Package ‘manynet’

March 15, 2024

Title Many Ways to Make, Modify, Mark, and Map Myriad Networks
Version 0.4.4
Date 2024-03-15

Description
A set of tools for making, modifying, marking, and mapping many different types of networks.
All functions operate with matrices, edge lists, and "igraph’, 'network’, and 'tidygraph' objects,
and on one-mode, two-mode (bipartite), and sometimes three-mode networks.
The package includes functions for importing and exporting, creating and generating networks,
modifying networks and node and tie attributes,
and describing and visualizing networks with sensible defaults.

URL https://stocnet.github.io/manynet/

BugReports https://github.com/stocnet/manynet/issues
Depends R (>=3.6.0)

License MIT + file LICENSE

Language en-GB

Encoding UTF-8

LazyData true

RoxygenNote 7.3.1

Imports dplyr (>= 1.1.0), ggplot2, ggraph, igraph (>= 1.6.0), network,
pillar, tidygraph

Suggests BiocManager, concaveman, gganimate, ggforce, gifski,
graphlayouts, grDevices, knitr, learnr, methods, migraph,
minMSE, multiplex, patchwork, png, readxl, rmarkdown, roxygen2,
RSiena, testthat (>= 3.0.0), xml2, future, furrr

Enhances Rgraphviz
Config/testthat/parallel true
Config/testthat/edition 3
Config/testthat/start-first mark_is

NeedsCompilation no

https://stocnet.github.io/manynet/
https://github.com/stocnet/manynet/issues

2 R topics documented:

Author James Hollway [cre, aut, ctb] (IHEID,
<https://orcid.org/0000-0002-8361-9647>),
Henrique Sposito [ctb] IHEID, <https://orcid.org/0000-0003-3420-6085>)

Maintainer James Hollway <james.hollway@graduateinstitute.ch>
Repository CRAN
Date/Publication 2024-03-15 19:20:10 UTC

R topics documented:

add_nodes e e e e 3
add_ties e e e e e 5
AS o e e e e e e e e e e e 7
attributes L e e e e e e e e e e e e 9
autographr L. 10
autographs 13
autographt L e e e e 14
configuration_layouts Lo 16
CICALE . . v v v v o e e e e e e e e e e 17
features e e e 19
from e e e 21
GEMETALE . .« . .« vt e 22
IS o e 25
1son_adolesCents e e e e e e 26
ison_algebrao 27
1son_brandes L e 28
1ison_friends e e 28
ison_hightech 29
ison_karateka L L e 30
ison_koenigsberg oL 31
1ison_laterals L L e 33
ison_lawfirm s 35
1SON_1Otr e e 36
ison_marvel . . . oL oL L s 37
ISON_MONASIEIY o o v vttt e e e e e e e e e e e e e 39
1SON_NEIWOTKETS o 42
ison_physicians L e 43
ISON_POIEr o o o e e e e 46
ison_southern_women e 49
ISON_STATWATS . . o o o o o e e e e e e e e e 50
ISON_USSEALES . . o v o o o o e e e e e e e 54
is_format s 55
learning e 57
many_palettes e e 58
mark_diff e 59
mark nodes e 60
mark_select e 61

mark_HES e 62

https://orcid.org/0000-0002-8361-9647
https://orcid.org/0000-0003-3420-6085

add_nodes 3

mark_tie_select e e 63
001 64
partition_layouts e 65
Play . .o 67
PIOPEItIES o o i e e e e e e e e e e 70
read L e 72
reformat L 74
scales ... L L e 76
SPIit . . e e e 78
themes e e e e e e e 80
to_levels e e e e e e 81
to_paths e 82
TO_PIOJECt . . . o o i i e e e e e e e e 84
TO_SCOPE « o v o o o e e e e e e 86
tutorials e e e 87
WIIEE . . . o o o e e e e e e e e e 88

Index 90

add_nodes Modifying node data
Description

These functions allow users to add and delete nodes and their attributes:

add_nodes () adds an additional number of nodes to network data.
delete_nodes() deletes nodes from network data.

add_node_attribute(), mutate(), or mutate_nodes() offer ways to add a vector of values
to a network as a nodal attribute.

rename_nodes () and rename () rename nodal attributes.

bind_node_attributes() appends all nodal attributes from one network to another, and
join_nodes() merges all nodal attributes from one network to another.

filter_nodes() subsets nodes based on some nodal attribute-related logical statement.

Note that while add_*()/delete_*() functions operate similarly as comparable {igraph} func-
tions, mutatex (), bindx(), etc work like {tidyverse?} or {dplyr}-style functions.

Usage

add_

nodes(.data, nodes, attribute = NULL)

delete_nodes(.data, nodes)

add_

node_attribute(.data, attr_name, vector)

mutate_nodes(.data, ...)

mutate(.data, ...)
bind_node_attributes(.data, object2)

join_nodes(

.data,

object2,

.by = NULL,

join_type = c("full”, "left"”, "right", "inner")
)

rename_nodes(.data, ...)
rename(.data, ...)
filter_nodes(.data, ..., .by)
Arguments
.data An object of a manynet-consistent class:

* matrix (adjacency or incidence) from {base} R

* edgelist, a data frame from {base} R or tibble from {tibble}

e igraph, from the {igraph?} package
* network, from the {network} package
* tbl_graph, from the {tidygraph} package

nodes The number of nodes to be added.

attribute A named list to be added as tie or node attributes.
attr_name Name of the new attribute in the resulting object.
vector A vector of values for the new attribute.

Additional arguments.

object?2 A second object to copy nodes or ties from.
.by An attribute name to join objects by. By default, NULL.
join_type A type of join to be used. Options are "full","left", "right", "

Details

add_nodes

Not all functions have methods available for all object classes. Below are the currently implemented

S3 methods:

igraph network tbl_graph
add_nodes 1 1 1
delete_nodes 1 0 0

add_ties 5

Value

A data object of the same class as the function was given.

See Also

Other modifications: add_ties(), as(), from, miss, reformat, split(), to_levels, to_paths,
to_project, to_scope

Examples

other <- create_filled(4) %>% mutate(name = c("A", "B", "C", "D"))
add_nodes(other, 4, list(name = c("Matthew”, "Mark”, "Luke", "Tim")))
other <- create_filled(4) %>% mutate(name = c("A", "B", "C", "D"))
another <- create_filled(3) %>% mutate(name = c("E", "F", "G"))
join_nodes(another, other)

add_ties Modifying tie data

Description
These functions allow users to add and delete ties and their attributes:

¢ add_ties() adds additional ties to network data
e delete_ties() deletes ties from network data

* add_tie_attribute() and mutate_ties() offer ways to add a vector of values to a network
as a tie attribute.

¢ rename_ties() renames tie attributes.

* bind_ties() appends the tie data from two networks and join_ties() merges ties from two
networks, adding a tie attribute identifying the newly added ties.

* filter_ties() subsets ties based on some tie attribute-related logical statement.

Note that while add_*()/delete_*() functions operate similarly as comparable {igraph} func-
tions, mutate* (), bind* (), etc work like {tidyverse} or {dplyr}-style functions.

Usage
add_ties(.data, ties, attribute = NULL)
delete_ties(.data, ties)
add_tie_attribute(.data, attr_name, vector)
mutate_ties(.data, ...)

rename_ties(.data, ...)

6 add_ties
bind_ties(.data, ...)
join_ties(.data, object2, attr_name)
filter_ties(.data, ...)
select_ties(.data, ...)
summarise_ties(.data, ...)
Arguments
.data An object of a manynet-consistent class:
* matrix (adjacency or incidence) from {base} R
* edgelist, a data frame from {base} R or tibble from {tibble}
e igraph, from the {igraph} package
* network, from the {network} package
* tbl_graph, from the {tidygraph} package
ties The number of ties to be added or an even list of ties.
attribute A named list to be added as tie or node attributes.
attr_name Name of the new attribute in the resulting object.
vector A vector of values for the new attribute.
Additional arguments.
object2 A second object to copy nodes or ties from.
Value
A tidygraph (tbl_graph) data object.
See Also
Other modifications: add_nodes (), as(), from, miss, reformat, split(), to_levels, to_paths,
to_project, to_scope
Examples

other <- create_filled(4) %>% mutate(name = c("A", "B", "C", "D"))
mutate_ties(other, form = 1:6) %>% filter_ties(form < 4)
add_tie_attribute(other, "weight”, c(1, 2, 2, 2, 1, 2))

as 7

as Modifying network classes

Description

The as_ functions in {manynet} coerce objects of any of the following common classes of social
network objects in R into the declared class:
* as_edgelist() coerces the object into an edgelist, as data frames or tibbles.

* as_matrix() coerces the object into an adjacency (one-mode/unipartite) or incidence (two-
mode/bipartite) matrix.

* as_igraph() coerces the object into an {igraph} graph object.

* as_tidygraph() coerces the object into a {tidygraph} tbl_graph objects.

* as_network() coerces the object into a {network} network objects.

* as_siena() coerces the (igraph/tidygraph) object into a SIENA dependent variable.

* as_graphAM() coerces the object into a graph adjacency matrix.

e as_diffusion() coerces a table of diffusion events into a diff_model object similar to the

output of play_diffusion().

An effort is made for all of these coercion routines to be as lossless as possible, though some object
classes are better at retaining certain kinds of information than others. Note also that there are
some reserved column names in one or more object classes, which could otherwise lead to some
unexpected results.

Usage

as_edgelist(.data, twomode = FALSE)

as_matrix(.data, twomode = NULL)

as_igraph(.data, twomode = FALSE)
as_tidygraph(.data, twomode = FALSE)
as_network(.data, twomode = FALSE)
as_siena(.data, twomode = FALSE)

as_graphAM(.data, twomode = NULL)

as_diffusion(events, .data)

Arguments

.data An object of a manynet-consistent class:

* matrix (adjacency or incidence) from {base} R
* edgelist, a data frame from {base} R or tibble from {tibble}
e igraph, from the {igraph} package
* network, from the {network} package
* tbl_graph, from the {tidygraph} package
twomode Logical option used to override heuristics for distinguishing incidence (two-
mode/bipartite) from adjacency (one-mode/unipartite) networks. By default FALSE.

events A table (data frame or tibble) of diffusion events with columns t indicating the
time (typically an integer) of the event, nodes indicating the number or name of
the node involved in the event, and event, which can take on the values "I" for
an infection event, "E" for an exposure event, or "R" for a recovery event.

Details

Edgelists are expected to be held in data.frame or tibble class objects. The first two columns of such
an object are expected to be the senders and receivers of a tie, respectively, and are typically named
"from" and "to" (even in the case of an undirected network). These columns can contain integers
to identify nodes or character strings/factors if the network is labelled. If the sets of senders and
receivers overlap, a one-mode network is inferred. If the sets contain no overlap, a two-mode
network is inferred. If a third, numeric column is present, a weighted network will be created.

Matrices can be either adjacency (one-mode) or incidence (two-mode) matrices. Incidence matrices
are typically inferred from unequal dimensions, but since in rare cases a matrix with equal dimen-
sions may still be an incidence matrix, an additional argument twomode can be specified to override
this heuristic.

This information is usually already embedded in {igraph}, {tidygraph}, and {network} objects.

Value

The currently implemented coercions or translations are:

data.frame diff_model igraph list matrix network network.goldfish siena tbl_graph

as_edgelist 1 0 1 0 1 1 1 1 1
as_graphAM 1 0 1 0 1 1 1 1 1
as_igraph 1 0 1 0 1 1 1 1 1
as_matrix 1 0 1 0 1 1 1 1 1
as_network 1 0 1 0 1 1 1 1 1
as_siena 0 0 1 0 0 0 0 0 1
as_tidygraph 1 1 1 1 1 1 1 1 1

as_diffusion() and play_diffusion() return a ’diff_model’ object that contains two different
tibbles (tables) — a table of diffusion events and a table of the number of nodes in each relevant
component (S, E, I, or R) — as well as a copy of the network upon which the diffusion ran. By
default, a compact version of the component table is printed (to print all the changes at each time

attributes 9

point, use print(..., verbose =T)). To retrieve the diffusion events table, use summary(...).

See Also

Other modifications: add_nodes(), add_ties(), from, miss, reformat, split(), to_levels,
to_paths, to_project, to_scope

Examples

test <- data.frame(from = c("A","B","B","C","C"), to = c("I","G","I","G","H"))
as_edgelist(test)
as_matrix(test)
as_igraph(test)
as_tidygraph(test)
as_network(test)
How to create a diff_model object from (basic) observed data
events <- data.frame(t = c(0,1,1,2,3), nodes = c(1,2,3,2,4), event = c("I","1I","I","R","1"))
as_diffusion(events, manynet::create_filled(4))

attributes Describing attributes of nodes or ties in a network

Description
These functions extract certain attributes from network data:

e node_attribute() returns an attribute’s values for the nodes in a network.
¢ node_names () returns the names of the nodes in a network.

¢ node_mode () returns the mode of the nodes in a network.

e tie_attribute() returns an attribute’s values for the ties in a network.

* tie_weights() returns the weights of the ties in a network.

* tie_signs() returns the signs of the ties in a network.

These functions are also often used as helpers within other functions. node_x() and tie_x()
always return vectors the same length as the number of nodes or ties in the network, respectively.

Usage

node_attribute(.data, attribute)
node_names(.data)
node_mode(.data)
tie_attribute(.data, attribute)
tie_weights(.data)

tie_signs(.data)

10 autographr

Arguments
.data An object of a manynet-consistent class:
* matrix (adjacency or incidence) from {base} R
* edgelist, a data frame from {base} R or tibble from {tibble}
e igraph, from the {igraph} package
* network, from the {network} package
e tbl_graph, from the {tidygraph} package
attribute Character string naming an attribute in the object.
See Also
Other mapping: autographr(), autographs(), autographt(), configuration_layouts, partition_layouts,
properties
Examples

node_attribute(ison_lotr, "Race")
node_names (ison_southern_women)

node_mode (ison_southern_women)
tie_attribute(ison_algebra, "task_tie")
tie_weights(to_model(ison_southern_women))
tie_signs(ison_marvel_relationships)

autographr Easily graph networks with sensible defaults

Description

This function provides users with an easy way to graph (m)any network data for exploration, inves-
tigation, and communication.

It builds upon {ggplot2} and {ggraph} to offer pretty and extensible graphing solutions. However,
compared to those solutions, autographr () contains various algorithms to provide better looking
graphs by default. This means that just passing the function some network data will often be suffi-
cient to return a reasonable-looking graph.

The function also makes it easy to modify many of the most commonly adapted aspects of a graph,
including node and edge size, colour, and shape, as arguments rather than additional functions that
you need to remember. These can be defined outright, e.g. node_size =8, or in reference to an
attribute of the network, e.g. node_size = "wealth".

Lastly, autographr() uses ggplot2-related theme information, so it is easy to make colour palette
and fonts institution-specific and consistent. See e.g. theme_iheid() for more.

autographr 11

Usage
autographr(
.data,
layout,
labels = TRUE,
node_color,
node_shape,
node_size,
node_group,
edge_color,
edge_size,
)
graphr(
.data,
layout,
labels = TRUE,
node_color,
node_shape,
node_size,
node_group,
edge_color,
edge_size,
)
Arguments
.data A manynet-consistent object.
layout An igraph, ggraph, or manynet layout algorithm. If not declared, defaults to
"triad" for networks with 3 nodes, "quad" for networks with 4 nodes, "stress"
for all other one mode networks, or "hierarchy" for two mode networks. For
"hierarchy" layout, one can further split graph by declaring the "center" argu-
ment as the "events", "actors", or by declaring a node name. For "concentric"
layout algorithm please declare the "membership" as an extra argument. The
"membership" argument expects either a quoted node attribute present in data
or vector with the same length as nodes to draw concentric circles. For "multi-
level" layout algorithm please declare the "level" as extra argument. The "level"
argument expects either a quoted node attribute present in data or vector with
the same length as nodes to hierarchically order categories. If "level" is missing,
function will look for ’Ivl’ node attribute in data. The "lineage" layout ranks
nodes in Y axis according to values. For "lineage" layout algorithm please de-
clare the "rank" as extra argument. The "rank" argument expects either a quoted
node attribute present in data or vector with the same length as nodes.
labels Logical, whether to print node names as labels if present.

node_color Node variable to be used for coloring the nodes. It is easiest if this is added

12 autographr

as a node attribute to the graph before plotting. Nodes can also be colored by
declaring a color instead.

node_shape Node variable to be used for shaping the nodes. It is easiest if this is added
as a node attribute to the graph before plotting. Nodes can also be shaped by
declaring a shape instead.

node_size Node variable to be used for sizing the nodes. This can be any continuous vari-
able on the nodes of the network. Since this function expects this to be an
existing variable, it is recommended to calculate all node-related statistics prior
to using this function. Nodes can also be sized by declaring a numeric size or
vector instead.

node_group Node variable to be used for grouping the nodes. It is easiest if this is added as
a hull over groups before plotting. Group variables should have a minimum of 3
nodes, if less, number groups will be reduced by merging categories with lower
counts into one called "other".

edge_color Tie variable to be used for coloring the nodes. It is easiest if this is added as an
edge or tie attribute to the graph before plotting. Edges can also be colored by
declaring a color instead.

edge_size Tie variable to be used for sizing the edges. This can be any continuous variable
on the nodes of the network. Since this function expects this to be an existing
variable, it is recommended to calculate all edge-related statistics prior to using
this function. Edges can also be sized by declaring a numeric size or vector
instead.

Extra arguments to pass on to the layout algorithm, if necessary.

Value

A ggplot2::ggplot() object. The last plot can be saved to the file system using ggplot2: : ggsave().

See Also
Other mapping: attributes(), autographs(), autographt(), configuration_layouts, partition_layouts,
properties

Examples

autographr(ison_adolescents)
ison_adolescents |>

mutate(color = rep(c("extrovert”, "introvert"”), times = 4),
size = ifelse(node_is_cutpoint(ison_adolescents), 6, 3)) |>
mutate_ties(ecolor = rep(c("friends”, "aquaintances”), times = 5)) |>
autographr(node_color = "color”, node_size = "size",
edge_size = 1.5, edge_color = "ecolor")
#autographr(ison_lotr, node_color = Race,
node_size = migraph::node_degree(ison_lotr)*2,
edge_color = "darkgreen”,
edge_size = migraph::tie_degree(ison_lotr))

#autographr(ison_karateka, node_group = allegiance,
edge_size = migraph::tie_closeness(ison_karateka))

autographs 13

autographs Easily graph a set of networks with sensible defaults

Description

This function provides users with an easy way to graph lists of network data for comparison.

It builds upon this package’s autographr() function, and inherits all the same features and argu-
ments. See autographr() for more. However, it uses the {patchwork} package to plot the graphs
side by side and, if necessary, in successive rows. This is useful for lists of networks that represent,
for example, ego or component subgraphs of a network, or a list of a network’s different types of tie
or across time. By default just the first and last network will be plotted, but this can be overridden
by the "waves" parameter.

Where the graphs are of the same network (same nodes), the graphs may share a layout to facilitate
comparison. By default, successive graphs will use the layout calculated for the "first" network, but
other options include the "last" layout, or a mix, "both", of them.

Usage
autographs(netlist, waves, based_on = c("first”, "last”, "both"), ...)
graphs(netlist, waves, based_on = c("first", "last”, "both"), ...)
Arguments
netlist A list of manynet-compatible networks.
waves Numeric, the number of plots to be displayed side-by-side. If missing, the num-
ber of plots will be reduced to the first and last when there are more than four
plots. This argument can also be passed a vector selecting the waves to plot.
based_on Whether the layout of the joint plots should be based on the "first" or the "last"
network, or "both".
Additional arguments passed to autographr().
Value

Multiple ggplot2: :ggplot() objects displayed side-by-side.

See Also

Other mapping: attributes(), autographr(), autographt(), configuration_layouts, partition_layouts,
properties

Examples

#autographs(to_egos(ison_adolescents))
#autographs(to_egos(ison_adolescents), waves = 8)
#autographs(to_egos(ison_adolescents), waves = c(2, 4, 6))
#autographs(play_diffusion(ison_adolescents))

14 autographt

autographt Easily animate dynamic networks with sensible defaults

Description

This function provides users with an easy way to graph dynamic network data for exploration and
presentation.

It builds upon this package’s autographr () function, and inherits all the same features and argu-
ments. See autographr() for more. However, it uses the {gganimate} package to animate the
changes between successive iterations of a network. This is useful for networks in which the ties
and/or the node or tie attributes are changing.

A progress bar is shown if it takes some time to encoding all the .png files into a .gif.

Usage

autographt(
tlist,
layout,
labels = TRUE,
node_color,
node_shape,
node_size,
edge_color,
edge_size,
keep_isolates = TRUE,

)

autographd(
tlist,
layout,
labels = TRUE,
node_color,
node_shape,
node_size,
edge_color,
edge_size,
keep_isolates = TRUE,

)

grapht(
tlist,
layout,
labels = TRUE,
node_color,

autographt

node_shape,
node_size,
edge_color,
edge_size,
keep_isolates

Arguments

tlist

layout

labels

node_color

node_shape

node_size

edge_color

edge_size

15

= TRUE,

The same migraph-compatible network listed according to a time attribute, waves,
or slices.

An igraph, ggraph, or manynet layout algorithm. If not declared, defaults to
"triad" for networks with 3 nodes, "quad" for networks with 4 nodes, "stress"
for all other one mode networks, or "hierarchy" for two mode networks. For
"hierarchy" layout, one can further split graph by declaring the "center" argu-
ment as the "events", "actors", or by declaring a node name. For "concentric"
layout algorithm please declare the "membership" as an extra argument. The
"membership" argument expects either a quoted node attribute present in data
or vector with the same length as nodes to draw concentric circles. For "multi-
level" layout algorithm please declare the "level" as extra argument. The "level"
argument expects either a quoted node attribute present in data or vector with
the same length as nodes to hierarchically order categories. If "level" is missing,
function will look for ’1vl’ node attribute in data. The "lineage" layout ranks
nodes in Y axis according to values. For "lineage" layout algorithm please de-
clare the "rank" as extra argument. The "rank" argument expects either a quoted
node attribute present in data or vector with the same length as nodes.

Logical, whether to print node names as labels if present.

Node variable to be used for coloring the nodes. It is easiest if this is added
as a node attribute to the graph before plotting. Nodes can also be colored by
declaring a color instead.

Node variable to be used for shaping the nodes. It is easiest if this is added
as a node attribute to the graph before plotting. Nodes can also be shaped by
declaring a shape instead.

Node variable to be used for sizing the nodes. This can be any continuous vari-
able on the nodes of the network. Since this function expects this to be an
existing variable, it is recommended to calculate all node-related statistics prior
to using this function. Nodes can also be sized by declaring a numeric size or
vector instead.

Tie variable to be used for coloring the nodes. It is easiest if this is added as an
edge or tie attribute to the graph before plotting. Edges can also be colored by
declaring a color instead.

Tie variable to be used for sizing the edges. This can be any continuous variable
on the nodes of the network. Since this function expects this to be an existing
variable, it is recommended to calculate all edge-related statistics prior to using
this function. Edges can also be sized by declaring a numeric size or vector
instead.

16 configuration_layouts

keep_isolates Logical, whether to keep isolate nodes in the graph. TRUE by default. If
FALSE, removes nodes from each frame they are isolated in.

Extra arguments to pass on to the layout algorithm, if necessary.

Value

Shows a .gif image. Assigning the result of the function saves the gif to a temporary folder and the
object holds the path to this file.

Source

https://blog.schochastics.net/posts/2021-09-15_animating-network-evolutions-with-gganimate/

See Also

Other mapping: attributes(), autographr(), autographs(), configuration_layouts, partition_layouts,
properties

Examples

#ison_adolescents %>%

mutate_ties(year = sample(1995:1998, 10, replace = TRUE)) %>%
to_waves(attribute = "year"”, cumulative = TRUE) %>%

autographd()

#ison_adolescents %>%

mutate(gender = rep(c("male”, "female"), times = 4),

hair = rep(c(”"black”, "brown"), times = 4),

age = sample(11:16, 8, replace = TRUE)) %>%

mutate_ties(year = sample(1995:1998, 10, replace = TRUE),

links = sample(c("friends”, "not_friends"), 10, replace = TRUE),
weekly_meetings = sample(c(3, 5, 7), 10, replace = TRUE)) %>%
to_waves(attribute = "year") %>%

autographd(layout = "concentric”, membership = "gender"”,

node_shape = "gender"”, node_color = "hair”,

node_size = "age", edge_color = "links",

edge_size = "weekly_meetings")
#autographd(play_diffusion(ison_adolescents, seeds = 5))

n

configuration_layouts Layout algorithms based on configurational positions

Description

Configurational layouts locate nodes at symmetric coordinates to help illustrate the particular lay-
outs. Currently "triad" and "quad" layouts are available. The "configuration" layout will choose the
appropriate configurational layout automatically.

create 17
Usage
layout_tbl_graph_configuration(.data, circular = FALSE, times = 1000)
layout_tbl_graph_triad(.data, circular = FALSE, times = 1000)

layout_tbl_graph_quad(.data, circular = FALSE, times = 1000)

Arguments
.data An object of a manynet-consistent class:
* matrix (adjacency or incidence) from {base} R
* edgelist, a data frame from {base} R or tibble from {tibble}
* igraph, from the {igraph?} package
* network, from the {network} package
* tbl_graph, from the {tidygraph} package
circular Should the layout be transformed into a radial representation. Only possible for
some layouts. Defaults to FALSE.
times Maximum number of iterations, where appropriate
See Also
Other mapping: attributes(), autographr(), autographs(), autographt(), partition_layouts,
properties
create Making networks with defined structures
Description

These functions create networks with particular structural properties.

* create_empty() creates an empty network without any ties.

* create_filled() creates a filled network with every possible tie realised.

* create_ring() creates a ring or chord network where each nodes’ neighbours form a clique.
* create_star() creates a network with a maximally central node.

e create_tree() creates a network with successive branches.

* create_lattice() creates a network that forms a regular tiling.

* create_components() creates a network that clusters nodes into separate components.

» create_core() creates a network in which a certain proportion of ’core’ nodes are densely
tied to each other, and the rest peripheral, tied only to the core.

* create_explicit() creates a network based on explicitly named nodes and ties between
them.

18

create

These functions can create either one-mode or two-mode networks. To create a one-mode network,
pass the main argument n a single integer, indicating the number of nodes in the network. To create
a two-mode network, pass n a vector of two integers, where the first integer indicates the number of
nodes in the first mode, and the second integer indicates the number of nodes in the second mode.
As an alternative, an existing network can be provided to n and the number of modes, nodes, and
directedness will be inferred.

Usage

create_empty(n, directed = FALSE)

create_filled(n, directed = FALSE)

create_star(n, directed

create_ring(n, directed = FALSE, width =1, ...)
= FALSE)
= FALSE, width = 2)

create_tree(n, directed

create_lattice(n, directed = FALSE, width = 8)

create_components(n, directed = FALSE, membership = NULL)

create_core(n, directed = FALSE, membership = NULL)

create_explicit(...)

Arguments

n

directed

width

membership

Value

Given:
* A single integer, e.g. n = 10, a one-mode network will be created.
* A vector of two integers, e.g. n=c(5,10), a two-mode network will be
created.
* A manynet-compatible object, a network of the same dimensions will be
created.

Logical whether the graph should be directed. By default directed = FALSE. If
the opposite direction is desired, use to_redirected() on the output of these
functions.

Integer specifying the width of the ring, breadth of the branches, or maximum
extent of the neighbourbood.

Additional arguments passed on to {igraph}.

A vector of partition membership as integers. If left as NULL (the default), nodes
in each mode will be assigned to two, equally sized partitions.

By default a tb1_graph object is returned, but this can be coerced into other types of objects using
as_edgelist(), as_matrix(), as_tidygraph(), or as_network().

features 19

By default, all networks are created as undirected. This can be overruled with the argument
directed = TRUE. This will return a directed network in which the arcs are out-facing or equiv-
alent. This direction can be swapped using to_redirected(). In two-mode networks, the directed
argument is ignored.

Lattice graphs

create_lattice() creates both two-dimensional grid and triangular lattices with as even dimen-
sions as possible. When the width parameter is set to 4, nodes cannot have (in or out) degrees larger
than 4. This creates regular square grid lattices where possible. Such a network is bipartite, that is
partitionable into two types that are not adjacent to any of their own type. If the number of nodes is
a prime number, it will only return a chain (a single dimensional lattice).

A width parameter of 8 creates a network where the maximum degree of any nodes is 8. This can
create a triangular mesh lattice or a Queen’s move lattice, depending on the dimensions. A width
parameter of 12 creates a network where the maximum degree of any nodes is 12. Prime numbers
of nodes will return a chain.

See Also

as

igraph::graph_from_literal() which create_explicit() mostly just wraps. create_explicit()
will also accept character input and not just a formula though, and will never simplify the result.

Other makes: generate, learning, play, read, write()

Examples

create_empty(10)
create_filled(10)
create_ring(8, width = 2)
create_star(12)
create_tree(c(7,8))
create_lattice(12, width = 4)
create_components(10, membership = c(1,1,1,2,2,2,3,3,3,3))
create_core(6)
create_explicit(A -+ B, B -+ C, A +-+ C, D)

features Marking networks features

Description
These functions implement logical tests for various network features.

* is_connected() tests whether network is strongly connected, or weakly connected if undi-
rected.

* is_perfect_matching() tests whether there is a matching for a network that covers every
node in the network.

20 features

e is_eulerian() tests whether there is a Eulerian path for a network where that path passes
through every tie exactly once.

* is_acyclic() tests whether network is a directed acyclic graph.

* is_aperiodic() tests whether network is aperiodic.

Usage

is_connected(.data)
is_perfect_matching(.data, mark = "type")
is_eulerian(.data)

is_acyclic(.data)

is_aperiodic(.data, max_path_length = 4)

Arguments

.data An object of a {manynet}-consistent class:

* matrix (adjacency or incidence) from {base} R
* edgelist, a data frame from {base} R or tibble from {tibble}
* igraph, from the {igraph} package
* network, from the {network} package
* tbl_graph, from the {tidygraph} package
mark A logical vector marking two types or modes. By default "type".
max_path_length

Maximum path length considered. If negative, paths of all lengths are consid-
ered. By default 4, to avoid potentially very long computation times.

Value

TRUE if the condition is met, or FALSE otherwise.

is_connected

To test weak connection on a directed network, please see to_undirected().

is_perfect_matching

For two-mode or bipartite networks, to_matching() is used to identify whether a perfect matching
is possible. For one-mode networks, we use the Tutte theorem. Note that currently only subgraphs
with cutpoints removed are tested, and not all possible subgraphs. This is to avoid computationally
expensive combinatorial operations, but may come at the cost of some edge cases where a one-mode
network cannot perfectly match as suggested.

from 21

Source

https://stackoverflow.com/questions/55091438/r-igraph-find-all-cycles

References

Tutte, W. T. (1950). "The factorization of locally finite graphs". Canadian Journal of Mathematics.
2: 44-49. doi:10.4153/cjm19500052

See Also

Other marking: is(), is_format

Examples

is_connected(ison_southern_women)
is_perfect_matching(ison_southern_women)
is_eulerian(ison_brandes)
is_acyclic(ison_algebra)
is_aperiodic(ison_algebra)

from Joining lists of networks, graphs, and matrices

Description

These functions offer tools for joining lists of manynet-consistent objects (matrices, igraph, tidy-
graph, or network objects) into a single object.

* from_subgraphs () modifies a list of subgraphs into a single tidygraph.

* from_egos() modifies a list of ego networks into a whole tidygraph

* from_waves() modifies a list of network waves into a longitudinal tidygraph.

* from_slices() modifies a list of time slices of a network into a dynamic tidygraph.

* from_ties() modifies a list of different ties into a multiplex tidygraph
Usage
from_subgraphs(netlist)
from_egos(netlist)
from_waves(netlist)
from_slices(netlist, remove.duplicates = FALSE)

from_ties(netlist, netnames)

https://doi.org/10.4153/cjm-1950-005-2

22 generate

Arguments

netlist A list of network, igraph, tidygraph, matrix, or edgelist objects.
remove.duplicates
Should duplicates be removed? By default FALSE. If TRUE, duplicated edges
are removed.

netnames A character vector of names for the different network objects, if not already
named within the list.
Value

A tidygraph object combining the list of network data.

See Also

Other modifications: add_nodes(), add_ties(), as(), miss, reformat, split(), to_levels,
to_paths, to_project, to_scope

Examples
ison_adolescents %>%
mutate(unicorn = sample(c("yes”, "no"), 8, replace = TRUE)) %>%
to_subgraphs(attribute = "unicorn”) %>%

from_subgraphs()
ison_adolescents %>%
to_egos() %>%
from_egos()
ison_adolescents %>%
mutate_ties(wave = sample(1:4, 10, replace = TRUE)) %>%
to_waves(attribute = "wave") %>%
from_waves()
ison_adolescents %>%
mutate_ties(time = 1:10, increment = 1) %>%
add_ties(c(1,2), list(time = 3, increment = -1)) %>%
to_slices(slice = c(5,7)) %>%
from_slices()

generate Making networks with a stochastic element

Description

These functions are similar to the create_x* functions, but include some element of randomisation.
They are particularly useful for creating a distribution of networks for exploring or testing network
properties.

* generate_random() generates a random network with ties appearing at some probability.

* generate_smallworld() generates a small-world structure via ring rewiring at some proba-
bility.

generate

23

* generate_scalefree() generates a scale-free structure via preferential attachment at some

probability.

* generate_permutation() generates a permutation of the network using a Fisher-Yates shuf-
fle on both the rows and columns (for a one-mode network) or on each of the rows and columns
(for a two-mode network).

* generate_utilities() generates a random utility matrix.

These functions can create either one-mode or two-mode networks. To create a one-mode network,
pass the main argument n a single integer, indicating the number of nodes in the network. To create
a two-mode network, pass n a vector of two integers, where the first integer indicates the number of
nodes in the first mode, and the second integer indicates the number of nodes in the second mode.
As an alternative, an existing network can be provided to n and the number of modes, nodes, and
directedness will be inferred.

Usage

generate_random(n, p = 0.5, directed = FALSE, with_attr = TRUE)

generate_smallworld(n, p = 0.05, directed = FALSE, width = 2)

generate_scalefree(n, p = 1, directed

generate_permutation(.data, with_attr

FALSE)

TRUE)

generate_utilities(n, steps = 1, volatility = @, threshold = 0)

Arguments

n

p
directed

with_attr

width

.data

Given:

* A single integer, e.g. n = 10, a one-mode network will be created.

* A vector of two integers, e.g. n=c(5,10), a two-mode network will be
created.

* A manynet-compatible object, a network of the same dimensions will be
created.
Power of the preferential attachment, default is 1.
Whether to generate network as directed. By default FALSE.
Logical whether any attributes of the object should be retained. By default
TRUE.
Integer specifying the width of the ring, breadth of the branches, or maximum
extent of the neighbourbood.
An object of a manynet-consistent class:
* matrix (adjacency or incidence) from {base} R
¢ edgelist, a data frame from {base} R or tibble from {tibble}
e igraph, from the {igraph} package
* network, from the {network} package
* tbl_graph, from the {tidygraph} package

24

generate

steps Number of simulation steps to run. By default 1: a single, one-shot simulation.
If more than 1, further iterations will update the utilities depending on the values
of the volatility and threshold parameters.

volatility How much change there is between steps. Only if volatility is more than 1 do
further simulation steps make sense. This is passed on to stats: :rnorm as the
sd or standard deviation parameter.

threshold This parameter can be used to mute or disregard stepwise changes in utility that
are minor. The default O will recognise all changes in utility, but raising the
threshold will mute any changes less than this threshold.

Value

By default a tbl_graph object is returned, but this can be coerced into other types of objects using
as_edgelist(), as_matrix(), as_tidygraph(), or as_network().

By default, all networks are created as undirected. This can be overruled with the argument
directed = TRUE. This will return a directed network in which the arcs are out-facing or equiv-
alent. This direction can be swapped using to_redirected(). In two-mode networks, the directed
argument is ignored.

References

Erdos, Paul, and Alfred Renyi. (1959). "On Random Graphs 1" Publicationes Mathematicae. 6:
290-297.

Watts, Duncan J., and Steven H. Strogatz. 1998. “Collective Dynamics of ‘Small-World’ Net-
works.” Nature 393(6684):440-42. doi:10.1038/30918.

Barabasi, Albert-Laszlo, and Reka Albert. 1999. “Emergence of Scaling in Random Networks.”
Science 286(5439):509-12. doi:10.1126/science.286.5439.509.

See Also

Other makes: create, learning, play, read, write()

Examples

autographr(generate_random(12, 0.4))

autographr(generate_random(c(6, 6), 0.4))
autographr(generate_smallworld(12, ©.025))
autographr(generate_smallworld(12, 0.25))
autographr(generate_scalefree(12, 0.25))
autographr(generate_scalefree(12, 1.25))
autographr(ison_adolescents)
autographr(generate_permutation(ison_adolescents))

https://www.renyi.hu/~p_erdos/1959-11.pdf
https://doi.org/10.1038/30918
https://doi.org/10.1126/science.286.5439.509

is

25

is

Marking networks classes

Description

These functions implement logical tests for networks’ classes.

is_manynet () marks a network TRUE if it is compatible with {manynet} functions.
is_edgelist() marks a network TRUE if it is an edgelist.
is_graph() marks a network TRUE if it contains graph-level information.

is_list() marks a network TRUE if it is a (non-igraph) list of networks, for example a set
of ego networks or a dynamic or longitudinal set of networks.

is_longitudinal () marks a network TRUE if it contains longitudinal, panel data.

is_dynamic() marks a network TRUE if it contains dynamic, time-stamped data

All is_x() functions return a logical scalar (TRUE or FALSE).

Usage

is_manynet(.data)

is_graph(.data)

is_edgelist(.data)

is_list(.data)

is_longitudinal(.data)

is_dynamic(.data)

Arguments

.data An object of a manynet-consistent class:

Value

* matrix (adjacency or incidence) from {base} R

* edgelist, a data frame from {base} R or tibble from {tibble}
e igraph, from the {igraph} package

* network, from the {network} package

* tbl_graph, from the {tidygraph} package

TRUE if the condition is met, or FALSE otherwise.

26

See Also

ison_adolescents

Other marking: features, is_format

Examples

is_manynet(create_filled(2))
is_graph(create_star(2))
is_edgelist(matrix(c(2,2), 1, 2))
is_edgelist(as_edgelist(matrix(c(2,2), 1, 2)))
is_longitudinal(create_tree(5, 3))
is_dynamic(create_tree(3))

ison_adolescents One-mode subset of the adolescent society network (Coleman 1961)

Description

One-mode subset of Coleman’s adolescent society network (Coleman 1961), as used in Feld’s
(1991) "Why your friends have more friends than you do". Coleman collected data on friend-
ships among students in 12 U.S. high schools. Feld explored a subset of 8 girls from one of these
schools, "Marketville", and gave them fictitious names, which are retained here.

Usage

data(ison_adolescents)

Format

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

H HF o 0ol wWwN =

ool b~ wnN =

A labelled, undirected network with 8 nodes and 10 ties

A tibble: 8 x 1
name

<chr>

Betty

Sue

Alice

Jane

Dale

Pam

i 2 more rows

A tibble: 10 x 2
from to

<int> <int>

1 2
2 3
3 4
2 5
3 5
4 5

i 4 more rows

ison_algebra 27

References

Coleman, James S. 1961. The Adolescent Society. New York: Free Press.

Feld, Scott. 1991. “Why your friends have more friends than you do” American Journal of Sociol-
0gy 96(6): 1464-1477. doi:10.1086/229693.

ison_algebra Multiplex graph object of friends, social, and task ties (McFarland
2001)

Description

Multiplex graph object of friends, social, and task ties between 16 anonymous students. M 182 was
an honors algebra class where researchers collected friendship, social, and task ties between 16
students. The edge attribute friends contains friendship ties, where 2 = best friends, 1 = friend,
and 0 is not a friend. social consists of social interactions per hour, and tasks consists of task
interactions per hour.

Usage

data(ison_algebra)

Format

#> # A multiplex, weighted, directed network with 16 nodes and 279 arcs
#> # A tibble: 279 x 4

#> from to type weight

#> <int> <int> <chr> <dbl>

#> 1 1 5 social 1.2

#> 2 1 5 tasks 0.3

#> 3 1 8 social 0.15
#> 4 1 9 social 2.85
#> 5 1 9 tasks 0.3

#> 6 1 10 social 6.45
#> # i 273 more rows

Source

See also data(studentnets.M182, package = "NetData") Larger comprehensive data set pub-
licly available, contact Daniel A. McFarland for details.

References

McFarland, Daniel A. (2001) “Student Resistance.” American Journal of Sociology 107(3): 612-78.
doi:10.1086/338779.

https://doi.org/10.1086/229693
https://doi.org/10.1086/338779

28 ison_friends

ison_brandes One-mode and two-mode centrality demonstration networks

Description
This network should solely be used for demonstration purposes as it does not describe a real net-
work. To convert into the two-mode version, assign ison_brandes %>% rename (type = twomode_type).
Usage

data(ison_brandes)

Format

#> # A undirected network with 11 nodes and 12 ties
#> # A tibble: 11 x 1
#> twomode_type

<lgl>

#> 1 FALSE

#> 2 FALSE

#> 3 TRUE

#> 4 FALSE

#> 5 TRUE

#> 6 TRUE

#> # 1 5 more rows

#> # A tibble: 12 x 2

#> from to

#> <int> <int>

#> 1 1 3

#> 2 2 3

#> 3 3 4

#> 4 4 5

#> 5 4 6

#> 6 5 7

#> # 1 6 more rows

ison_friends One-mode Friends character connections (McNulty, 2020)

Description

One-mode network collected by McNulty (2020) on the connections between the Friends TV series
characters from Seasons 1 to 10. The ison_friends is a directed network containing connections
between characters organised by season number, which is reflected in the tie attribute ’season’. The
network contains 650 nodes Each tie represents the connection between a character pair (appear
in the same scene), and the weight of the tie is the number of scenes the character pair appears in
together. For all networks, characters are named (eg. Phoebe, Ross, Rachel).

https://github.com/keithmcnulty/friends_analysis/

ison_hightech 29

Usage

data(ison_friends)

Format

#> # A labelled, multiplex, weighted, directed network with 650 nodes and 3959 arcs
#> # A tibble: 650 x 1

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

Details

HF HFT oo~ wnN =

HF oo~ wnN =

name
<chr>
Actor
Alan
Andrea
Angela
Aunt Iris
Aunt Lillian
i 644 more rows
A tibble: 3,959 x 4
from to season weight
<int> <int> <int> <int>
1 44 1

2 14
2 44
2 58
2 72
2
9

—_ a A g
N (NG JE S G

75

i 3,953 more rows

The data contains both networks but each may be used separately.

References

McNulty, K. (2020). Network analysis of Friends scripts..

ison_hightech One-mode multiplex, directed network of managers of a high-tech

company (Krackhardt 1987)

Description

21 managers of a company of just over 100 employees manufactured high-tech equipment on the
west coast of the United States. Three types of ties were collected:

* friends: managers’ answers to the question "Who is your friend?"
* advice: managers’ answers to the question "To whom do you go to for advice?"

* reports: "To whom do you report?" based on company reports

30 ison_karateka

The data is anonymised, but four nodal attributes are included:

* age: the manager’s age in years
* tenure: the manager’s length of service

* level: the manager’s level in the corporate hierarchy, where 3 = CEO, 2 = Vice President, and
1 = manager

* dept: one of four departments, B, C, D, E, with the CEO alone in A

Usage

data(ison_hightech)

Format

#> # A multiplex, directed network with 21 nodes and 312 arcs
#> # A tibble: 21 x 4

#> age tenure level dept
#> <dbl> <dbl> <dbl> <chr>
#> 1 33 9 1E

#> 2 42 20 2 E

#> 3 40 13 1C

#> 4 33 8 1E

5 32 3 1C

#> 6 59 28 1B

#> # i 15 more rows

#> # A tibble: 312 x 3

#> from to type
#> <int> <int> <chr>

#> 1 1 2 friends
#> 2 1 2 advice
#> 3 1 2 reports
#> 4 1 4 friends
#> 5 1 4 advice
#> 6 1 8 friends
#> # 1 306 more rows
References

Krackhardt, David. 1987. "Cognitive social structures". Social Networks 9: 104-134.

ison_karateka One-mode karateka network (Zachary 1977)

ison_koenigsberg 31

Description

The network was observed in a university Karate club in 1977. The network describes association
patterns among 34 members and maps out allegiance patterns between members and either Mr. Hi,
the instructor, or the John A. the club president after an argument about hiking the price for lessons.
The allegiance of each node is listed in the obc argument which takes the value 1 if the individual
sided with Mr. Hi after the fight and 2 if the individual sided with John A.

Usage

data(ison_karateka)

Format
#> # A labelled, weighted, undirected network with 34 nodes and 78 ties
#> # A tibble: 34 x 2
#> name allegiance
#> <chr> <dbl>
#> 1 Mr Hi 1
#> 2 2 1
#> 3 3 1
#> 4 4 1
#> 55 1
#> 6 6 1
#> # i 28 more rows
#> # A tibble: 78 x 3
#> from to weight
#> <int> <int> <dbl>
#> 1 1 2 4
#> 2 1 3 5
#> 3 2 3 6
#> 4 1 4 3
#> 5 2 4 3
#> 6 3 4 3
#> # 1 72 more rows

References

Zachary, Wayne W. 1977. “An Information Flow Model for Conflict and Fission in Small Groups.”
Journal of Anthropological Research 33(4):452—73. doi:10.1086/jar.33.4.3629752.

ison_koenigsberg One-mode Seven Bridges of Koenigsberg network (Euler 1741)

https://doi.org/10.1086/jar.33.4.3629752

32 ison_koenigsberg

Description

The Seven Bridges of Koenigsberg is a notable historical problem in mathematics and laid the
foundations of graph theory. The city of Koenigsberg in Prussia (now Kaliningrad, Russia) was
set on both sides of the Pregel River, and included two large islands which were connected to each
other and the mainland by seven bridges. A weekend diversion for inhabitants was to find a walk
through the city that would cross each bridge once and only once. The islands could not be reached
by any route other than the bridges, and every bridge must have been crossed completely every time
(one could not walk half way onto the bridge and then turn around and later cross the other half
from the other side). In 1735, Leonard Euler proved that the problem has no solution.

Usage

data(ison_koenigsberg)

Format

E=3

#> # A labelled, multiplex, undirected network with 4 nodes and 7 ties
#> # A tibble: 4 x 3

#> name lat 1lon

#> <chr> <dbl> <dbl>

#> 1 Altstadt 54.7 20.5
#> 2 Kneiphof 54.7 20.5
#> 3 Lomse 54.7 20.5
#> 4 Vorstadt 54.7 20.5
#> # A tibble: 7 x 3

#> from to name
#> <int> <int> <chr>

#> 1 1 2 Kraemer Bruecke
#> 2 1 2 Schmiedebruecke
#> 3 1 3 Holzbruecke
#> 4 2 3 Honigbruecke
#> 5 2 4 Gruene Bruecke
#> 6 2 4 Koettelbruecke
#> # 1 1 more row

Source
{igraphdata}

References

Euler, Leonard. 1741. “Solutio problematis ad geometriam situs pertinentis.” Commentarii academiae
scientiarum Petropolitanae.

ison_laterals 33

ison_laterals Two-mode projection examples (Hollway 2021)

Description

These networks are for demonstration purposes and do not describe any real world network. All
examples contain named nodes. The networks are gathered together as a list and can be retrieved
simply by plucking the desired network.

Usage

data(ison_laterals)

Format

#> $ison_bb

#> # A labelled, two-mode network with 10 nodes and 12 ties
#> # A tibble: 10 x 2

#> name type

#> <chr> <lgl>

#> 1 A FALSE

#> 2 U TRUE

#> 3 B FALSE

#> 4V TRUE

#> 5 C FALSE

#> 6 W TRUE

#> # i 4 more rows

#> # A tibble: 12 x 2

#> from to
#> <int> <int>

#> 1 1 2
#> 2 1 4
#> 3 3 2
#> 4 3 6
#> 5 3 7
#> 6 3 8
#> # 1 6 more rows
#>

#> $ison_bm

#> # A labelled, two-mode network with 8 nodes and 9 ties
#> # A tibble: 8 x 2

#> name type

#> <chr> <1gl>

#> 1 A FALSE
#> 2 U TRUE
#> 3 B FALSE
#> 4V TRUE

34

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

ool b~ wnN =

C FALSE

W TRUE

i 2 more rows

A tibble: 9 x 2
from to

<int> <int>

w w w = =
~No N BN

5 4
i 3 more rows

$ison_mb

A labelled, two-mode network with 8 nodes and 9 ties

#

H HF o ol b wiN =

1
2
3
4
5
6
#

A tibble: 8 x 2
name type

<chr> <lgl>
FALSE

TRUE
FALSE
FALSE

TRUE

Y TRUE

i 2 more rows

A tibble: 9 x 2
from to

<int> <int>

< O W X >

AW ww =
N OO NN

4 5
i 3 more rows

$ison_mm

A labelled, two-mode network with 6 nodes and 6 ties

#

o Ol w N =

A tibble: 6 x 2
name type
<chr> <lgl>
FALSE
TRUE
FALSE
FALSE
TRUE
FALSE

oO=Z0 WX >

ison_laterals

ison_lawfirm 35

#> # A tibble: 6 x 2
#> from to
#> <int> <int>

#> 1 1 2
#> 2 3 2
3 3 5
#> 4 4 2
#> 5 4 5
#> 6 6 5
ison_lawfirm One-mode lawfirm (Lazega 2001)
Description

One-mode network dataset collected by Lazega (2001) on the relations between partners in a cor-
porate law firm called SG&R in New England 1988-1991. This particular subset includes the 36
partners among the 71 attorneys of this firm. Nodal attributes include seniority, formal status, office
in which they work, gender, lawschool they attended, their age, and how many years they had been
at the firm.

Usage

data(ison_lawfirm)

Format

H+

#> # A multiplex, directed network with 71 nodes and 2571 arcs
#> # A tibble: 71 x 7
#> status gender office seniority age practice school

#> <chr> <chr> <chr> <dbl> <dbl> <chr> <chr>

#> 1 partner man Boston 31 64 litigation Harvard/Yale
#> 2 partner man Boston 32 62 corporate Harvard/Yale
#> 3 partner man Hartford 13 67 litigation Harvard/Yale
#> 4 partner man Boston 31 59 corporate Other

#> 5 partner man Hartford 31 59 litigation UConn

#> 6 partner man Hartford 29 55 litigation Harvard/Yale
#> # i 65 more rows

#> # A tibble: 2,571 x 3

#> from to type
#> <int> <int> <chr>

#> 1 1 2 friends
#> 2 1 2 advice
#> 3 1 4 friends
#> 4 1 8 friends
#> 5 1 17 friends
#> 6 1 17 advice
#> # i 2,565 more rows

36 ison_lotr

Details
The larger data from which this subset comes includes also individual performance measurements
(hours worked, fees brought in) and attitudes concerning various management policy options (see
also { sand}), their strong-coworker network, advice network, friendship network, and indirect con-
trol network.

Source
{networkdata}

References

Lazega, Emmanuel. 2001. The Collegial Phenomenon: The Social Mechanisms of Cooperation
Among Peers in a Corporate Law Partnership. Oxford: Oxford University Press.

ison_lotr One-mode network of Lord of the Rings character interactions

Description

A network of 36 Lord of the Rings book characters and 66 interactional relationships. The ties are
unweighted and concern only interaction. Interaction can be cooperative or conflictual.

Usage

data(ison_lotr)

Format

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

#
#

HF HF oo~ wiN =

A w N =

A labelled, complex, undirected network with 36 nodes and 66 ties
A tibble: 36 x 2
name Race
<chr> <chr>
Aragorn Human
Beregond Human
Bilbo Hobbit
Celeborn E1f
Denethor Human
Elladan EIf

i 30 more rows

A tibble: 66 x 2

from to
<int> <int>
1 7

1 8

5 9

1 10

ison_marvel 37

#> 5 3 10
#> 6 9 10
#> # 1 60 more rows

ison_marvel Multilevel two-mode affiliation, signed one-mode networks of Marvel
comic book characters (Yuksel 2017)

Description

This package includes two datasets related to the Marvel comic book universe. The first, ison_marvel_teams,
is a two-mode affiliation network of 53 Marvel comic book characters and their affiliations to 141

different teams. This network includes only information about nodes’ names and nodeset, but addi-

tional nodal data can be taken from the other Marvel dataset here.

The second network, ison_marvel_relationships, is a one-mode signed network of friendships
and enmities between the 53 Marvel comic book characters. Friendships are indicated by a positive
sign in the tie sign attribute, whereas enmities are indicated by a negative sign in this edge attribute.

Usage

data(ison_marvel_teams)

data(ison_marvel_relationships)

Format

#> # A labelled, two-mode network with 194 nodes and 683 ties
#> # A tibble: 194 x 2

#> type name

#> <lgl> <chr>

#> 1 FALSE Abomination
#> 2 FALSE Ant-Man

#> 3 FALSE Apocalypse

#> 4 FALSE Beast

#> 5 FALSE Black Panther
#> 6 FALSE Black Widow
#> # i 188 more rows

#> # A tibble: 683 x 2

#> from to
#> <int> <int>

#> 1 1 120
#> 2 1 152
#> 3 1 160
#> 4 1 162
#> 5 1 179
#> 6 2 56
#> # i 677 more rows

38 ison_marvel

#> # A labelled, complex, multiplex, signed, undirected network with 53 nodes and 558 ties
#> # A tibble: 53 x 10
#> name Gender Appearances Attractive Rich Intellect Omnilingual PowerOrigin

#> <chr> <chr> <int> <int> <int> <int> <int> <chr>
#> 1 Abomina~ Male 427 Q 0 1 1 Radiation
#> 2 Ant-Man Male 589 1 Q 1 @ Human
#> 3 Apocaly~ Male 1207 0 Q 1 1 Mutant
#> 4 Beast Male 7609 1 Q 1 @ Mutant
#> 5 Black P~ Male 2189 1 1 1 @ Human
#> 6 Black W~ Female 2907 1 0 1 @ Human
#> # 1 47 more rows
#> # i 2 more variables: UnarmedCombat <int>, ArmedCombat <int>
#> # A tibble: 558 x 3
#> from to sign
#> <int> <int> <dbl>
#> 1 1 4 -1
#> 2 1 11 -1
#> 3 1 12 -1
#> 4 1 23 -1
#> 5 1 24 -1
#> 6 1 25 -1
#> # i 552 more rows

Details

Additional nodal variables have been coded and included by Dr Umut Yuksel:

* Gender: binary character, 43 "Male" and 10 "Female"

* PowerOrigin: binary character, 2 "Alien", 1 "Cyborg", 5 "God/Eternal", 22 "Human", 1
"Infection", 16 "Mutant", 5 "Radiation", 1 "Robot"

* Appearances: integer, in how many comic book issues they appeared in
» Attractive: binary integer, 41 1 (yes) and 12 0 (no)

* Rich: binary integer, 11 1 (yes) and 42 0 (no)

* Intellect: binary integer, 39 1 (yes) and 14 0 (no)

* Omnilingual: binary integer, 8 1 (yes) and 45 0 (no)

¢ UnarmedCombat: binary integer, 51 1 (yes) and 2 0 (no)

¢ ArmedCombat: binary integer, 25 1 (yes) and 28 0 (no)

Source

Umut Yuksel, 31 March 2017

ison_monastery 39

ison_monastery Three one-mode signed, weighted networks and a three-wave longitu-
dinal network of monks (Sampson 1969)

Description

The data were collected for an ethnographic study of community structure in a New England
monastery. Various sociometric data was collected of the novices attending the minor seminary
of ’Cloisterville’ preparing to join the monastic order:

* ison_monastery_like records whom novices said they liked most at three time points/waves

* ison_monastery_esteem records whom novices said they held in esteem (sign > 0) and dis-
esteem (sign < 0)

* ison_monastery_praise records whom novices said they praised (sign > 0) and blamed (sign
<0)

* ison_monastery_influence records whom novices said were a positive influence (sign > 0)
and negative influence (sign < 0)
All networks are weighted. Novices’ first choices are weighted 3, the second 2, and third choices 1.
Some subjects offered tied ranks for their top four choices.

In addition to node names, a ’groups’ variable records the four groups that Sampson observed during
his time there:

The Loyal Opposition consists of novices who entered the monastery first and defended exist-
ing practices

* The Young Turks arrived later during a period of change and questioned practices in the
monastery

e The Interstitial did not take sides in the debate

* The Outcasts were novices that were not accepted in the group
Information about senior monks was not included. While ison_monastery_like is observed over
three waves, the rest of the data was recorded retrospectively from the end of the study, after the

network fragmented. The waves in which the novitiates were expelled (1), voluntarily departed (2
and 3), or remained (4) are given in the nodal attribute "left".

Usage
data(ison_monastery_like)
data(ison_monastery_esteem)
data(ison_monastery_influence)

data(ison_monastery_praise)

40

Format

#> # A longitudinal, labelled, multiplex, weighted, directed network with 18 nodes and 168 arcs

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

#>
#>
#>

#

HT HF oo wWwN =

oA wN o

H H o0 wWN =

HF ool b~ wnN =

A tibble: 18 x 3

name groups
<chr> <chr>
Romuald Interstitial
Bonaventure Loyal
Ambrose Loyal
Berthold Loyal
Peter Loyal
Louis Loyal

i 12 more rows
A tibble: 168 x 4

from to weight wave
<int> <int> <dbl> <dbl>

1 5 3

1 7 1

1 11 2

2 5 3

2 6 2

2 15 1

i 162 more rows

_ a A A A

left
<dbl>

DWW

ison_monastery

A labelled, signed, directed network with 18 nodes and 112 arcs

A tibble: 18 x 3

name groups
<chr> <chr>
Romuald Interstitial
Bonaventure Loyal
Ambrose Loyal
Berthold Loyal
Peter Loyal
Louis Loyal

i 12 more rows
A tibble: 112 x 3

from to sign
<int> <int> <dbl>
2 3 1

2 5 3

2 6 2

2 16 -1

2 17 -3

2 18 -2

i 106 more rows

left
<dbl>

3
4
4
4
3
4

A labelled, signed, directed network with 18 nodes and 103 arcs

A tibble: 18 x 3
name groups

left

ison_monastery 41

#> <chr> <chr> <dbl>
#> 1 Romuald Interstitial 3
#> 2 Bonaventure Loyal 4
#> 3 Ambrose Loyal 4
#> 4 Berthold Loyal 4
#> 5 Peter Loyal 3
#> 6 Louis Loyal 4
#> # 1 12 more rows

#> # A tibble: 103 x 3

#> from to sign

#> <int> <int> <dbl>

#> 1 2 5 3

#> 2 2 6 2

#> 3 2 10 1

#> 4 2 16 -1

#> 5 2 17 -3

#> 6 2 18 -2

#> # 1 97 more rows

#> # A labelled, signed, directed network with 18 nodes and 80 arcs
#> # A tibble: 18 x 3

#> name groups left
#> <chr> <chr> <dbl>
#> 1 Romuald Interstitial 3
#> 2 Bonaventure Loyal 4
#> 3 Ambrose Loyal 4
#> 4 Berthold Loyal 4
#> 5 Peter Loyal 3
#> 6 Louis Loyal 4
#> # 1 12 more rows

#> # A tibble: 80 x 3

#> from to sign

#> <int> <int> <dbl>

#> 1 4 3 1

#> 2 4 5 3

#> 3 4 6 2

#> 4 4 13 -3

#> 5 4 15 -1

#> 6 4 17 -2

#> # 1 74 more rows

References

Sampson, Samuel F. 1969. Crisis in a cloister. Unpublished doctoral dissertation, Cornell Univer-
sity.
Breiger R., Boorman S. and Arabie P. 1975. "An algorithm for clustering relational data with

applications to social network analysis and comparison with multidimensional scaling". Journal of
Mathematical Psychology, 12: 328-383.

42

ison_networkers

ison_networkers

One-mode EIES dataset (Freeman and Freeman 1979)

Description

A directed, simple, named, weighted graph with 32 nodes and 440 edges. Nodes are academics
and edges illustrate the communication patterns on an Electronic Information Exchange System
among them. Node attributes include the number of citations (Citations) and the discipline of the
researchers (Discipline). Edge weights illustrate the number of emails sent from one academic to
another over the studied time period.

Usage

data(ison_networkers)

Format

#> # A labelled, weighted, directed network with 32 nodes and 440 arcs

#> # A tibble: 32 x 3

#> name

#> <chr>

#> 1 Lin Freeman

#> 2 Doug White

#> 3 Ev Rogers

#> 4 Richard Alba

#> 5 Phipps Arabie

#> 6 Carol Barner-Barry

#> # 1 26 more rows

#> # A tibble: 440 x 3

#> from to weight

#> <int> <int> <dbl>

#> 1 1 2 488

#> 2 1 3 28

#> 3 1 4 65

#> 4 1 5 20

#> 5 1 6 65

#> 6 1 7 45

#> # 1 434 more rows
Source

networkdata package

References

Discipline Citations

<chr> <dbl>
Sociology 19
Anthropology 3
Other 170
Sociology 23
Other 16
Other 6

Freeman, Sue C. and Linton C. Freeman. 1979. The networkers network: A study of the impact of
a new communications medium on sociometric structure. Social Science Research Reports No 46.
Irvine CA, University of California.

ison_physicians 43

Wasserman Stanley and Katherine Faust. 1994. Social Network Analysis: Methods and Applica-
tions. Cambridge University Press, Cambridge.

ison_physicians Four multiplex one-mode physician diffusion data (Coleman, Katz,

and Menzel, 1966)

Description

Ron Burt prepared this data from Coleman, Katz and Menzel’s 1966 study on medical innovation.
They had collected data from physicians in four towns in Illinois: Peoria, Bloomington, Quincy and
Galesburg. These four networks are held as separate networks in a list.

Coleman, Katz and Menzel were concerned with the impact of network ties on the physicians’
adoption of a new drug, tetracycline. Data on three types of ties were collected in response to three
questions:

advice: "When you need information or advice about questions of therapy where do you
usually turn?"

discussion: "And who are the three or four physicians with whom you most often find yourself
discussing cases or therapy in the course of an ordinary week — last week for instance?"

friendship: "Would you tell me the first names of your three friends whom you see most often
socially?"

Additional questions and records of prescriptions provided additional information:

Usage

recorded date of tetracycline adoption date
years in practice (note that these are {messydates}-compatible dates)

conferences attended (those that attended "Specialty" conferences presumably also attended
"General" conferences)

regular subscriptions to medical journals

free_time spent associating with doctors

discussions on medical matters when with other doctors sociallyy
memberships in clubs with other doctores

number of top 3 friends that are doctors

time practicing in current community

patients load (ordinal)

physical proximity to other physicians (in building/sharing office)
medical specialty (GP/Internist/Pediatrician/Other)

data(ison_physicians)

ison_physicians

community patients

<chr>
20+yrs
-lyr
10-20yrs
5-10yrs
10-20yrs
10-20yrs

29

39
44
39
34

<chr>
101-150
76-100
76-100
51-75
51-75
101-150

community patients

<chr> <chr>

10-20yrs 101-150
5-10yrs 76-100
10-20yrs 101-150
-lyr 26-50

5-10yrs 76-100
10-20yrs 101-150

doc_discuss <dbl>, doc_friends <dbl>,

44
Format
#> $Peoria
#> # A multiplex, directed network with 117 nodes and 543 arcs
#> # A tibble: 117 x 12
#> adoption specialty conferences journals practice
#> <dbl> <chr> <chr> <dbl> <chr>
#> 1 1 Pediatrician Specialty 9 1920..19
#> 2 12 GP None 5 1945..
#> 3 8 Internist General 7 1935..19
#> 4 9 GP General 6 1940..19
#> 5 9 GP General 4 1935..19
#> 6 10 Internist None 7 1930..19
#> # 1 111 more rows
#> # i 5 more variables: doc_freetime <dbl>, doc_discuss <dbl>, doc_friends <dbl>,
#> # doc_club <dbl>, doc_proximity <chr>
#> # A tibble: 543 x 3
#> from to type
#> <int> <int> <chr>
#> 1 1 8 friendship
#> 2 1 58 friendship
#> 3 1 87 advice
#> 4 1 90 advice
#> 5 1 110 advice
#> 6 1 112 friendship
#> # 1 537 more rows
#>
#> $Bloomington
#> # A multiplex, directed network with 50 nodes and 211 arcs
#> # A tibble: 50 x 12
#> adoption specialty conferences journals practice
#> <dbl> <chr> <chr> <dbl> <chr>
#> 1 98 Internist Specialty 8 1930..1934
#> 2 1 GP General 3 1945..
#> 3 98 GP Specialty 4 1930..1934
#> 4 7 Internist None 3 1945..
#> 5 6 Internist General 9 1935..1939
#> 6 1 GP Specialty 5 1935..1939
#> # 1 44 more rows
#># i 5 more variables: doc_freetime <dbl>,
#> # doc_club <dbl>, doc_proximity <chr>
#> # A tibble: 211 x 3
#> from to type
#> <int> <int> <chr>
#> 1 1 3 friendship
#> 2 1 10 discussion
#> 3 1 24 advice
#> 4 1 44 advice
#> 5 2 4 advice

ison_physicians 45

#> 6 2 6 advice
#> # i 205 more rows

#>

#> $Quincy

#> # A multiplex, directed network with 44 nodes and 174 arcs
#> # A tibble: 44 x 12

#> adoption specialty conferences journals practice community patients

#> <dbl> <chr> <chr> <dbl> <chr> <chr> <chr>
#> 1 2 Internist None 6 1935..1939 10-20yrs 151+

#> 2 18 GP General 3 1920..1929 20+yrs 151+

#> 3 18 Internist None 5 1945.. -lyr -25

#> 4 4 GP General 3 1930..1934 20+yrs 151+

#> 5 18 GP Specialty 4 1935..1939 10-20yrs 151+

#> 6 5 Internist General 5 ..1919 20+yrs 51-75
#> # i 38 more rows

#># 1 5 more variables: doc_freetime <dbl>, doc_discuss <dbl>, doc_friends <dbl>,
#> # doc_club <dbl>, doc_proximity <chr>

#> # A tibble: 174 x 3

#> from to type

#> <int> <int> <chr>

#> 1 1 8 advice

#> 2 1 9 advice

#> 3 1 10 discussion

#> 4 1 13 friendship

#> 5 1 15 advice

#> 6 1 22 discussion

#> # i 168 more rows

#>

#> $Galesburg

#> # A multiplex, directed network with 35 nodes and 171 arcs

#> # A tibble: 35 x 12

#> adoption specialty conferences journals practice community patients
#> <dbl> <chr> <chr> <dbl> <chr> <chr> <chr>
#> 1 18 GP General 4 1935..1939 5-10@yrs 101-150
#> 2 18 GP None 4 1935..1939 -1yr 151+

#> 3 4 GP General 6 1945.. 2-5yrs 51-75
#> 4 5 GP None 4 1935..1939 10-20yrs 101-150
#> 5 8 Internist General 6 1935..1939 5-1Qyrs 151+

#> 6 4 Internist Specialty 8 ..1919 20+yrs 76-100
#> # 1 29 more rows

#> # 1 5 more variables: doc_freetime <dbl>, doc_discuss <dbl>, doc_friends <dbl>,
#> # doc_club <dbl>, doc_proximity <chr>

#> # A tibble: 171 x 3

#> from to type

#> <int> <int> <chr>

#> 1 1 5 advice

#> 2 1 6 advice

#> 3 1 20 discussion

46

#> 4 1 23 discussion
#> 5 1 30 friendship
#> 6 1 31 friendship

#> # 1 165 more rows

Source

{networkdata}

References

ison_potter

Coleman, James, Elihu Katz, and Herbert Menzel. 1966. Medical innovation: A diffusion study.
Indianapolis: The Bobbs-Merrill Company.

ison_potter

and Meidert 2013)

Six complex one-mode support data in Harry Potter books (Bossaert

Description

Goele Bossaert and Nadine Meidert coded peer support ties among 64 characters in the Harry
Potter books. Each author coded four of seven books using NVivo, with the seventh book coded
by both and serving to assess inter-rater reliability. The first six books concentrated on adolescent
interactions, were studied in their paper, and are made available here. The peer support ties mean
voluntary emotional, instrumental, or informational support, or praise from one living, adolescent
character to another within the book’s pages. In addition, nodal attributes name, schoolyear (which

doubles as their age), gender, and their house assigned by the sorting hat are included.

Usage

data(ison_potter)

Format

#> $book1

#> # A labelled, complex, directed network with 64 nodes and 47 arcs

#> # A tibble: 64 x 4

#> name schoolyear
#> <chr> <int>
#> 1 Adrian Pucey 1989

1
#> 2 Alicia Spinnet

#> 3 Angelina Johnson
#> 4 Anthony Goldstein
#> 5 Blaise Zabini

#> 6 C. Warrington

#> # 1 58 more rows

#> # A tibble: 47 x 2

#> from to

1989
1989
1991
1991
1989

gender house
<chr> <chr>

male Slytherin
female Gryffindor
female Gryffindor
male Ravenclaw
male Slytherin
male Slytherin

ison_potter

#> <int> <int>

#> 1 11 11

#> 2 11 25

#> 3 11 26

#> 4 11 44

#> 5 11 56

#> 6 11 58

#> # 1 41 more rows
#>

#> $book2

#> # A labelled, complex, directed network with 64 nodes and 110 arcs
#> # A tibble: 64 x 4

#> name schoolyear gender house

#> <chr> <int> <chr> <chr>

#> 1 Adrian Pucey 1989 male Slytherin

#> 2 Alicia Spinnet 1989 female Gryffindor
#> 3 Angelina Johnson 1989 female Gryffindor
#> 4 Anthony Goldstein 1991 male Ravenclaw

#> 5 Blaise Zabini 1991 male Slytherin

#> 6 C. Warrington 1989 male Slytherin

#> # i 58 more rows

#> # A tibble: 110 x 2

#> from to
#> <int> <int>

#> 1 2 2

#> 2 2 3

#> 3 2 19

#> 4 2 20

#> 5 2 25

#> 6 2 26

#> # 1 104 more rows
#>

#> $book3

#> # A labelled, complex, directed network with 64 nodes and 104 arcs
#> # A tibble: 64 x 4

#> name schoolyear gender house

#> <chr> <int> <chr> <chr>

#> 1 Adrian Pucey 1989 male Slytherin

#> 2 Alicia Spinnet 1989 female Gryffindor
#> 3 Angelina Johnson 1989 female Gryffindor
#> 4 Anthony Goldstein 1991 male Ravenclaw

#> 5 Blaise Zabini 1991 male Slytherin

#> 6 C. Warrington 1989 male Slytherin

#> # 1 58 more rows

#> # A tibble: 104 x 2

#> from to
#> <int> <int>
#> 1 2 2

48

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

3
19
20
25
26
i 98 more rows

NN DN NN

2
3
4
5
6
#

$book4

A labelled, complex, directed network with 64 nodes and 49 arcs

A tibble: 64 x 4
name
<chr>
Adrian Pucey
Alicia Spinnet
Angelina Johnson
Anthony Goldstein
Blaise Zabini
C. Warrington

i 58 more rows
A tibble: 49 x 2

from to
<int> <int>

7 7

8
25

8
25

9
i 43 more rows

schoolyear
<int>

1989

1989

1989

1991

1991

1989

HF HFT oo~ wnN =

O 0 00 N

1
2
3
4
5
6
#

$book5

gender house
<chr> <chr>

male Slytherin
female Gryffindor
female Gryffindor

male Ravenclaw
male Slytherin
male Slytherin

A labelled, complex, directed network with 64 nodes and 160 arcs

A tibble: 64 x 4
name

<chr>

Adrian Pucey

Alicia Spinnet

Angelina Johnson

Anthony Goldstein

Blaise Zabini

C. Warrington

i 58 more rows

A tibble: 160 x 2
from to

<int> <int>

1 2 2

2 2 3

3 2 19

schoolyear
<int>

1989

1989

1989

1991

1991

1989

H HF o 0ol b~ wiN =

gender house
<chr> <chr>

male Slytherin
female Gryffindor
female Gryffindor

male Ravenclaw
male Slytherin
male Slytherin

ison_potter

ison_southern_women 49

#> 4 2 20

#> 5 2 25

#> 6 2 29

#> # 1 154 more rows
#>

#> $book6

#> # A labelled, complex, directed network with 64 nodes and 74 arcs
#> # A tibble: 64 x 4

#> name schoolyear gender house

#> <chr> <int> <chr> <chr>

#> 1 Adrian Pucey 1989 male Slytherin

#> 2 Alicia Spinnet 1989 female Gryffindor
#> 3 Angelina Johnson 1989 female Gryffindor
#> 4 Anthony Goldstein 1991 male Ravenclaw

#> 5 Blaise Zabini 1991 male Slytherin

#> 6 C. Warrington 1989 male Slytherin

#> # i 58 more rows

#> # A tibble: 74 x 2

#> from to
#> <int> <int>

#> 1 11 11
#> 2 11 25
#> 3 11 56
#> 4 11 58
#> 5 12 12
#> 6 14 14
#> # i 68 more rows
References

Bossaert, Goele and Nadine Meidert (2013). ""We are only as strong as we are united, as weak as
we are divided’. A dynamic analysis of the peer support networks in the Harry Potter books." Open
Journal of Applied Sciences, 3(2): 174-185. doi:10.4236/0japps.2013.32024

ison_southern_women Two-mode southern women (Davis, Gardner and Gardner 1941)

Description

Two-mode network dataset collected by Davis, Gardner and Gardner (1941) about the attendance
pattern of women at informal social events during a 9 month period. Events and women are named.

Usage

data(ison_southern_women)

https://doi.org/10.4236/ojapps.2013.32024

50

ison_starwars

A labelled, two-mode network with 32 nodes and 93 ties

Format
#> #
#> # A tibble: 32 x 2
#> type name
#> <lgl> <chr>
#> 1 FALSE Evelyn
#> 2 FALSE Laura
#> 3 FALSE Theresa
#> 4 FALSE Brenda
#> 5 FALSE Charlotte
#> 6 FALSE Frances
#> # 1 26 more rows
#> # A tibble: 93 x 2
#> from to
#> <int> <int>
#> 1 1 19
#> 2 1 20
#> 3 1 21
#> 4 1 22
#> 5 1 23
#> 6 1 24
#> # 1 87 more rows
References

Davis, Allison, Burleigh B. Gardner, and Mary R. Gardner. 1941. Deep South. Chicago: University
of Chicago Press.

ison_starwars

Seven one-mode Star Wars character interactions (Gabasova 2016)

Description

One-mode network dataset collected by Gabasova (2016) on the interactions between Star Wars
characters in each movie from Episode 1 (The Phantom Menace) to Episode 7 (The Force Awakens).
There is a separate network for each episode, and the data is listed in order from episode 1 to 7.
The network for each episode varies in the number of nodes and ties. For all networks, characters
are named (eg. R2-D2, Anakin, Chewbacca) and the following node attributes are provided where
available: height, mass, hair color, skin color, eye color, birth year, sex, homeworld, and species.
The node attribute faction’ has also been added, denoting the faction (eg. Jedi, Rebel Alliance, etc)
that Star Wars characters belong to in each episode (coding completed with help of Yichen Shen
and Tiphaine Aeby). Weighted ties represent the number of times characters speak within the same
scene of the film.

Usage

data(ison_starwars)

ison_starwars

Format

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

$*Episode I
A labelled, weighted, undirected network with 38 nodes and 135 ties

51

A tibble: 38 x 11

name height mass hair_color skin_color eye_color birth_year sex homeworld

<chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
1 R2-D2 96 32 <NA> white, bl~ red 33 none Naboo
2 QUI-G~ 193 89 brown fair blue 92 male <NA>
3 NUTE ~ 191 90 none mottled g~ red NA male Cato Nei~
4 PK-4 NA NA <NA> <NA> <NA> NA <NA> <NA>
5 TC-14 NA NA <NA> <NA> <NA> NA <NA> <NA>
6 OBI-W~ 182 77 auburn, w~ fair blue-gray 57 male Stewjon
1 32 more rows

i 2 more variables: species <chr>, faction <chr>

A tibble: 135 x 3
from to weight
<int> <int> <int>
1 1 16 11
2 1 2 14
3 1 19 16
4 1 18 3
5 1 23 2
6 1 25 2
1 129 more rows
$ Episode II"

A labelled, weighted, undirected network with 33 nodes and 101 ties
A tibble: 33 x 11

name height mass hair_color skin_color eye_color birth_year sex homeworld

<chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
1 R2-D2 96 32 <NA> white, bl~ red 33 none Naboo
2 CAPTA~ 185 85 black dark brown NA male Naboo
3 EMPER~ 170 75 grey pale yellow 82 male Naboo
4 SENAT~ NA NA <NA> <NA> <NA> NA <NA> <NA>
5 ORN F~ NA NA <NA> <NA> <NA> NA <NA> <NA>
6 MACE ~ 188 84 none dark brown 72 male Haruun K~
i 27 more rows
i 2 more variables: species <chr>, faction <chr>
A tibble: 101 x 3

from to weight

<int> <int> <int>
1 1 13 7
2 1 12 7
3 1 24 3
4 3 4 2
5 3 5 2
6 4 5 1
i 95 more rows

52

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

ison_starwars

$*Episode III®
A labelled, weighted, undirected network with 24 nodes and 65 ties

A tibble: 24 x 11

name height mass hair_color skin_color eye_color birth_year sex homeworld

<chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
1 R2-D2 96 32 <NA> white, bl~ red 33 none Naboo
2 ANAKIN 188 84 blond fair blue 41.9 male Tatooine
3 OBI-W~ 182 77 auburn, w~ fair blue-gray 57 male Stewjon
4 ODD B~ NA NA <NA> <NA> <NA> NA <NA> <NA>
5 GENER~ 216 159 none brown, wh~ green, y~ NA male Kalee
6 EMPER~ 170 75 grey pale yellow 82 male Naboo
1 18 more rows

i 2 more variables: species <chr>, faction <chr>
A tibble: 65 x 3
from to weight
<int> <int> <int>
1 1 6 2
2 1 3 12
3 1 2 9
4 1 9 5
5 1 8 4
6 1 10 4
1 59 more rows
$ Episode IV*®

A labelled, weighted, undirected network with 21 nodes and 60 ties

A tibble: 21 x 11

name height mass hair_color skin_color eye_color birth_year sex homeworld

<chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
1 R2-D2 96 32 <NA> white, bl~ red 33 none Naboo
2 CHEWB~ 228 112 brown unknown blue 200 male Kashyyyk
3 C-3PO 167 75 <NA> gold yellow 112 none Tatooine
4 LUKE 172 77 blond fair blue 19 male Tatooine
5 DARTH~ 202 136 none white yellow 41.9 male Tatooine
6 CAMIE NA NA <NA> <NA> <NA> NA <NA> <NA>
1 15 more rows
i 2 more variables: species <chr>, faction <chr>
A tibble: 60 x 3

from to weight

<int> <int> <int>
1 1 2 3
2 1 3 17
3 1 9 1
4 1 4 14
5 1 10 1
6 1 11 4
i 54 more rows

ison_starwars 53

#>

#> $‘Episode V*

#> # A labelled, weighted, undirected network with 21 nodes and 55 ties

#> # A tibble: 21 x 11

#> name height mass hair_color skin_color eye_color birth_year sex homeworld

#> <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
#> 1 R2-D2 96 32 <NA> white, bl~ red 33 none Naboo
#> 2 CHEWB~ 228 112 brown unknown blue 200 male Kashyyyk
#> 3 LUKE 172 77 blond fair blue 19 male Tatooine
#> 4 HAN 180 80 brown fair brown 29 male Corellia
#> 5 RIEEK~ NA NA <NA> <NA> <NA> NA <NA> <NA>
#> 6 LEIA 150 49 brown light brown 19 fema~ Alderaan
#> # 1 15 more rows

#> # 1 2 more variables: species <chr>, faction <chr>

#> # A tibble: 55 x 3

#> from to weight
#> <int> <int> <int>

#> 1 1 2 5
#> 2 1 7 10
#> 3 1 3 7
#> 4 1 4 4
#> 5 1 6 5
#> 6 1 21 1
#> # 1 49 more rows

#>

#> $ Episode VI®

#> # A labelled, weighted, undirected network with 20 nodes and 55 ties

#> # A tibble: 20 x 11

#> name height mass hair_color skin_color eye_color birth_year sex homeworld

#> <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
#> 1 R2-D2 96 32 <NA> white, bl~ red 33 none Naboo
#> 2 CHEWB~ 228 112 brown unknown blue 200 male Kashyyyk
#> 3 JERJE~ NA NA <NA> <NA> <NA> NA <NA> <NA>
#> 4 DARTH~ 202 136 none white yellow 41.9 male Tatooine
#> 5 C-3PO 167 75 <NA> gold yellow 112 none Tatooine
#> 6 BIB F~ 180 NA none pale pink NA male Ryloth
#> # i 14 more rows

#> # i 2 more variables: species <chr>, faction <chr>

#> # A tibble: 55 x 3

#> from to weight
#> <int> <int> <int>

#> 1 1 2 8
#> 2 1 5 14
#> 3 1 12 2
#> 4 1 7 2
#> 5 1 8 8
#> 6 1 10 9
#> # i 49 more rows

54

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

Details

$\

Episode VII®

ison_usstates

A labelled, weighted, undirected network with 27 nodes and 92 ties
A tibble: 27 x 11

H H HF ool wN =

name height mass hair_color skin_color eye_color birth_year sex homeworld
<chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
LUKE 172 77 blond fair blue 19 male Tatooine
R2-D2 96 32 <NA> white, bl~ red 33 none Naboo
CHEWB~ 228 112 brown unknown blue 200 male Kashyyyk
BB-8 NA NA none none black NA none <NA>
LOR S~ NA NA <NA> <NA> <NA> NA <NA> <NA>
POE NA NA brown light brown NA male <NA>
i 21 more rows

i 2 more variables: species <chr>, faction <chr>

A tibble: 92 x 3

from to weight
<int> <int> <int>

3
4
4
18
9
11
i 86 more rows

w w N wNN

1
2
9
2
20
13

The network for each episode may be extracted and used separately, eg. ison_starwars[[1]] or
ison_starwars$Episode I for Episode 1.

References

Gabasova, E. (2016). Star Wars social network.. doi:10.5281/zenodo.1411479

ison_usstates

One-mode undirected network of US state contiguity (Meghanathan
2017)

Description

This network is of contiguity between US states. States that share a border are connected by a tie
in the network. The data is a network of 107 ties among 50 US states (nodes). States are named by
their two-letter ISO-3166 code. This data includes also the names of the capitol cities of each state,
which are listed in the node attribute ’capitol’.

Usage

data(ison_usstates)

https://doi.org/10.5281/zenodo.1411479

is_format

55

Format
#> # A labelled, undirected network with 50 nodes and 107 ties
#> # A tibble: 50 x 2
#> name capitol
#> <chr> <chr>
#> 1 AK Juneau
#> 2 AL Montgomery
#> 3 AR Little Rock
#> 4 AZ Phoenix
#> 5 CA Sacramento
#> 6 CO Denver
#> # 1 44 more rows
#> # A tibble: 107 x 2
#> from to
#> <int> <int>
#> 1 2 9
#> 2 2 10
#> 3 2 25
#> 4 2 42
#> 5 3 18
#> 6 3 24
#> # i 101 more rows
References

Meghanathan, Natarajan. 2017. "Complex network analysis of the contiguous United States graph."
Computer and Information Science, 10(1): 54-76. doi:10.5539/cis.v10n1p54

is_format Marking networks formats

Description

These functions implement logical tests for various network properties. All is_* () functions return
a logical scalar (TRUE or FALSE).

is_twomode () marks networks TRUE if they contain two sets of nodes.
is_weighted() marks networks TRUE if they contain tie weights.

is_directed() marks networks TRUE if the ties specify which node is the sender and which
the receiver.

is_labelled() marks networks TRUE if there is a 'names’ attribute for the nodes.
is_signed() marks networks TRUE if the ties can be either positive or negative.

is_complex () marks networks TRUE if any ties are loops, with the sender and receiver being
the same node.

is_multiplex() marks networks TRUE if it contains multiple types of ties, such that there
can be multiple ties between the same sender and receiver.

is_uniplex () marks networks TRUE if it is neither complex nor multiplex.

https://doi.org/10.5539/cis.v10n1p54

56 is_format

Usage

is_twomode(.data)
is_weighted(.data)
is_directed(.data)
is_labelled(.data)
is_signed(.data)
is_complex(.data)
is_multiplex(.data)

is_uniplex(.data)

Arguments
.data An object of a manynet-consistent class:

* matrix (adjacency or incidence) from {base} R
* edgelist, a data frame from {base} R or tibble from {tibble}
e igraph, from the {igraph?} package
* network, from the {network} package
e tbl_graph, from the {tidygraph} package

See Also

Other marking: features, is()

Examples

is_twomode(create_filled(c(2,2)))
is_weighted(create_tree(3))
is_directed(create_tree(2))
is_directed(create_tree(2, directed = TRUE))
is_labelled(create_empty(3))
is_signed(create_lattice(3))
is_complex(create_lattice(4))
is_multiplex(create_filled(c(3,3)))
is_uniplex(create_star(3))

learning 57

learning Making learning models on networks

Description

These functions allow learning games to be played upon networks.

* play_learning() plays a DeGroot learning model upon a network.

* play_segregation() plays a Schelling segregation model upon a network.

Usage

play_learning(.data, beliefs, steps, epsilon = 5e-04)

play_segregation(

.data,
attribute,
heterophily = 0,
who_moves = c("ordered”, "random”, "most_dissatisfied”),
choice_function = c("satisficing”, "optimising”, "minimising”),
steps
)
Arguments
.data An object of a manynet-consistent class:
* matrix (adjacency or incidence) from {base} R
* edgelist, a data frame from {base} R or tibble from {tibble}
e igraph, from the {igraph?} package
* network, from the {network} package
* tbl_graph, from the {tidygraph} package
beliefs A vector indicating the probabilities nodes put on some outcome being ’true’.
steps The number of steps forward in learning. By default the number of nodes in the
network.
epsilon The maximum difference in beliefs accepted for convergence to a consensus.
attribute A string naming some nodal attribute in the network. Currently only tested for
binary attributes.
heterophily A score ranging between -1 and 1 as a threshold for how heterophilous nodes

will accept their neighbours to be. A single proportion means this threshold is
shared by all nodes, but it can also be a vector the same length of the nodes in
the network for issuing different thresholds to different nodes. By default this is
0, meaning nodes will be dissatisfied if more than half of their neighbours differ
on the given attribute.

58

who_moves

choice_function

See Also

many_palettes

One of the following options: "ordered" (the default) checks each node in turn
for whether they are dissatisfied and there is an available space that they can
move to, "random" will check a node at random, and "most_dissatisfied" will
check (one of) the most dissatisfied nodes first.

One of the following options: "satisficing" (the default) will move the node to
any coordinates that satisfy their heterophily threshold, "optimising" will move
the node to coordinates that are most homophilous, and "minimising" distance
will move the node to the next nearest unoccupied coordinates.

Other makes: create, generate, play, read, write()

Other models: play

Examples

play_learning(ison_networkers,

rbinom(manynet: :network_nodes(ison_networkers),1,prob = 0.25))
startValues <- rbinom(100,1,prob = 0.5)
startValues[sample(seq_len(100), round(100%x0.2))] <- NA
latticeEg <- create_lattice(100)
latticeEg <- add_node_attribute(latticeEg, "startValues”, startValues)

latticeEg

play_segregation(latticeEg, "startValues”, 0.5)
autographr(latticeEg, node_color = "startValues”, node_size = 5) +
autographr(play_segregation(latticeEg, "startValues"”, 0.2),

#

node_color = "startValues”, node_size = 5)

many_palettes

Many palettes generator

Description

Many palettes generator

Usage
many_palettes(palette, n, type = c("discrete”, "continuous"))
Arguments
palette Name of desired palette. Current choices are: IHEID, Centres, SDGs, ETHZ, RUG,
and UZH.
n Number of colors desired. If omitted, uses all colours.
type Either "continuous" or "discrete". Use continuous if you want to automatically

interpolate between colours.

mark_diff 59

Value

A graphic display of colours in palette.

Source

Adapted from https://github.com/karthik/wesanderson/blob/master/R/colors.R

Examples

many_palettes()
#many_palettes("IHEID")

mark_diff Marking nodes based on diffusion properties

Description

These functions return logical vectors the length of the nodes in a network identifying which hold
certain properties or positions in the network.

* node_is_infected() marks nodes that are infected by a particular time point.
* node_is_exposed() marks nodes that are exposed to a given (other) mark.
* node_is_latent() marks nodes that are latent at a particular time point.

* node_is_recovered() marks nodes that are recovered at a particular time point.

Usage

node_is_latent(diff_model, time = 0)
node_is_infected(diff_model, time = @)
node_is_recovered(diff_model, time = @)

node_is_exposed(.data, mark)

Arguments
diff_model A diff_model object, created either by play_diffusion() oras_diffusion().
time A time step at which nodes are identified.
.data An object of a manynet-consistent class:

* matrix (adjacency or incidence) from {base} R

* edgelist, a data frame from {base} R or tibble from {tibble}
e igraph, from the {igraph} package

* network, from the {network} package

* tbl_graph, from the {tidygraph} package

mark vector denoting which nodes are infected

https://github.com/karthik/wesanderson/blob/master/R/colors.R

60 mark_nodes

Exposed

node_is_exposed() is similar to node_exposure(), but returns a mark (TRUE/FALSE) vector
indicating which nodes are currently exposed to the diffusion content. This diffusion content can
be expressed in the *mark’ argument. If no *mark’ argument is provided, and ’.data’ is a diff_model
object, then the function will return nodes exposure to the seed nodes in that diffusion.

See Also

Other marks: mark_nodes, mark_select, mark_tie_select, mark_ties

Examples

To mark nodes that are latent by a particular time point
node_is_latent(play_diffusion(create_tree(6), latency = 1), time = 1)

To mark nodes that are infected by a particular time point
node_is_infected(play_diffusion(create_tree(6)), time = 1)

To mark nodes that are recovered by a particular time point
node_is_recovered(play_diffusion(create_tree(6), recovery = 0.5), time = 3)
To mark which nodes are currently exposed

(expos <- node_is_exposed(manynet: :create_tree(14), mark = c(1,3)))
which(expos)

mark_nodes Marking nodes based on structural properties

Description

These functions return logical vectors the length of the nodes in a network identifying which hold
certain properties or positions in the network.

* node_is_cutpoint() marks nodes that cut or act as articulation points in a network, increas-
ing the number of connected components when removed.

* node_is_isolate() marks nodes that are isolates, with neither incoming nor outgoing ties.
¢ node_is_core() marks nodes that are members of the network’s core.

* node_is_fold() marks nodes that are in a structural fold between two or more triangles that
are only connected by that node.

* node_is_mentor () marks a proportion of high indegree nodes as *mentors’ (see details)

Usage

node_is_isolate(.data)
node_is_cutpoint(.data)
node_is_core(.data)
node_is_fold(.data)

node_is_mentor(.data, elites = 0.1)

mark_select 61

Arguments

.data An object of a manynet-consistent class:

* matrix (adjacency or incidence) from {base} R
* edgelist, a data frame from {base} R or tibble from {tibble}
e igraph, from the {igraph} package
* network, from the {network} package
* tbl_graph, from the {tidygraph} package
elites The proportion of nodes to be selected as mentors. By default this is set at 0.1.
This means that the top 10% of nodes in terms of degree, or those equal to the

highest rank degree in the network, whichever is the higher, will be used to select
the mentors.

Note that if nodes are equidistant from two mentors, they will choose one at
random. If a node is without a path to a mentor, for example because they are
an isolate, a tie to themselves (a loop) will be created instead. Note that this is a
different default behaviour than that described in Valente and Davis (1999).

References

Valente, Thomas, and Rebecca Davis. 1999. "Accelerating the Diffusion of Innovations Using
Opinion Leaders", Annals of the American Academy of Political and Social Science 566: 56-67.

See Also

Other marks: mark_diff, mark_select, mark_tie_select, mark_ties

Examples

node_is_isolate(ison_brandes)
node_is_cutpoint(ison_brandes)

node_is_core(ison_brandes)
node_is_fold(create_explicit(A-B, B-C, A-C, C-D, C-E, D-E))

mark_select Marking nodes for selection based on measures

Description

These functions return logical vectors the length of the nodes in a network identifying which hold
certain properties or positions in the network.

¢ node_is_random() marks one or more nodes at random.

* node_is_max() and node_is_min() are more generally useful for converting the results from
some node measure into a mark-class object. They can be particularly useful for highlighting
which node or nodes are key because they minimise or, more often, maximise some measure.

62 mark_ties

Usage

node_is_random(.data, size = 1)

node_is_max(node_measure, ranks = 1)

node_is_min(node_measure, ranks = 1)
Arguments

.data An object of a manynet-consistent class:
* matrix (adjacency or incidence) from {base} R
* edgelist, a data frame from {base} R or tibble from {tibble}
e igraph, from the {igraph?} package
* network, from the {network} package
* tbl_graph, from the {tidygraph} package

size The number of nodes to select (as TRUE).

node_measure An object created by a node_ measure.

ranks The number of ranks of max or min to return. For example, ranks = 3 will return
TRUE for nodes with scores equal to any of the top (or, for node_is_min(),
bottom) three scores. By default, ranks = 1.

See Also

Other marks: mark_diff, mark_nodes, mark_tie_select, mark_ties

Examples

node_is_random(ison_brandes, 2)
#node_is_max(migraph: :node_degree(ison_brandes))
#node_is_min(migraph: :node_degree(ison_brandes))

mark_ties Marking ties based on structural properties

Description

These functions return logical vectors the length of the ties in a network identifying which hold
certain properties or positions in the network.
e tie_is_multiple() marks ties that are multiples.
e tie_is_loop() marks ties that are loops.
e tie_is_reciprocated() marks ties that are mutual/reciprocated.
e tie_is_feedback() marks ties that are feedback arcs causing the network to not be acyclic.
e tie_is_bridge() marks ties that cut or act as articulation points in a network.

They are most useful in highlighting parts of the network that are particularly well- or poorly-
connected.

mark_tie_select

Usage

63

tie_is_multiple(.data)

tie_is_loop(.data)

tie_is_reciprocated(.data)

tie_is_feedback(.data)

tie_is_bridge(.data)

Arguments
.data An object of a manynet-consistent class:

* matrix (adjacency or incidence) from {base} R
* edgelist, a data frame from {base} R or tibble from {tibble}
e igraph, from the {igraph} package
* network, from the {network} package
e tbl_graph, from the {tidygraph} package

See Also

Other marks: mark_diff, mark_nodes, mark_select, mark_tie_select

Examples

tie_is_multiple(ison_marvel_relationships)
tie_is_loop(ison_marvel_relationships)
tie_is_reciprocated(ison_algebra)
tie_is_feedback(ison_algebra)
tie_is_bridge(ison_brandes)

mark_tie_select

Marking ties for selection based on measures

Description

These functions return logical vectors the length of the ties in a network:

e tie_is_random() marks one or more nodes at random.

e tie_is_max() and tie_is_min() are more generally useful for converting the results from
some node measure into a mark-class object. They can be particularly useful for highlighting
which node or nodes are key because they minimise or, more often, maximise some measure.

64

miss
Usage

tie_is_random(.data, size = 1)

tie_is_max(tie_measure)

tie_is_min(tie_measure)

Arguments
.data An object of a manynet-consistent class:
* matrix (adjacency or incidence) from {base} R
* edgelist, a data frame from {base} R or tibble from {tibble}
* igraph, from the {igraph} package
* network, from the {network} package
* tbl_graph, from the {tidygraph} package
size The number of nodes to select (as TRUE).
tie_measure An object created by a tie_ measure.
See Also

Other marks: mark_diff, mark_nodes, mark_select, mark_ties

Examples

tie_is_max(migraph::tie_betweenness(ison_brandes))
#tie_is_min(migraph::tie_betweenness(ison_brandes))

miss Modifying missing tie data

Description
These functions offer tools for imputing missing tie data. Currently two options are available:

* na_to_zero() replaces any missing values with zeros, which are the modal value in sparse
social networks.

* na_to_mean() replaces missing values with the average non-missing value.

Usage

na_to_zero(.data)

na_to_mean(.data)

partition_layouts 65

Arguments
.data An object of a manynet-consistent class:

* matrix (adjacency or incidence) from {base} R
* edgelist, a data frame from {base} R or tibble from {tibble}
e igraph, from the {igraph?} package
* network, from the {network} package
* tbl_graph, from the {tidygraph} package

Value

A data object of the same class as the function was given.

References

Krause, Robert, Mark Huisman, Christian Steglich, and Tom A.B. Snijders. 2020. "Missing data
in cross-sectional networks—An extensive comparison of missing data treatment methods". Social
Networks, 62, 99-112.

See Also

Other modifications: add_nodes(), add_ties(), as(), from, reformat, split(), to_levels,
to_paths, to_project, to_scope

Examples

missTest <- ison_adolescents %>%
add_tie_attribute("weight”, c(1,NA,NA,1,1,1,NA,NA,1,1)) %>%
as_matrix

missTest

na_to_zero(missTest)

na_to_mean(missTest)

partition_layouts Layout algorithms based on bi- or other partitions

Description

These algorithms layout networks based on two or more partitions, and are recommended for use

with autographr() or {ggraph}. Note that these layout algorithms use {Rgraphviz}, a package

that is only available on Bioconductor. It will first need to be downloaded using BiocManager: : install("Rgraphviz").
If it has not already been installed, there is a prompt the first time these functions are used though.

The "hierarchy" layout layers the first node set along the bottom, and the second node set along the
top, sequenced and spaced as necessary to minimise edge overlap. The "alluvial" layout is similar
to "hierarchy", but places successive layers horizontally rather than vertically. The "railway" layout
is similar to "hierarchy", but nodes are aligned across the layers. The "ladder" layout is similar to
"railway", but places successive layers horizontally rather than vertically. The "concentric" layout

66 partition_layouts

places a "hierarchy" layout around a circle, with successive layers appearing as concentric circles.
The "multilevel" layout places successive layers as multiple levels. The "lineage" layout ranks
nodes in Y axis according to values.

Usage

layout_tbl_graph_hierarchy(
.data,
center = NULL,
circular = FALSE,
times = 1000
)

layout_tbl_graph_alluvial(.data, circular = FALSE, times = 1000)
layout_tbl_graph_railway(.data, circular = FALSE, times = 1000)
layout_tbl_graph_ladder(.data, circular = FALSE, times = 1000)

layout_tbl_graph_concentric(
.data,
membership,
radius = NULL,
order.by = NULL,
circular = FALSE,
times = 1000
)

layout_tbl_graph_multilevel(.data, level, circular = FALSE)

layout_tbl_graph_lineage(.data, rank, circular = FALSE)

Arguments

.data An object of a manynet-consistent class:

* matrix (adjacency or incidence) from {base} R

* edgelist, a data frame from {base} R or tibble from {tibble}
e igraph, from the {igraph?} package

* network, from the {network} package

* tbl_graph, from the {tidygraph} package

center Further split "hierarchical” layouts by declaring the "center" argument as the

non

"events", "actors", or by declaring a node name in hierarchy layout. Defaults to
NULL.

circular Should the layout be transformed into a radial representation. Only possible for
some layouts. Defaults to FALSE.

times Maximum number of iterations, where appropriate

membership A node attribute or a vector to draw concentric circles for "concentric" layout.

play 67

radius A vector of radii at which the concentric circles should be located for "concen-
tric" layout. By default this is equal placement around an empty centre, unless
one (the core) is a single node, in which case this node occupies the centre of
the graph.

order.by An attribute label indicating the (decreasing) order for the nodes around the
circles for "concentric" layout. By default ordering is given by a bipartite place-
ment that reduces the number of edge crossings.

level A node attribute or a vector to hierarchically order levels for "multilevel" layout.

rank A numerical node attribute to place nodes in Y axis according to values for
"lineage" layout.

Source

Diego Diez, Andrew P. Hutchins and Diego Miranda-Saavedra. 2014. "Systematic identification
of transcriptional regulatory modules from protein-protein interaction networks". Nucleic Acids
Research, 42 (1) e6.

See Also
Other mapping: attributes(), autographr(), autographs(), autographt(), configuration_layouts,
properties

Examples
#autographr (ison_southern_women, layout = "hierarchy”, center = "events",
node_color = "type", node_size = 3)
#autographr(ison_southern_women, layout = "alluvial")
#autographr (ison_southern_women, layout = "concentric”, membership = "type”,
node_color = "type", node_size = 3)
#autographr(ison_lotr, layout = "multilevel”,
node_color = "Race”, level = "Race”, node_size = 3)

ison_adolescents %>%

mutate(year = rep(c(1985, 1990, 1995, 2000), times = 2),

cut = node_is_cutpoint(ison_adolescents)) %>%

autographr(layout = "lineage", rank = "year”, node_color = "cut”,
node_size = migraph::node_degree(ison_adolescents)*10)

play Making diffusion models on networks

Description
These functions simulate diffusion or compartment models upon a network.

* play_diffusion() runs a single simulation of a compartment model, allowing the results to
be visualised and examined.

e play_diffusions() runs multiple simulations of a compartment model for more robust in-
ference.

68

play

These functions allow both a full range of compartment models, as well as simplex and complex
diffusion to be simulated upon a network.

Usage

play_diffusion(
.data,
seeds = 1,

)

thresholds = 1,
transmissibility = 1,
latency = 0,

recovery = 0,

waning = 0,

immune = NULL,

steps
play_diffusions(

.data,

seeds = 1,

latency = 0,
recovery = 0,
waning = 0,
immune = NULL,
steps,
times = 5,
strategy = "sequential”,
verbose = FALSE
)
Arguments
.data An object of a manynet-consistent class:
* matrix (adjacency or incidence) from {base} R
* edgelist, a data frame from {base} R or tibble from {tibble}
e igraph, from the {igraph?} package
* network, from the {network} package
* tbl_graph, from the {tidygraph} package
seeds A valid mark vector the length of the number of nodes in the network.
thresholds

thresholds = 1,
transmissibility = 1,

A numeric vector indicating the thresholds each node has. By default 1. A single

number means a generic threshold; for thresholds that vary among the popula-
tion please use a vector the length of the number of nodes in the network. If
1 or larger, the threshold is interpreted as a simple count of the number of con-
tacts/exposures sufficient for infection. If less than 1, the threshold is interpreted

as complex, where the threshold concerns the proportion of contacts.

play

69

transmissibility

latency

recovery

waning

immune

steps

times

strategy

verbose

The transmission rate probability, 5. By default 1, which means any node for
which the threshold is met or exceeded will become infected. Anything lower
means a correspondingly lower probability of adoption, even when the threshold
is met or exceeded.

The inverse probability those who have been exposed become infectious (in-
fected), o or . For example, if exposed individuals take, on average, four days
to become infectious, then ¢ = 0.75 (1/1-0.75 = 1/0.25 = 4). By default 0,
which means those exposed become immediately infectious (i.e. an SI model).
Anything higher results in e.g. a SEI model.

The probability those who are infected recover, . For example, if infected
individuals take, on average, four days to recover, then v = 0.25. By default 0,
which means there is no recovery (i.e. an SI model). Anything higher results in
an SIR model.

The probability those who are recovered become susceptible again, ¢. For exam-
ple, if recovered individuals take, on average, four days to lose their immunity,
then £ = 0.25. By default 0, which means any recovered individuals retain
lifelong immunity (i.e. an SIR model). Anything higher results in e.g. a SIRS
model. £ = 1 would mean there is no period of immunity, e.g. an SIS model.

A logical or numeric vector identifying nodes that begin the diffusion process
as already recovered. This could be interpreted as those who are vaccinated or
equivalent. Note however that a waning parameter will affect these nodes too.
By default NULL, indicating that no nodes begin immune.

The number of steps forward in the diffusion to play. By default the number of
nodes in the network. If steps = Inf then the diffusion process will continue
until there are no new infections or all nodes are infected.

Integer indicating number of simulations. By default times=5, but 1,000 -
10,000 simulations recommended for publication-ready results.

If {furrr} is installed, then multiple cores can be used to accelerate the simu-
lations. By default "sequential”, but if multiple cores available, then "multises-
sion" or "multicore" may be useful. Generally this is useful only when times >
1000. See {furrr} for more.

Whether the function should report on its progress. By default FALSE. See
{progressr?} for more.

Simple and complex diffusion

By default, the function will simulate a simple diffusion process in which some infectious disease
or idea diffuses from seeds through contacts at some constant rate (transmissibility).

These seeds can be specified by a vector index (the number of the position of each node in the
network that should serve as a seed) or as a logical vector where TRUE is interpreted as already

infected.

thresholds can be set such that adoption/infection requires more than one (the default) contact
already being infected. This parameter also accepts a vector so that thresholds can vary.

Complex diffusion is where the thresholds are defined less than one. In this case, the thresh-
olds are interpreted as proportional. That is, the threshold to adoption/infection is defined by the
proportion of the node’s contacts infected.

70 properties

Nodes that cannot be infected can be indicated as immune with a logical vector or index, similar to
how seeds are identified. Note that immune nodes are interpreted internally as Recovered (R) and
are thus subject to waning (see below).

Compartment models

Compartment models are flexible models of diffusion or contagion, where nodes are compartmen-
talised into one of two or more categories.

The most basic model is the ST model. The SI model is the defaultin play_diffusion()/play_diffusions(),
where nodes can only move from the Susceptible (S) category to the Infected (I) category. Whether

nodes move from S to I depends on whether they are exposed to the infection, for instance through

a contact, the transmissibility of the disease, and their thresholds to the disease.

Another common model is the SIR model. Here nodes move from S to I, as above, but additionally
they can move from I to a Recovered (R) status. The probability that an infected node recovers at a
timepoint is controlled by the recovery parameter.

The next most common models are the SIS and SIRS models. Here nodes move from S to I or
additionally to R, as above, but additionally they can move from I or R back to a Susceptible (S)
state. This probability is governed by the waning parameter. Where recover > @ and waning =1,
the Recovery (R) state will be skipped and the node will return immediately to the Susceptible (S)
compartment.

Lastly, these functions also offer the possibility of specifying a latency period in which nodes have
been infected but are not yet infectious. Where latency > @, an additional Exposed (E) compart-
ment is introduced that governs the probability that a node moves from this E compartment to
infectiousness (I). This can be used in in SEI, SEIS, SEIR, and SEIRS models.

See Also

Other makes: create, generate, learning, read, write()

Other models: learning

Examples

smeg <- generate_smallworld(15, 0.025)
plot(play_diffusion(smeg, recovery = 0.4))
#autographr(play_diffusion(ison_karateka))
plot(play_diffusions(smeg, times = 10))

properties Describing network properties

Description

These functions extract certain attributes from given network data:

* network_nodes() returns the total number of nodes (of any mode) in a network.

¢ network_ties() returns the number of ties in a network.

properties 71

* network_dims() returns the dimensions of a network in a vector as long as the number of
modes in the network.

* network_node_attributes() returns a vector of nodal attributes in a network.

e network_tie_attributes() returns a vector of tie attributes in a network.

These functions are also often used as helpers within other functions.

Usage

network_nodes(.data)
network_ties(.data)
network_dims(.data)
network_node_attributes(.data)

network_tie_attributes(.data)

Arguments
.data An object of a manynet-consistent class:

* matrix (adjacency or incidence) from {base} R
* edgelist, a data frame from {base} R or tibble from {tibble}
e igraph, from the {igraph} package
* network, from the {network} package
* tbl_graph, from the {tidygraph} package

Value

network_x*() functions always relate to the overall graph or network, usually returning a scalar.
network_dims() returns an integer of the number of nodes in a one-mode network, or two in-
tegers representing the number of nodes in each nodeset in the case of a two-mode network.
network_x_attributes() returns a string vector with the names of all node or tie attributes in
the network.

See Also

Other mapping: attributes(), autographr(), autographs(), autographt(), configuration_layouts,
partition_layouts

Examples

network_nodes(ison_southern_women)
network_ties(ison_southern_women)
network_dims(ison_southern_women)
network_dims(to_mode1(ison_southern_women))
network_node_attributes(ison_lotr)
network_tie_attributes(ison_algebra)

72 read

read Making networks from external files

Description

Researchers regularly need to work with a variety of external data formats. The following functions
offer ways to import from some common external file formats into objects that {manynet} and other
graph/network packages in R can work with:

* read_matrix() imports adjacency matrices from Excel/csv files.

* read_edgelist() imports edgelists from Excel/csv files.

* read_nodelist() imports nodelists from Excel/csv files.

* read_pajek() imports Pajek (.net or .paj) files.

* read_ucinet() imports UCINET files from the header (.##h).

* read_dynetml () imports DyNetML interchange format for rich social network data.

e read_graphml () imports GraphML files.

Usage
read_matrix(file = file.choose(), sv = c("comma”, "semi-colon”), ...)
read_edgelist(file = file.choose(), sv = c("comma”, "semi-colon"), ...)
read_nodelist(file = file.choose(), sv = c("comma”, "semi-colon"), ...)

read_pajek(file = file.choose(), ties = NULL, ...)
read_ucinet(file = file.choose())
read_dynetml(file = file.choose())

read_graphml(file = file.choose())

Arguments
file A character string with the system path to the file to import. If left unspec-
ified, an OS-specific file picker is opened to help users select it. Note that
in read_ucinet() the file path should be to the header file (.##h), if it exists
and that it is currently not possible to import multiple networks from a single
UCINET file. Please convert these one by one.
sV Allows users to specify whether their csv file is "comma” (English) or "semi-colon”

(European) separated.
Additional parameters passed to the read/write function.

ties A character string indicating the ties/network, where the data contains several.

read 73

Details

Note that these functions are not as actively maintained as others in the package, so please let us
know if any are not currently working for you or if there are missing import routines by raising an
issue on Github.

There are a number of repositories for network data that hold various datasets in different formats.
See for example:

e UCINET data

* Pajek data

* networkdata

* GML datasets

* UClIrvine Network Data Repository

* KONECT project

* SNAP Stanford Large Network Dataset Collection
Please let us know if you identify any further repositories of social or political networks and we
would be happy to add them here.

The _ucinet functions only work with relatively recent UCINET file formats, e.g. type 6406 files.
To import earlier UCINET file types, you will need to update them first. To import multiple matrices
packed into a single UCINET file, you will need to unpack them and convert them one by one.

Value

read_edgelist() and read_nodelist() will import into edgelist (tibble) format which can then
be coerced or combined into different graph objects from there.

read_pajek() and read_ucinet () will import into a tidygraph format, since they already contain
both edge and attribute data. read_matrix() will import into tidygraph format too. Note that all
graphs can be easily coerced into other formats with {manynet}’s as_ methods.

Source

read_ucinet() kindly supplied by Christian Steglich, constructed on 18 June 2015.

See Also

as

Other makes: create, generate, learning, play, write()

https://github.com/stocnet/manynet/issues
https://github.com/stocnet/manynet/issues
https://sites.google.com/site/ucinetsoftware/datasets?authuser=0
http://vlado.fmf.uni-lj.si/pub/networks/data/
https://schochastics.github.io/networkdata/
http://www-personal.umich.edu/~mejn/netdata/
http://konect.cc/
http://snap.stanford.edu/data/

74

reformat

reformat Modifying network formats

Description

These functions reformat manynet-consistent data.

to_uniplex() reformats multiplex network data to a single type of tie.
to_undirected() reformats directed network data to an undirected network.
to_directed() reformats undirected network data to a directed network.

to_redirected() reformats the direction of directed network data, flipping any existing di-
rection.

to_reciprocated() reformats directed network data such that every directed tie is recipro-
cated.

to_acyclic() reformats network data to an acyclic graph.

to_unweighted() reformats weighted network data to unweighted network data.
to_unsigned() reformats signed network data to unsigned network data.
to_unnamed() reformats labelled network data to unlabelled network data.
to_named() reformats unlabelled network data to labelled network data.

to_simplex() reformats complex network data, containing loops, to simplex network data,
without any loops.

to_anti() reformats network data into its complement, where only ties not present in the
original network are included in the new network.

If the format condition is not met, for example to_undirected() is used on a network that is al-
ready undirected, the network data is returned unaltered. No warning is given so that these functions
can be used to ensure conformance.

Unlike the as_*() group of functions, these functions always return the same class as they are
given, only transforming these objects’ properties.

Usage

to_uniplex(.data, tie)

to_undirected(.data)

to_directed(.data)

to_redirected(.data)

to_reciprocated(.data)

to_acyclic(.data)

reformat

75

to_unweighted(.data, threshold = 1)

to_unsigned(.data, keep = c("positive”, "negative"))

to_unnamed(.data)

to_named(.data, names = NULL)

to_simplex(.data)

to_anti(.data)

to_unnamed
to_unsigned

Arguments
.data An object of a manynet-consistent class:
* matrix (adjacency or incidence) from {base} R
* edgelist, a data frame from {base} R or tibble from {tibble}
e igraph, from the {igraph} package
* network, from the {network} package
* tbl_graph, from the {tidygraph} package
tie Character string naming a tie attribute to retain from a graph.
threshold For a matrix, the threshold to binarise/dichotomise at.
keep In the case of a signed network, whether to retain the "positive" or "negative"
ties.
names Character vector of the node names. NULL by default.
Details
Not all functions have methods available for all object classes. Below are the currently implemented
S3 methods:
data.frame igraph matrix network tbl_graph
to_acyclic 1 1 1 1 1
to_directed 1 1 1 1 1
to_named 1 1 1 1 1
to_reciprocated 1 1 1 1 1
to_redirected 1 1 1 1 1
to_simplex 0 1 1 0 1
to_undirected 1 1 1 1 1
to_uniplex 1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

to_unweighted

76 scales

Value

All to_ functions return an object of the same class as that provided. So passing it an igraph object
will return an igraph object and passing it a network object will return a network object, with certain
modifications as outlined for each function.

Functions

* to_undirected(): Returns an object that has any edge direction removed, so that any pair
of nodes with at least one directed edge will be connected by an undirected edge in the new
network. This is equivalent to the "collapse" mode in {igraph}.

* to_redirected(): Returns an object that has any edge direction transposed, or flipped, so
that senders become receivers and receivers become senders. This essentially has no effect on
undirected networks or reciprocated ties.

* to_reciprocated(): Returns an object where all ties are reciprocated.
* to_unweighted(): Returns an object that has all edge weights removed.

* to_unsigned(): Returns a network with either just the "positive" ties or just the "negative"
ties

* to_unnamed(): Returns an object with all vertex names removed
* to_named(): Returns an object that has random vertex names added

e to_simplex(): Returns an object that has all loops or self-ties removed

See Also

Other modifications: add_nodes(), add_ties(), as(), from,miss, split(), to_levels, to_paths,
to_project, to_scope

Examples

as_tidygraph(create_filled(5)) %>%
mutate_ties(type = sample(c("friend”, "enemy"”), 10, replace = TRUE)) %>%
to_uniplex("friend”)

to_anti(ison_southern_women)

#autographr(to_anti(ison_southern_women))

scales Many scales

Description

These functions enable to add color scales to be graphs.

scales

Usage

scale_fill_iheid(direction = 1,
scale_colour_iheid(direction = 1,
scale_color_iheid(direction = 1,
scale_edge_colour_iheid(direction =
scale_edge_color_iheid(direction =
scale_fill_centres(direction = 1,
scale_colour_centres(direction = 1,
scale_color_centres(direction = 1,
scale_edge_colour_centres(direction
scale_edge_color_centres(direction
scale_fill_sdgs(direction =1, ...)
scale_colour_sdgs(direction = 1,
scale_color_sdgs(direction = 1,
scale_edge_colour_sdgs(direction =
scale_edge_color_sdgs(direction = 1
scale_fill_ethz(direction =1, ...)
scale_colour_ethz(direction = 1,
scale_color_ethz(direction = 1,
scale_edge_colour_ethz(direction =
scale_edge_color_ethz(direction = 1
scale_fill_uzh(direction =1, ...)
scale_colour_uzh(direction = 1,
scale_color_uzh(direction = 1, ...)

scale_edge_colour_uzh(direction = 1

)

1

1,

D)

1,

’

1,

’

’

’

1,

1)

77

78 split

scale_edge_color_uzh(direction = 1, ...)
scale_fill_rug(direction =1, ...)
scale_colour_rug(direction = 1, ...)
scale_color_rug(direction = 1, ...)
scale_edge_colour_rug(direction = 1, ...)
scale_edge_color_rug(direction = 1, ...)
Arguments
direction Direction for using palette colors.

Extra arguments passed to ggplot2: :discrete_scale().

Examples

#ison_brandes %>%

#mutate(core = migraph::node_is_core(ison_brandes)) %>%
#autographr(node_color = "core") +

#scale_color_iheid()

#autographr(ison_physicians[[1]], edge_color = "type") +
#scale_edge_color_ethz()

split Splitting networks into lists

Description

These functions offer tools for splitting manynet-consistent objects (matrices, igraph, tidygraph, or
network objects) into lists of networks.

Not all functions have methods available for all object classes. Below are the currently implemented
S3 methods:

data.frame diff_model igraph matrix network tbl_graph

to_components 1 0 1 1 1 1
to_egos 1 0 1 1 1 1
to_slices 0 0 1 0 0 1
to_subgraphs 0 0 1 0 1 1
to_waves 1 1 1 0 0 1

split 79
Usage

to_egos(.data, max_dist = 1, min_dist = @)

to_subgraphs(.data, attribute)

to_components(.data)

to_waves(.data, attribute = "wave”, panels = NULL, cumulative = FALSE)

to_slices(.data, attribute = "time"”, slice = NULL)

Arguments
.data An object of a manynet-consistent class:
* matrix (adjacency or incidence) from {base} R
* edgelist, a data frame from {base} R or tibble from {tibble}
e igraph, from the {igraph} package
* network, from the {network} package
* tbl_graph, from the {tidygraph} package
max_dist The maximum breadth of the neighbourhood. By default 1.
min_dist The minimum breadth of the neighbourhood. By default 0. Increasing this to 1
excludes the ego, and 2 excludes ego’s direct alters.
attribute One or two attributes used to slice data.
panels Would you like to select certain waves? NULL by default. That is, a list of
networks for every available wave is returned. Users can also list specific waves
they want to select.
cumulative Whether to make wave ties cumulative. FALSE by default. That is, each wave
is treated isolated.
slice Character string or character list indicating the date(s) or integer(s) range used
to slice data (e.g slice = c(1:2, 3:4)).
Value

The returned object will be a list of network objects.

Functions

* to_egos(): Returns a list of ego (or focal) networks.
* to_subgraphs(): Returns a list of subgraphs on some given node attribute.
* to_components(): Returns a list of the components in a network.

¢ to_waves(): Returns a network with some discrete observations over time into a list of those
observations.

e to_slices(): Returns a list of a network with some continuous time variable at some time
slice(s).

80 themes

See Also

Other modifications: add_nodes(), add_ties(), as(), from, miss, reformat, to_levels, to_paths,
to_project, to_scope

Examples

to_egos(ison_adolescents)
#autographs(to_egos(ison_adolescents,2))
ison_adolescents %>%

mutate(unicorn = sample(c("yes”, "no"), 8,
replace = TRUE)) %>%
to_subgraphs(attribute = "unicorn”)

to_components(ison_marvel_relationships)

ison_adolescents %>%
mutate_ties(wave = sample(1995:1998, 10, replace = TRUE)) %>%
to_waves(attribute = "wave")

ison_adolescents %>%
mutate_ties(time = 1:10, increment = 1) %>%
add_ties(c(1,2), list(time = 3, increment = -1)) %>%
to_slices(slice = 7)

themes Many themes

Description

These functions enable graphs to be easily and quickly themed, e.g. changing the default colour of
the graph’s vertices and edges.

Usage
theme_iheid(base_size = 12, base_family = "serif")
theme_ethz(base_size = 12, base_family = "sans")
theme_uzh(base_size = 12, base_family = "sans")
theme_rug(base_size = 12, base_family = "mono")
Arguments
base_size Font size, by default 12.

base_family Font family, by default "sans".

to_levels 81

Examples

to_mentoring(ison_brandes) %>%
mutate(color = c(rep(c(1,2,3), 3), 3)) %%
autographr(node_color = "color”) +
labs(title = "Who leads and who follows?") +
scale_color_iheid() +
theme_iheid()

to_levels Modifying network levels

Description
These functions reformat the levels in manynet-consistent network data.

* to_onemode() reformats two-mode network data into one-mode network data by simply re-
moving the nodeset 'type’ information. Note that this is not the same as to_mode1() or
to_mode2().

* to_twomode () reformats one-mode network data into two-mode network data, using a mark
to distinguish the two sets of nodes.

e to_multilevel() reformats two-mode network data into multimodal network data, which
allows for more levels and ties within modes.

If the format condition is not met, for example to_onemode () is used on a network that is already
one-mode, the network data is returned unaltered. No warning is given so that these functions can
be used to ensure conformance.

Unlike the as_*() group of functions, these functions always return the same class as they are
given, only transforming these objects’ properties.

Usage

to_onemode(.data)
to_twomode(.data, mark)

to_multilevel(.data)

Arguments

.data An object of a manynet-consistent class:
* matrix (adjacency or incidence) from {base} R
* edgelist, a data frame from {base} R or tibble from {tibble}
e igraph, from the {igraph} package
* network, from the {network} package
* tbl_graph, from the {tidygraph} package

mark A logical vector marking two types or modes. By default "type".

82 to_paths

Details

Not all functions have methods available for all object classes. Below are the currently implemented
S3 methods:

igraph matrix network tbl_graph

to_multilevel 1 1 0 1
to_onemode 1 1 0 1
to_twomode 1 0 1 1

Value

All to_ functions return an object of the same class as that provided. So passing it an igraph object
will return an igraph object and passing it a network object will return a network object, with certain
modifications as outlined for each function.

See Also

Other modifications: add_nodes (), add_ties(), as(), from, miss, reformat, split(), to_paths,
to_project, to_scope

to_paths Modifying networks paths

Description

These functions return tidygraphs containing only special sets of ties:

* to_matching() returns only the matching ties in some network data.
* to_mentoring() returns only ties to nodes’ closest mentors.
* to_eulerian() returns only the Eulerian path within some network data.

* to_tree() returns the spanning tree in some network data or, if the data is unconnected, a
forest of spanning trees.

Usage
to_matching(.data, mark = "type")
to_mentoring(.data, elites = 0.1)
to_eulerian(.data)

to_tree(.data)

to_paths 83

Arguments

.data An object of a manynet-consistent class:

* matrix (adjacency or incidence) from {base} R
* edgelist, a data frame from {base} R or tibble from {tibble}
e igraph, from the {igraph} package
* network, from the {network} package
* tbl_graph, from the {tidygraph} package
mark A logical vector marking two types or modes. By default "type".
elites The proportion of nodes to be selected as mentors. By default this is set at 0.1.
This means that the top 10% of nodes in terms of degree, or those equal to the

highest rank degree in the network, whichever is the higher, will be used to select
the mentors.

Note that if nodes are equidistant from two mentors, they will choose one at
random. If a node is without a path to a mentor, for example because they are
an isolate, a tie to themselves (a loop) will be created instead. Note that this is a
different default behaviour than that described in Valente and Davis (1999).

Details

Not all functions have methods available for all object classes. Below are the currently implemented
S3 methods:

data.frame igraph matrix network tbl_graph

to_eulerian 0 1 0 0 1
to_matching 1 1 1 1 1
to_mentoring 0 1 0 0 1

Value

All to_ functions return an object of the same class as that provided. So passing it an igraph object
will return an igraph object and passing it a network object will return a network object, with certain
modifications as outlined for each function.

to_matching()

to_matching() uses {igraph}’s max_bipartite_match() to return a network in which each node
is only tied to one of its previous ties. The number of these ties left is its cardinality, and the
algorithm seeks to maximise this such that, where possible, each node will be associated with just
one node in the other mode or some other mark. The algorithm used is the push-relabel algorithm
with greedy initialization and a global relabelling after every 5 steps, where n is the number of
nodes in the network.

References

Goldberg, A V; Tarjan, R E (1986). "A new approach to the maximum flow problem". Proceed-
ings of the eighteenth annual ACM symposium on Theory of computing — STOC ’86. p. 136.

84 to_project

doi:10.1145/12130.12144

Valente, Thomas, and Rebecca Davis. 1999. "Accelerating the Diffusion of Innovations Using
Opinion Leaders", Annals of the American Academy of Political and Social Science 566: 56-67.

See Also

Other modifications: add_nodes(), add_ties(), as(), from,miss, reformat, split(), to_levels,
to_project, to_scope

Examples

to_matching(ison_southern_women)

#autographr (to_matching(ison_southern_women))

autographr(to_mentoring(ison_adolescents))
to_eulerian(delete_nodes(ison_koenigsberg, "Lomse"))
#autographr(to_eulerian(delete_nodes(ison_koenigsberg, "Lomse")))

to_project Modifying networks projection

Description

These functions offer tools for projecting manynet-consistent data:
* to_model() projects a two-mode network to a one-mode network of the first node set’s (e.g.
rows) joint affiliations to nodes in the second node set (columns).

* to_mode2() projects a two-mode network to a one-mode network of the second node set’s
(e.g. columns) joint affiliations to nodes in the first node set (rows).

* to_ties() projects a network to one where the ties become nodes and incident nodes become
their ties.

* to_galois() projects a network to its Galois derivation.

Usage
to_model(.data, similarity = c("count”, "jaccard”, "rand”, "pearson”, "yule"))
to_mode2(.data, similarity = c("count”, "jaccard”, "rand”, "pearson”, "yule"))

to_ties(.data)

to_galois(.data)

https://doi.org/10.1145/12130.12144

to_project 85

Arguments

.data An object of a manynet-consistent class:

* matrix (adjacency or incidence) from {base} R

* edgelist, a data frame from {base} R or tibble from {tibble}

e igraph, from the {igraph} package

* network, from the {network} package

* tbl_graph, from the {tidygraph} package

similarity Method for establishing ties, currently "count” (default), "jaccard", or "rand".

"count" calculates the number of coinciding ties, and can be interpreted as indi-
cating the degree of opportunities between nodes. "jaccard" uses this count as
the numerator in a proportion, where the denominator consists of any cell where
either node has a tie. It can be interpreted as opportunity weighted by partici-
pation. "rand", or the Simple Matching Coefficient, is a proportion where the
numerator consists of the count of cells where both nodes are present or both are
absent, over all possible cells. It can be interpreted as the (weighted) degree of
behavioral mirroring between two nodes. "pearson” (Pearson’s coefficient) and
"yule" (Yule’s Q) produce correlations for valued and binary data, respectively.
Note that Yule’s Q has a straightforward interpretation related to the odds ratio.

Details

Not all functions have methods available for all object classes. Below are the currently implemented
S3 methods:

data.frame igraph matrix network tbl_graph

to_model 1 1 1 1 1
to_mode2 1 1 1 1 1
to_ties 1 1 1 1 1

Value

All to_ functions return an object of the same class as that provided. So passing it an igraph object
will return an igraph object and passing it a network object will return a network object, with certain
modifications as outlined for each function.

Galois lattices

Note that the output from to_galois() is very busy at the moment.

See Also

Other modifications: add_nodes(), add_ties(), as(), from,miss, reformat, split(), to_levels,
to_paths, to_scope

Examples

to_model (ison_southern_women)

86 to_scope

to_mode2(ison_southern_women)
#autographr(to_mode1 (ison_southern_women))
#autographr(to_mode2(ison_southern_women))
to_ties(ison_adolescents)
#autographr(to_ties(ison_adolescents))

to_scope Modifying networks scope

Description

These functions offer tools for transforming manynet-consistent objects (matrices, igraph, tidy-
graph, or network objects). Transforming means that the returned object may have different dimen-
sions than the original object.

* to_giant() scopes a network into one including only the main component and no smaller
components or isolates.
* to_no_isolates() scopes a network into one excluding all nodes without ties

* to_subgraph() scopes a network into a subgraph by filtering on some node-related logical
statement.

* to_blocks() reduces a network to ties between a given partition membership vector.

Usage

to_giant(.data)
to_no_isolates(.data)
to_subgraph(.data, ...)

to_blocks(.data, membership, FUN = mean)

Arguments

.data An object of a manynet-consistent class:

* matrix (adjacency or incidence) from {base} R
* edgelist, a data frame from {base} R or tibble from {tibble}
e igraph, from the {igraph} package
* network, from the {network} package
e tbl_graph, from the {tidygraph} package
Arguments passed on to dplyr::filter

membership A vector of partition memberships.

FUN A function for summarising block content. By default mean. Other recom-
mended options include median, sum, min or max.

tutorials 87

Details

Not all functions have methods available for all object classes. Below are the currently implemented
S3 methods:

data.frame igraph list matrix network tbl_graph

to_blocks 1 1 0 1 1 1
to_giant 1 1 0 1 1 1
to_no_isolates 1 1 1 1 1 1
to_subgraph 1 1 0 1 1 1

Value

All to_ functions return an object of the same class as that provided. So passing it an igraph object
will return an igraph object and passing it a network object will return a network object, with certain
modifications as outlined for each function.

to_blocks()

Reduced graphs provide summary representations of network structures by collapsing groups of
connected nodes into single nodes while preserving the topology of the original structures.

See Also

Other modifications: add_nodes(), add_ties(), as(), from,miss, reformat, split(), to_levels,
to_paths, to_project

Examples

ison_adolescents %>%
mutate_ties(wave = sample(1995:1998, 10, replace = TRUE)) %>%

to_waves(attribute = "wave") %>%
to_no_isolates()

tutorials Open and extract code from tutorials

Description
These functions make it easy to use the tutorials in the {manynet} and {migraph} packages:
* run_tute() runs a {learnr} tutorial from either the {manynet} or {migraph} packages,
wraps learnr: :run_tutorial() with some convenience.

* extract_tute() extracts and opens just the solution code from a {manynet} or {migraph}
tutorial, saving the .R script to the current working directory.

* pkg_data() returns a tibble with details of the network datasets included in the packages.

88 write
Usage

run_tute(tute)

extract_tute(tute)

pkg_data(pkg = "manynet")

Arguments
tute String, name of the tutorial (e.g. "tutorial2").
pkg String, name of the package.

Examples

#run_tute("tutorial2”)
#extract_tute("tutorial2")
#pkg_data()
to obtain overview of unique datasets:
#pkg_data() %>%
#dplyr::distinct(directed, weighted, twomode, signed,

.keep_all = TRUE)
write Making networks to external files
Description

Researchers may want to save or work with networks outside R. The following functions offer ways
to export to some common external file formats:

e write_matrix() exports an adjacency matrix to a .csv file.

* write_edgelist() exports an edgelist to a .csv file.

* write_nodelist() exports a nodelist to a .csv file.

* write_pajek() exports Pajek .net files.

* write_ucinet() exports a pair of UCINET files in V6404 file format (.##h, .##d).

* write_graphml() exports GraphML files.

Usage
write_matrix(.data, filename, ...)
write_edgelist(.data, filename, ...)
write_nodelist(.data, filename, ...)

write_pajek(.data, filename, ...)

write 89

write_ucinet(.data, filename, name)

write_graphml(.data, filename, ...)
Arguments
.data An object of a manynet-consistent class:

* matrix (adjacency or incidence) from {base} R

* edgelist, a data frame from {base} R or tibble from {tibble}
e igraph, from the {igraph} package

* network, from the {network} package

* tbl_graph, from the {tidygraph} package

filename Character string filename. If missing, the files will have the same name as the
object and be saved to the working directory. An appropriate extension will be
added if not included.

Additional parameters passed to the write function.

name Character string to name the network internally, e.g. in UCINET. By default the
name will be the same as the object.
Details

Note that these functions are not as actively maintained as others in the package, so please let us
know if any are not currently working for you or if there are missing import routines by raising an
issue on Github.

Value

The write_functions export to different file formats, depending on the function.
A pair of UCINET files in V6404 file format (.##h, .##d)

Source

write_ucinet() kindly supplied by Christian Steglich, constructed on 18 June 2015.

See Also

as

Other makes: create, generate, learning, play, read

https://github.com/stocnet/manynet/issues
https://github.com/stocnet/manynet/issues

Index

* datasets is_format, 55
ison_adolescents, 26 * marks
ison_algebra, 27 mark_diff, 59
ison_brandes, 28 mark_nodes, 60
ison_friends, 28 mark_select, 61
ison_hightech, 29 mark_tie_select, 63
ison_karateka, 30 mark_ties, 62
ison_koenigsberg, 31 * models
ison_laterals, 33 learning, 57
ison_lawfirm, 35 play, 67
ison_lotr, 36 * modifications
ison_marvel, 37 add_nodes, 3
ison_monastery, 39 add_ties, 5
ison_networkers, 42 as, 7
ison_physicians, 43 ﬂ.’om, 21
ison_potter, 46 miss, 64
ison_southern_women, 49 ref(?rmat, 74
ison_starwars, 50 split, 78
ison_usstates, 54 to_levels, 81
« diffusion to_paths, 82
to_project, 84
play, 67
to_scope, 86
+ makes
create, 17 add_node_attribute (add_nodes), 3
generate, 22 add_nodes, 3, 6, 9, 22, 65, 76, 80, 82, 84, 85,
learning, 57 87
play, 67 add_tie_attribute (add_ties), 5
read, 72 add_ties, 5,5, 9, 22, 65, 76, 80, 82, 84, 85, 87
write, 88 as, 5, 6,7, 19,22, 65,73, 76, 80, 82, 84, 85,
* mapping 87,89
attributes, 9 as_diffusion (as), 7
autographr, 10 as_edgelist (as), 7
autographs, 13 as_graphAM (as), 7
autographt, 14 as_igraph (as), 7
configuration_layouts, 16 as_matrix (as), 7
partition_layouts, 65 as_network (as), 7
properties, 70 as_siena (as), 7
+ marking as_tidygraph (as), 7
features, 19 attributes, 9, 12, 13,16, 17,67,71
is, 25 autographd (autographt), 14

90

INDEX

autographr, 10, 10, 13, 16, 17,67, 71
autographs, 10, 12,13, 16, 17,67, 71
autographt, 10, 12, 13,14, 17,67,71

bind_node_attributes (add_nodes), 3
bind_ties (add_ties), 5

configuration_layouts, 10, 12, 13, 16, 16,
67,71
create, 17, 24, 58, 70, 73, 89
create_components (create), 17
create_core (create), 17
create_empty (create), 17
create_explicit (create), 17
create_filled (create), 17
create_lattice (create), 17
create_ring (create), 17
create_star (create), 17
create_tree (create), 17

delete_nodes (add_nodes), 3
delete_ties (add_ties), 5

extract_tute (tutorials), 87

features, 19, 26, 56

filter_nodes (add_nodes), 3
filter_ties (add_ties), 5

from, 5, 6, 9, 21, 65, 76, 80, 82, 84, 85, 87
from_egos (from), 21

from_slices (from), 21

from_subgraphs (from), 21

from_ties (from), 21

from_waves (from), 21

generate, 19,22, 58, 70, 73, 89
generate_permutation (generate), 22
generate_random (generate), 22
generate_scalefree (generate), 22
generate_smallworld (generate), 22
generate_utilities (generate), 22
graphr (autographr), 10

graphs (autographs), 13

grapht (autographt), 14

igraph::graph_from_literal(), 19
is, 21,25, 56

is_acyclic (features), 19
is_aperiodic (features), 19
is_complex (is_format), 55

91

is_connected (features), 19
is_directed (is_format), 55
is_dynamic (is), 25
is_edgelist (is), 25
is_eulerian (features), 19
is_format, 21, 26, 55
is_graph (is), 25
is_labelled (is_format), 55
is_list(is), 25
is_longitudinal (is), 25
is_manynet (is), 25
is_multiplex (is_format), 55
is_perfect_matching (features), 19
is_signed (is_format), 55
is_twomode (is_format), 55
is_uniplex (is_format), 55
is_weighted (is_format), 55
ison_adolescents, 26
ison_algebra, 27
ison_brandes, 28
ison_friends, 28
ison_hightech, 29
ison_karateka, 30
ison_koenigsberg, 31
ison_laterals, 33
ison_lawfirm, 35
ison_lotr, 36
ison_marvel, 37
ison_marvel_relationships
(ison_marvel), 37
ison_marvel_teams (ison_marvel), 37
ison_monastery, 39
ison_monastery_esteem (ison_monastery),
39
ison_monastery_influence
(ison_monastery), 39
ison_monastery_like (ison_monastery), 39
ison_monastery_praise (ison_monastery),
39
ison_networkers, 42
ison_physicians, 43
ison_potter, 46
ison_southern_women, 49
ison_starwars, 50
ison_usstates, 54

join_nodes (add_nodes), 3
join_ties (add_ties), 5

92

layout_tbl_graph_alluvial
(partition_layouts), 65
layout_tbl_graph_concentric
(partition_layouts), 65
layout_tbl_graph_configuration
(configuration_layouts), 16
layout_tbl_graph_hierarchy
(partition_layouts), 65
layout_tbl_graph_ladder
(partition_layouts), 65
layout_tbl_graph_lineage
(partition_layouts), 65
layout_tbl_graph_multilevel
(partition_layouts), 65
layout_tbl_graph_quad
(configuration_layouts), 16
layout_tbl_graph_railway
(partition_layouts), 65
layout_tbl_graph_triad
(configuration_layouts), 16
learning, 19, 24,57, 70, 73, 89

many_palettes, 58
mark_diff, 59, 61-64
mark_nodes, 60, 60, 62—64
mark_select, 60, 61, 61, 63, 64
mark_tie_select, 60-63, 63
mark_ties, 60-62, 62, 64

miss, 5, 6, 9, 22, 64, 76, 80, 82, 84, 85, 87
mutate (add_nodes), 3

mutate_nodes (add_nodes), 3
mutate_ties (add_ties), 5

na_to_mean (miss), 64

na_to_zero (miss), 64

network_dims (properties), 70
network_node_attributes (properties), 70
network_nodes (properties), 70
network_tie_attributes (properties), 70
network_ties (properties), 70
node_attribute (attributes), 9
node_is_core (mark_nodes), 60
node_is_cutpoint (mark_nodes), 60
node_is_exposed (mark_diff), 59
node_is_fold (mark_nodes), 60
node_is_infected (mark_diff), 59
node_is_isolate (mark_nodes), 60
node_is_latent (mark_diff), 59
node_is_max (mark_select), 61

INDEX

node_is_mentor (mark_nodes), 60
node_is_min (mark_select), 61
node_is_random (mark_select), 61
node_is_recovered (mark_diff), 59
node_mode (attributes), 9
node_names (attributes), 9

partition_layouts, 10, 12, 13, 16, 17,65, 71
pkg_data (tutorials), 87

play, 19, 24, 58, 67, 73, 89

play_diffusion (play), 67
play_diffusions (play), 67

play_learning (learning), 57
play_segregation (learning), 57
properties, 10, 12, 13, 16, 17, 67,70

read, 19, 24, 58, 70, 72, 89
read_dynetml (read), 72
read_edgelist (read), 72
read_graphml (read), 72
read_matrix (read), 72
read_nodelist (read), 72
read_pajek (read), 72
read_ucinet (read), 72
reformat, 5, 6, 9, 22, 65, 74, 80, 82, 84, 85, 87
rename (add_nodes), 3
rename_nodes (add_nodes), 3
rename_ties (add_ties), 5
run_tute (tutorials), 87

scale_color_centres (scales), 76
scale_color_ethz (scales), 76
scale_color_iheid (scales), 76
scale_color_rug (scales), 76
scale_color_sdgs (scales), 76
scale_color_uzh (scales), 76
scale_colour_centres (scales), 76
scale_colour_ethz (scales), 76
scale_colour_iheid (scales), 76
scale_colour_rug (scales), 76
scale_colour_sdgs (scales), 76
scale_colour_uzh (scales), 76
scale_edge_color_centres (scales), 76
scale_edge_color_ethz (scales), 76
scale_edge_color_iheid (scales), 76
scale_edge_color_rug (scales), 76
scale_edge_color_sdgs (scales), 76
scale_edge_color_uzh (scales), 76
scale_edge_colour_centres (scales), 76

INDEX

scale_edge_colour_ethz (scales), 76
scale_edge_colour_iheid (scales), 76
scale_edge_colour_rug (scales), 76
scale_edge_colour_sdgs (scales), 76
scale_edge_colour_uzh (scales), 76
scale_fill_centres (scales), 76
scale_fill_ethz (scales), 76
scale_fill_iheid (scales), 76
scale_fill_rug (scales), 76
scale_fill_sdgs (scales), 76
scale_fill_uzh (scales), 76

scales, 76

select_ties (add_ties), 5

split, 5, 6,9, 22, 65, 76,78, 82, 84, 85, 87
summarise_ties (add_ties), 5

theme_ethz (themes), 80
theme_iheid (themes), 80
theme_rug (themes), 80
theme_uzh (themes), 80
themes, 80
tie_attribute (attributes), 9
tie_is_bridge (mark_ties), 62
tie_is_feedback (mark_ties), 62
tie_is_loop (mark_ties), 62
tie_is_max (mark_tie_select), 63
tie_is_min (mark_tie_select), 63
tie_is_multiple (mark_ties), 62
tie_is_random (mark_tie_select), 63
tie_is_reciprocated (mark_ties), 62
tie_signs (attributes), 9
tie_weights (attributes), 9
to_acyclic (reformat), 74
to_anti (reformat), 74
to_blocks (to_scope), 86
to_components (split), 78
to_directed (reformat), 74
to_egos (split), 78
to_eulerian (to_paths), 82
to_galois (to_project), 84
to_giant (to_scope), 86
to_levels, 5, 6, 9, 22, 65, 76, 80, 81, 84, 85,
87
to_matching (to_paths), 82
to_mentoring (to_paths), 82
to_mode1 (to_project), 84
to_mode2 (to_project), 84
to_multilevel (to_levels), 81
to_named (reformat), 74

93

to_no_isolates (to_scope), 86

to_onemode (to_levels), 81

to_paths, 5, 6, 9, 22, 65, 76, 80, 82, 82, 85, 87

to_project, 5, 6, 9, 22, 65, 76, 80, 82, 84, 84,
87

to_reciprocated (reformat), 74

to_redirected (reformat), 74

to_scope, 5, 6, 9, 22, 65, 76, 80, 82, 84, 85, 86

to_simplex (reformat), 74

to_slices (split), 78

to_subgraph (to_scope), 86

to_subgraphs (split), 78

to_ties (to_project), 84

to_tree (to_paths), 82

to_twomode (to_levels), 81

to_undirected (reformat), 74

to_uniplex (reformat), 74

to_unnamed (reformat), 74

to_unsigned (reformat), 74

to_unweighted (reformat), 74

to_waves (split), 78

tutorials, 87

write, 19, 24,58, 70, 73, 88
write_edgelist (write), 88
write_graphml (write), 88
write_matrix (write), 88
write_nodelist (write), 88
write_pajek (write), 88
write_ucinet (write), 88

	add_nodes
	add_ties
	as
	attributes
	autographr
	autographs
	autographt
	configuration_layouts
	create
	features
	from
	generate
	is
	ison_adolescents
	ison_algebra
	ison_brandes
	ison_friends
	ison_hightech
	ison_karateka
	ison_koenigsberg
	ison_laterals
	ison_lawfirm
	ison_lotr
	ison_marvel
	ison_monastery
	ison_networkers
	ison_physicians
	ison_potter
	ison_southern_women
	ison_starwars
	ison_usstates
	is_format
	learning
	many_palettes
	mark_diff
	mark_nodes
	mark_select
	mark_ties
	mark_tie_select
	miss
	partition_layouts
	play
	properties
	read
	reformat
	scales
	split
	themes
	to_levels
	to_paths
	to_project
	to_scope
	tutorials
	write
	Index

