We implement the algorithm estimating the parameters of the robust regression model with compositional covariates. The model simultaneously treats outliers and provides reliable parameter estimates. Publication reference: Mishra, A., Mueller, C.,(2019) <doi:10.48550/arXiv.1909.04990>.
| Version: | 1.1 | 
| Depends: | R (≥ 3.5.0), stats, utils | 
| Imports: | Rcpp (≥ 0.12.0), MASS, magrittr, graphics | 
| LinkingTo: | Rcpp, RcppArmadillo | 
| Published: | 2020-07-25 | 
| DOI: | 10.32614/CRAN.package.robregcc | 
| Author: | Aditya Mishra [aut, cre], Christian Muller [ctb] | 
| Maintainer: | Aditya Mishra <amishra at flatironinstitute.org> | 
| License: | GPL (≥ 3.0) | 
| URL: | https://arxiv.org/abs/1909.04990, https://github.com/amishra-stats/robregcc | 
| NeedsCompilation: | yes | 
| In views: | CompositionalData | 
| CRAN checks: | robregcc results | 
| Reference manual: | robregcc.html , robregcc.pdf | 
| Package source: | robregcc_1.1.tar.gz | 
| Windows binaries: | r-devel: robregcc_1.1.zip, r-release: robregcc_1.1.zip, r-oldrel: robregcc_1.1.zip | 
| macOS binaries: | r-release (arm64): robregcc_1.1.tgz, r-oldrel (arm64): robregcc_1.1.tgz, r-release (x86_64): robregcc_1.1.tgz, r-oldrel (x86_64): robregcc_1.1.tgz | 
| Old sources: | robregcc archive | 
Please use the canonical form https://CRAN.R-project.org/package=robregcc to link to this page.