
Package ‘monad’
October 28, 2024

Title Operators and Generics for Monads

Version 0.1.1

Description Compose generic monadic function pipelines with %>>% and %>-%
based on implementing the 'S7' generics fmap() and bind(). Methods are
provided for the built-in list type and the maybe class from the
'maybe' package. The concepts are modelled directly after the Monad
typeclass in Haskell, but adapted for idiomatic use in R.

License MIT + file LICENSE

URL https://github.com/mikmart/monad, https://mikmart.github.io/monad/

BugReports https://github.com/mikmart/monad/issues

Depends R (>= 4.1)

Imports S7

Suggests maybe, purrr, roxygen2, testthat (>= 3.0.0)

Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.3.2.9000

Collate 'pipeop.R' 'monad.R' 'list.R' 'maybe.R' 'monad-package.R'
'utils.R' 'zzz.R'

NeedsCompilation no

Author Mikko Marttila [aut, cre]

Maintainer Mikko Marttila <mikkmart@protonmail.com>

Repository CRAN

Date/Publication 2024-10-28 12:40:03 UTC

Contents
functor-laws . 2
List . 2
Maybe . 3
monad . 3
monad-laws . 5

1

https://github.com/mikmart/monad
https://mikmart.github.io/monad/
https://github.com/mikmart/monad/issues

2 List

Index 7

functor-laws Functor Laws

Description

Classes implementing fmap() are expected to satisfy two functor laws: preservation of identity and
preservation of composition.

Arguments

m A functor object.

f, g Functions.

Details

The Haskell functor laws can be translated into R as follows:

Preservation of identity: m %>>% identity is equal to m |> identity().

Preservation of composition: m %>>% (f %.% g) is equal to m %>>% g %>>% f.

Where above %.% denotes function composition \(f, g) \(x) f(g(x)).

References

https://wiki.haskell.org/Functor#Functor_Laws

See Also

Other implementation laws: monad-laws

List The List Monad

Description

The list built-in type is a monad with element-wise function application as fmap() and flattening
as join(). It follows that %>>% is a map operator and %>-% is a "flat map" operator. The methods
are implemented as wrappers to the purrr package.

See Also

purrr::map() which implements fmap() for list.

purrr::list_flatten() which implements join() for list.

Other monads: Maybe

https://wiki.haskell.org/Functor#Functor_Laws
https://purrr.tidyverse.org/

Maybe 3

Examples

The fmap operator corresponds to purrr::map().
list(1, 2) %>>% `+`(1)

The bind operator is a "flat map" that combines output lists.
list(1, 2) %>-% \(x) list(x * 2, x / 2)

Maybe The Maybe Monad

Description

The maybe package implements the Maybe monad. It represents the explicit possiblity of absence of
a value. Methods for fmap(), bind() and join() are provided for the maybe S3 class as wrappers
to functions in the package.

See Also

maybe::maybe_map() which implements fmap() for maybe.

maybe::and_then() which implements bind() for maybe.

Other monads: List

Examples

The fmap operator corresponds to maybe::maybe_map().
maybe::just(1) %>>% `+`(1)
maybe::nothing() %>>% `+`(1)

The bind operator corresponds to maybe::and_then().
maybe::just(1) %>-% \(x) maybe::just(x + 1)
maybe::just(1) %>-% \(x) maybe::nothing()
maybe::nothing() %>-% \(x) maybe::just(1)

monad Monad Operators and Generics

Description

Classes implementing methods for these S7 generics are called monads. fmap() should be imple-
mented such that the functor laws hold. bind() or join() should be implemented such that the
monad laws hold. %>>% is the fmap() pipe operator, and %>-% is the bind() pipe operator. Operator
usage is in the form m %>>% f(...).

https://armcn.github.io/maybe/

4 monad

Usage

lhs %>>% rhs

lhs %>-% rhs

fmap(m, f, ...)

bind(m, f, ...)

join(m)

Arguments

m, lhs A monadic object.

f, rhs A function. For bind(), it should return a monadic object.

... Additional arguments passed to f.

Value

A monadic object.

Details

Monads are containers for values. fmap() transforms the contained value with a function. bind()
transforms the contained value with a function that returns a monadic object. join() takes a monad
whose contained value is another monad, and combines them into a new monadic object. It’s used
to unwrap a layer of monadic structure. Implementing classes typically embed some form of control
flow or state management in bind() or join().

There’s a default implementation for join() if you provide bind(), and there’s a default imple-
mentation for bind() if you provide join() and fmap(). For performance reasons you may wish
to implement both regardless.

Operators

The pipe operators expect a monadic object as lhs and a function or a call expression as rhs. A
call in rhs is treated as partial application of the function f. The pipe expression is transformed
into a call to the corresponding monad generic with any call arguments in rhs passed as additional
arguments to f in the generic. For example, m %>>% f(x) is equivalent to fmap(m, f, x) and m %>-%
f(x) is equivalent to bind(m, f, x).

Trivia

A class that only implements fmap() is called a functor.

See Also

The monad laws and functor laws that implementations should satisfy.

List and Maybe for examples of implementing classes.

monad-laws 5

Examples

We demonstrate by implementing a simple Either monad.
library(S7)

Start by defining constructors of the Left and Right variants. Conventionally
a Right variant signifies success and Left an error condition with a context.
left <- function(x) structure(list(value = x), class = c("left", "either"))
right <- function(x) structure(list(value = x), class = c("right", "either"))

Implement fmap() and bind() methods to gain access to monad operators.
class_either <- new_S3_class("either")

method(fmap, class_either) <- function(m, f, ...) {
if (inherits(m, "left")) m else right(f(m$value))

}

method(bind, class_either) <- function(m, f, ...) {
if (inherits(m, "left")) m else f(m$value)

}

Use with your function that handles errors by returning a monadic value.
mlog <- function(x) {

if (x > 0) right(log(x)) else left("`x` must be strictly positive.")
}

fmap() modifies the contained value with a regular function.
mlog(2) %>>% \(x) x + 1
mlog(0) %>>% \(x) x + 1

bind() modifies the contained value with a function that returns an Either.
mlog(2) %>-% mlog()
mlog(0) %>-% mlog()

monad-laws Monad Laws

Description

Classes implementing bind() are expected to satisfy three monad laws: left identity, right identity,
and associativity.

Arguments

pure The function to wrap a value in the monad.

h, g Monadic functions. Functions that return monadic objects.

a Any object.

m A monadic object.

6 monad-laws

Details

The Haskell monad laws can be translated into R as follows:

Left identity: pure(a) %>-% h is equal to h(a).

Right identity: m %>-% pure is equal to m.

Associativity: (m %>-% g) %>-% h is equal to m %>-% \(x) g(x) %>-% h.

References

https://wiki.haskell.org/Monad_laws

See Also

Other implementation laws: functor-laws

https://wiki.haskell.org/Monad_laws

Index

∗ implementation laws
functor-laws, 2
monad-laws, 5

∗ monads
List, 2
Maybe, 3

%>-% (monad), 3
%»% (monad), 3

bind (monad), 3
bind(), 3, 5

fmap (monad), 3
fmap(), 2, 3
functor laws, 3, 4
functor-laws, 2

join (monad), 3
join(), 2, 3

List, 2, 3, 4

Maybe, 2, 3, 4
maybe::and_then(), 3
maybe::maybe_map(), 3
monad, 3
monad laws, 3, 4
monad-laws, 5

purrr::list_flatten(), 2
purrr::map(), 2

7

	functor-laws
	List
	Maybe
	monad
	monad-laws
	Index

