saekernel
Propose an area-level, non-parametric regression estimator based on
Nadaraya-Watson kernel on small area mean. Adopt a two-stage estimation
approach proposed by Prasad and Rao (1990). MSE estimators are not
readily available, so resampling method that called bootstrap is
applied. This package are based on the model proposed in Two stage
non-parametric approach for small area estimation by Pushpal
Mukhopadhyay and Tapabrata Maiti.
Installation
You can install the released version of saekernel from CRAN with:
install.packages("saekernel")
Authors
Wicak Surya Hasani, Azka Ubaidillah
Maintainer
Wicak Surya Hasani
221710052@stis.ac.id
Functions
saekernel()
Produces Small Area Estimation
Non-Parametric Based Nadaraya-Watson Kernel
mse_saekernel()
Produces Small Area Estimation
Non-Parametric based Nadaraya-Watson Kernel and Bootstrap Mean Squared
Error
References
- Mukhopadhyay P, Maiti T. (2004). Two Stage Non-Parametric Approach
for Small Areas Estimation. Proceedings of ASA Section on Survey
Research Methods: 4058-4065.
- Prasad, N.G.N., and Rao, J.N.K. (1990). “The estimation of the mean
squared error of the small area estimators.” Journal of the American
statistical association. 85. 163-171.
- Hardle, W. (2002). “Applied non-parametric regression,” Cambridge
University Press.
- Indahwati, Sadik K, Nurmasari R. (2008). Pendekatan Metode Pemulusan
Kernel Pada Pendugaan Area Kecil. Makalah Semnas Matematika. Universitas
Negeri Yogyakarta. Yogyakarta.
- Darsyah, M. Y. (2013). Small Area Estimation terhadap Pengeluaran
Per Kapita di Kabupaten Sumenep Dengan Pendekatan Nonparametrik. Jurnal
Statistika Volume 1 Nomor 2. Universitas Muhammadiyah Semarang.