-V;)log //PO(Y;* —w|X7 —u) Y I(w=wp,u=u;)» BIX;])logpdwdu ;. (2)
i=1 k=1 J=1

The maximization of expressionis carried out through an expectation-maximization (EM) algorithm. The variance estimates
of the parameters are obtained through the profile likelihood method (Murphy and Van der Vaart],|2000)). Full details on this
method, including its theoretical properties, can be found in Tao et al.| (2021]).

2.2 Binary outcomes: Logistic Regression

This setting is similar to the previous one, except that the outcome Y is binary and we would wish to fit a logistic regression
model Pg(Y = 1|X) = [1 4 exp{—(a+BX)}] ", where parameters & = (o, 8T)T. Note that this is logit(Y = 1|X) =
log(Pe(Y =1|1X)/[1 — Pp(Y = 1|X)]) = o + X after transformation. This time, the joint density of a complete observation
is of the form

P(Y*,X*,Y,X) = P(Y*|X*,Y,X)P(Y|X,X*)P(X|X*)P(X*)
= P(Y*|X*,Y,X)P(Y|X)P(X|X")P(X"),

where P(Y|X,X*) = P(Y|X) follows from the assumption that ¥ and X* are independent given X (i.e., surrogacy).
Similar to the linear regression case, V' is the data audit indicator, and unvalidated subjects will need to have their densities
marginalize out the unobserved Y and X. Again, the log-likelihood here ignores P(X*), as it is fully observed.

n n 1
ZVi{logPe(YiXz-)+10gP(Yi*|X;—"75€,Xi)+10gP(Xi|Xf)}+Z(1—W)log{Z/logPe(ylw)P(K*Xf,yw)P(ﬂch)dw}
y=0"7%

i=1 i=1

Among the terms, P(Y*|X},Y;, X;) is fitted with an additional logistic regression model. P(X = z|X} =) is estimated
with discrete probabilities when X is discrete, and SMLE is used when X is continuous. Following similar steps as in
Section 2.1, we approximate log P(X;|X) and P(z|X) in the log-likelihood by »7,", I(X; = zx) Y5, log px; B] (X) and
S UX, =zy) Zjll pijjq (X7), respectively. Again, the constrained maximization of the resulting expression is carried
out through an EM algorithm and profile likelihood variance estimation. More details can be found in 7.

2.3 SMLE Versus Existing Approaches

Apart from high statistical efficiency, the SMLE methods described stand out from existing methods because they can be used
where both outcome and covariate error exists, do not assume distributions on the errors, and the full-likelihood specification
can accommodate a multitude of informed audit designs, such as extreme-tail sampling.

The number of covariates in the B-spline basis is ideally two to three, due to the curse of dimensionality. In situations
where we have more covariates, readers might consider dimension reduction on covariates (e.g., principal components analysis)
or omitting error-free covariates that are independent from error-prone covariates. Both of these are promising workarounds.

3 Example with Data

The package can be installed through CRAN:

install.packages(sleev)
library(sleev)
data(mock.vcce) #assuming this data can be pulled from package

3.1 Data overview

In this section, we illustrate the usage of the function by using a simulated dataset. This dataset is constructed to imitate
the Vanderbilt Comprehensive Care Clinic (VCCC) patient records, which have been fully validated and therefore contain
validated and unvalidated versions of all variables. The VCCC cohort is a good candidate for the purpose of illustration. The
data presented in this section are a mocked-up version of the actual data due to confidentiality, but the data structure and
features, such as mean and variability, closely resemble the real dataset. Following the examples used with VCCC dataset in
Lotspeich et al.| (2021a) and |Amorim et al.| (2021]), the mock dataset is created and the variable descriptions can be found in
Table [l The dataset can be loaded as

data(mock.vccc)

Name Description Status, Type
VL_unval viral load at antiretroviral therapy (ART) initiation error-prone outcome, continuous
VL_val viral load at antiretroviral therapy (ART) initiation validated outcome, continuous

ADE_unval having an AIDS-defining event (ADE) within one year of ART initiation error-prone outcome, binary
ADE_val having an AIDS-defining event (ADE) within one year of ART initiation validated outcome, binary
CD4_unval CD4 count at ART initiation error-prone covariate, continuous
CD4_val CD4 count at ART initiation validated covariate, continuous
ART whether patient is ART naive at enrollment error-free covariate, binary
Gender gender of patient, 1 indicates male and 0 indicates female error-free covariate, binary

Table 1: The variables in mock VCCC dataset

Note that both CD4 and VL should both be transformed for the consistency in the scale of the variable. CD4 should be
divided by 10 and square root transformed, and can hence be inerpreted as CD4 count per square centimeters. VL should be
square root transformed:

mock.vccc$CD4_val[!is.na(mock.vccc$CD4_val)] <- sqrt(mock.vccc$CD4_val[!is.na(mock.vccc$CD4_val)]/10)
mock.vccc$CD4_unval <- sqrt(mock.vccc$CD4_unval)

mock.vccc$VL_val[!is.na(mock.vccc$VL_val)] <- loglO(mock.vccc$VL_val[!is.na(mock.vccc$VL_val)]l)
mock.vccc$VL_unval <- loglO(mock.vccc$VL_unval)

3.2 Fitting a linear model with linear2ph()

Suppose we are fitting a linear regression model where CD4 count at antiretroviral therapy (ART) initiation (CD4) is dependent
on the viral load at ART initiation (VL), adjusting for gender (Gender). Both CD4 and VL are error-prone and partially
validated, and Gender is error-free.

3.2.1 Setting up the B-spline for data

To analyze the dataset, we need to set up the B-spline basis on VL_unval (the error-prone viral load variable) and Gender
and add it to the dataframe. The splines package is needed to do this:

install.packages(‘splines’)
library(splines)

Here we use a cubic B-spline basis with input degree=3 in our call to the function bs(). The number of basis functions,
usually called the “number of sieves” and denoted s,, in Section 2, is set to be 20; this input is fed into bs() through the df
= 20 parameter. The selection of number of sieves will be introduced in Section

n <- nrow(mock.vccc)

Bspline_0 = splines::bs(x=mock.vccc$VL_unval [mock.vccc$Gender==0], df=nsieve, degree=3,
Boundary.knots=range (mock.vccc$VL_unval [mock.vccc$Gender==0]), intercept=TRUE)

Bspline_1 = splines::bs(x=mock.vccc$VL_unval [mock.vccc$Gender==1], df=nsieve, degree=3,

Boundary.knots=range (mock.vccc$VL_unval [mock.vccc$Gender==1]), intercept=TRUE)

Bspline = matrix(0, n, 2*nsieve)

Bspline[mock.vccc$Gender==0,1:nsieve] = Bspline_O

Bspline[mock.vccc$Gender==1, (nsieve+1): (2*nsieve)] = Bspline_1

colnames(Bspline) = paste("bs", 1:(2*nsieve), sep="") # name B-spline columns properly

df defines the number of equally-spaced internal knots and Boundary.knots defines at what range the internal knots are
defined.

Note that in the code above, B-splines are set up separately for different stratum of the error-free binary variable Gender.
Recall that we assumed the error-free binary predictor Gender is correlated with error-prone predictor VL_unval, therefore
we fit B-spline functions to viral load for female and male patients separately. If some stratum has very few observations, it
is recommended to combine it with other stratum, or fit B-spline with all data. Finally, assemble the variables and B-splines
into one dataframe:

data = data.frame(cbind(mock.vccc, Bspline))

3.2.2 Fitting the model
Now, we can run the analysis

res_linear = sleev::linear2ph(Y="CD4_val", X="VL_val", Y_unval="CD4_unval", X_unval="VL_unval",
Z="Gender", Bspline=colnames(Bspline), data=data)

The argument inputs here are the corresponding column name in the dataset input, and they are in string format.
Argument Y is the audited error-prone outcome variable, and Y_unval is the unaudited error-prone predictor variable. The
meaning of X and X_unval follows the same pattern. Z is the error-free covariate. Note that the input of Bspline is the vector
of column name inputs in the previous section. If you have more than one variable that fits into the type of argument, simply
put in a vector of the column names like with Bpline.

The result is stored in a list object, which we called res_linear. We discuss the elements of this list in the Section
that follows.

3.2.3 Interpreting model results

The res_linear$coefficients slot gives the coefficients, corresponding standard error estimates, t-statistics, and p-values
for the outcome model:

$coefficients
Estimate SE Statistic p-value
Intercept 4.9911029 0.25477684 19.590096 0.000000000
VL_val -0.1943532 0.06358564 -3.056557 0.002238946
Gender 0.2400633 0.17414664 1.378512 0.168045209

Similar to interpreting output from 1m(), the output here indicates that for every l-unit increase in the log;,-transformed
viral load at (ART) initiation, there is expected to be 0.194-units decrease in CD4 count per square centimeters at ART
initiation, adjusting for gender. It is expected that the average log,,-transformed viral load for males is 0.24-units higher
than that for females, adjusting for viral load. Based on p-value output, the viral load is statistically significant and gender
is not, at the 0.05 significance level.

The res_linear$covariance slot gives the covariance matrix, which can be useful for obtaining confidence intervals for
linear combinations of covariates.

$covariance
[,1] [,2] [,3]
[1,] 0.06491124 -1.304698e-02 -2.271704e-02
[2,] -0.01304698 4.043134e-03 -2.889536e-05
[3,] -0.02271704 -2.889536e-05 3.032705e-02

3.2.4 Specifying B-spline parameters

There are two B-spline parameters that need specification: degree and number of sieves. Degree of 3, which is cubic spline, is
most commonly used. The optimal number of sieves can be selected through utilizing the sleev::cv_linear2ph() function
in this package. This function uses k-fold cross-validation to calculate the predicted log-likelihood under various B-spline
specifications. To be more specific, to perform a k-fold cross validation, data is split into k& parts. Among them, use 2, ...,k
parts to fit the model, and test the model on the first part (usually obtain sum of residuals, etc). Repeat this process for all
k parts and obtain the average measure of model fit.

The following code loops through different numbers of sieves and compare the log-likelihood of each fitted result. The
number of sieves with highest log-likelihood will be chosen.

nsieves = c(5, 10, 15, 20, 25, 30, 40, 50)
pred_loglike.l = rep(NA, length(nsieves))
for (i in 1:length(nsieves)) {
nsieve = nsieves[i]
Bspline = splines::bs(mock.vccc$VL_unval, df=nsieve, degree=3,
Boundary.knots=range (mock.vccc$VL_unval), intercept=TRUE)
colnames(Bspline) = paste("bs", l:nsieve, sep="")
cubic basis

data.sieve = cbind(mock.vccc, Bspline)
generate data

res.1l = sleev::cv_linear2ph(Y="CD4_val", X="VL_val", Y_unval="CD4_unval",
X_unval="VL_unval", Z="Gender", Bspline=colnames(Bspline),
data=data.sieve, nfold=5)
pred_loglike.1[i] = res.1$avg_pred_loglik
}
data.frame(nsieves, pred_loglike.l, pred_loglike)

The output of this loop is:

nsieves pred_loglike.1

1 5 -1400.560
2 10 -1400.540
3 15 -1401.059
4 20 -1400.092
5 25 -1401.547
6 30 -1400.790
7 40 -1401.105
8 50 -1401.050

It can be seen that 20 sieves has the lowest log-likelihood, and is therefore chosen. Note that the log-likelihoods are fairly
flat across the changing number of sieves, which means that the number of sieves does not impact the results very much.
This is also true in the simulations performed in [Tao et al.| (2021). This method of choosing number of sieves can also be
used in the parallel function for logistic regression, sleev::cv_logistic2ph(), to be introduced next.

3.3 Fitting a logistic regression model with logistic2ph()

Suppose we are fitting logistic regression model of having an AIDS-defining event (ADE) within one year of ART initiation
(ADE) on CD4 count at ART initiation (CD4), adjusting for whether patient is ART naive at enrollment. Among the three
variables, both ADE and CD4 are error-prone and partially validated, and ART is error-free.

3.3.1 Setting up the B-spline for data
Again, we set up B-splines in similar way as in Section

nsieve=20

Bspline_0 = splines::bs(mock.vccc$CD4_unval [mock.vccc$ART==0], df=nsieve,

degree=3,Boundary.knots=range (mock.vccc$CD4_unval [mock.vccc$ART==0]) ,intercept=TRUE)

Bspline_1 = splines::bs(mock.vccc$CD4_unval [mock.vccc$ART==1], df=nsieve, degree=3,
Boundary.knots=range (mock.vccc$CD4_unval [mock.vccc$ART==1]), intercept=TRUE)

Bspline = matrix(0, n, 2*nsieve)

Bspline[mock.vccc$ART==0,1:nsieve] = Bspline_O

Bspline[mock.vccc$ART==1, (nsieve+1): (2*nsieve)] = Bspline_1

colnames(Bspline) = paste("bs", 1:(2*nsieve), sep="") # name B-spline columns properly

That is, we have set up B-spline basis within stratum of different ART status at enrollment, because we have assumed
that error-free variable ART is correlated with error-prone predictor CD4_unval. In other words, we assumed that the expected
CD4 count differs between patients who are and aren’t ART naive at enrollment, therefore the B-spline basis is calculated
separately.

Finally, assemble the variables and B-splines into one dataframe.

data = data.frame(cbind(mock.vccc, Bspline))

3.3.2 Fitting the model

Now we run the analysis on the data, which augments the mock.vccc with the Bspline.

res_logistic = sleev::logistic2ph(Y="ADE_val", X="CD4_val", Y_unval="ADE_unval",
X_unval="CD4_unval", Z="ART",Bspline=colnames(Bspline), data=data)

The arguments here are completely analogous to res_linear.
Like sleev::logistic2ph, the function returns the results in a 1ist, which we store in object res_logistic.

3.3.3 Interpreting model results

res_logistic$coeff gives the coefficient estimates and corresponding standard error, t-statistic and p-value.

coeff se
Intercept -0.8890539 0.34468880
CD4_val -0.5497318 0.08220148
ART -0.1212772 0.30028783

The coefficient estimate associated with CD4 indicates that for every 1 unit increase in CD4 count per square centimeters,
there are 0.55 decrease in log-odds of having an AIDS-defining event (ADE) within one year of ART initiation, adjusting
for whether patient is ART naive at enrollment; ART naive patients at enrollment has lower log odds of 0.121 at having an
AIDS-defining event (ADE) within one year than patients who are not ART naive at enrollment, adjusting for CD4 count.
[placeholder: comment on p-values.|

4 Summary

The two functions introduced in this paper, sleev::linear2ph() and sleev::logistic2ph(), are very useful tools for
drawing inferences from partially validated data while utilising both validated and unvalidated part of the data. Both of
the functions can deal with error-prone outcome and covariates appearing simultaneously or individually, and do not make
assumption on error distribution. We hope users find the demonstrations in the paper useful for their application.

References

G. Amorim, R. Tao, S. Lotspeich, P. A. Shaw, T. Lumley, and B. E. Shepherd. Two-Phase Sampling Designs for Data
Validation in Settings with Covariate Measurement Error and Continuous Outcome. Journal of the Royal Statistical
Society. Series A, (Statistics in Society), page 13681389, 2021. URL https://doi.org/10.1111/rssa.12689.

S. C. Lotspeich, G. Amorim, P. A. Shaw, R. Tao, and B. E. Shepherd. Optimal multi-wave validation of secondary use data
with outcome and exposure misclassification, 2021a.

S. C. Lotspeich, B. E. Shepherd, G. Amorim, P. A. Shaw, and R. Tao. Efficient odds ratio estimation under two-phase
sampling using error-prone data from a multi-national HIV research cohort. Biometrics, 2021b. in press.

S. Murphy and A. Van der Vaart. On profile likelihood. Journal of the American Statistical Association, 95(450):449-465,
2000.

R. Tao, S. C. Lotspeich, G. Amorim, P. A. Shaw, and B. E. Shepherd. Efficient semiparametric inference for two-phase
studies with outcome and covariate measurement errors. Statistics in Medicine, 40(3):725-738, 2021.

https://doi.org/10.1111/rssa.12689

	Introduction
	Overview of SMLE
	Linear regression
	Binary outcomes: Logistic Regression
	SMLE Versus Existing Approaches

	Example with Data
	Data overview
	Fitting a linear model with linear2ph()
	Setting up the B-spline for data
	Fitting the model
	Interpreting model results
	Specifying B-spline parameters

	Fitting a logistic regression model with logistic2ph()
	Setting up the B-spline for data
	Fitting the model
	Interpreting model results

	Summary

