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animals Small example data set for self-organized artificial neural networks

Description

A small dataset describing 10 animals represented by 6 features that are either present (1) or absent
(0) for demonstrating self-organized learning in artificial neural networks.

Usage

animals

Format

A data frame with 10 rows and 6 variables describing 10 different animals with 6 feature vectors
that are either present (1) or absent (0).

Source

Knight, K. (1990). Connectionist ideas and algorithms. Communications of the ACM, 33(11),
59–74.

layer Leabra layer class

Description

This class simulates a biologically realistic layer of neurons in the Leabra framework. It consists of
several unit objects in the variable (field) units and some layer-specific variables.

Usage

layer

Format

R6Class object
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Value

Object of R6Class with methods for calculating changes of activation in a layer of neurons.

Fields

units A list with all unit objects of the layer.

avg_act The average activation of all units in the layer (this is an active binding).

n Number of units in layer.

weights A receiving x sending weight matrix, where the receiving units (rows) has the current
weight values for the sending units (columns). The weights will be set by the network object,
because they depend on the connection to other layers.

ce_weights Sigmoidal contrast-enhanced version of the weight matrix weights. These weights
will be set by the network object.

layer_number Layer number in network (this is 1 if you create a layer on your own, without the
network class).

Methods

new(dim, g_i_gain = 2) Creates an object of this class with default parameters.

dim A pair of numbers giving the dimensions (rows and columns) of the layer.
g_i_gain Gain factor for inhibitory conductance, if you want less activation in a layer, set

this higher.

get_unit_acts() Returns a vector with the activations of all units of a layer.

get_unit_scaled_acts() Returns a vector with the scaled activations of all units of a layer. Scal-
ing is done with recip_avg_act_n, a reciprocal function of the number of active units.

cycle(intern_input, ext_input) Iterates one time step with layer object.

intern_input Vector with inputs from all other layers. Each input has already been scaled
by a reciprocal function of the number of active units (recip_avg_act_n) of the sending
layer and by the connection strength between the receiving and sending layer. The weight
matrix ce_weights is multiplied with this input vector to get the excitatory conductance
for each unit in the layer.

ext_input Vector with inputs not coming from another layer, with length equal to the number
of units in this layer. If empty (NULL), no external inputs are processed. If the external
inputs are not clamped, this is actually an excitatory conductance value, which is added
to the conductance produced by the internal input and weight matrix.

clamp_cycle(activations) Iterates one time step with layer object with clamped activations,
meaning that activations are instantaneously set without time integration.

activations Activations you want to clamp to the units in the layer.

get_unit_act_avgs() Returns a list with the short, medium and long term activation averages of
all units in the layer as vectors. The super short term average is not returned, and the long term
average is not updated before being returned (this is done in the function chg_wt() with the
methodupdt_unit_avg_l). These averages are used by the network class to calculate weight
changes.
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updt_unit_avg_l() Updates the long-term average (avg_l) of all units in the layer, usually done
after a plus phase.

updt_recip_avg_act_n() Updates the avg_act_inert and recip_avg_act_n variables, these
variables update before the weights are changed instead of cycle by cycle. This version of the
function assumes full connectivity between layers.

reset(random = FALSE) Sets the activation and activation averages of all units to 0. Used to begin
trials from a stationary point.

random Logical variable, if TRUE the activations are set randomly between .05 and .95 for
every unit instead of 0.

set_ce_weights() Sets contrast enhanced weight values.

get_unit_vars(show_dynamics = TRUE, show_constants = FALSE) Returns a data frame with
the current state of all unit variables in the layer. Every row is a unit. You can choose whether
you want dynamic values and / or constant values. This might be useful if you want to analyze
what happens in units of a layer, which would otherwise not be possible, because most of the
variables (fields) are private in the unit class.

show_dynamics Should dynamic values be shown? Default is TRUE.
show_constants Should constant values be shown? Default is FALSE.

get_layer_vars(show_dynamics = TRUE, show_constants = FALSE) Returns a data frame with
1 row with the current state of the variables in the layer. You can choose whether you want
dynamic values and / or constant values. This might be useful if you want to analyze what
happens in a layer, which would otherwise not be possible, because some of the variables
(fields) are private in the layer class.

show_dynamics Should dynamic values be shown? Default is TRUE.
show_constants Should constant values be shown? Default is FALSE.

References

O’Reilly, R. C., Munakata, Y., Frank, M. J., Hazy, T. E., and Contributors (2016). Computational
Cognitive Neuroscience. Wiki Book, 3rd (partial) Edition. URL: http://ccnbook.colorado.edu

Have also a look at https://grey.colorado.edu/emergent/index.php/Leabra (especially the
link to the ’MATLAB’ code) and https://en.wikipedia.org/wiki/Leabra

Examples

l <- layer$new(c(5, 5)) # create a 5 x 5 layer with default leabra values

l$g_e_avg # private values cannot be accessed
# if you want to see alle variables, you need to use the function
l$get_layer_vars(show_dynamics = TRUE, show_constants = TRUE)
# if you want to see a summary of all units without constant values
l$get_unit_vars(show_dynamics = TRUE, show_constants = FALSE)

# let us clamp the activation of the 25 units to some random values between
# 0.05 and 0.95
l <- layer$new(c(5, 5))
activations <- runif(25, 0.05, .95)
l$avg_act

http://ccnbook.colorado.edu
https://grey.colorado.edu/emergent/index.php/Leabra
https://en.wikipedia.org/wiki/Leabra
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l$clamp_cycle(activations)
l$avg_act
# what happened to the unit activations?
l$get_unit_acts()
# compare with activations
activations
# scaled activations are scaled by the average activation of the layer and
# should be smaller
l$get_unit_scaled_acts()

leabRa leabRa: A package for biologically realistic neural networks based on
Leabra

Description

The Leabra package provides three classes to construct artificial neural networks: unit, layer and
network.

Details

Note that the classes in this package are R6Class classes.

For further information check out the vignette with vignette("leabRa").

network Leabra network class

Description

Class to simulate a biologically realistic network of neurons (units) organized in layers

Usage

network

Format

R6Class object.

Details

This class simulates a biologically realistic artificial neuronal network in the Leabra framework
(e.g. O’Reilly et al., 2016). It consists of several layer objects in the variable (field) layers and
some network-specific variables.



6 network

Value

Object of R6Class with methods for calculating changes of activation in a network of neurons
organized in layers.

Fields

layers A list of layer objects.

lrate Learning rate, gain factor for how much the connection weights should change when the
method chg_wt() is called.

Methods

new(dim_lays, cxn, g_i_gain = rep(2, length(dim_lays)), w_init_fun = function(x) runif(x, 0.3, 0.7), w_init = NULL)
Creates an object of this class with default parameters.

dim_lays List of number pairs for rows and columns of the layers, e.g. list(c(5, 5),
c(10, 10), c(5, 5)) for a 25 x 100 x 25 network.

cxn Matrix specifying connection strength between layers, if layer j sends projections to layer
i, then cxn[i, j] = strength > 0 and 0 otherwise. Strength specifies the relative strength
of that connection with respect to the other projections to layer i.

g_i_gain Vector of inhibitory conductance gain values for every layer. This comes in handy
to control overall level of inhibition of specific layers. Default is 2 for every layer.

w_init_fun Function that specifies how random weights should be created, default value is
to generate weights between 0.3 and 0.7 from a uniform distribution. It is close to 0.5
because the weights are contrast enhanced internally, so will actually be in a wider range.

w_init Matrix of initial weight matrices (like a cell array in ’MATLAB’), this is analogous
to cxn, i.e. w_init[i, j] contains the initial weight matrix for the connection from layer
j to i. If you specify a w_init, w_init_fun is ignored. You can use this if you want to
have full control over the weight matrix.

cycle(ext_inputs, clamp_inp) Iterates one time step with the network object with external in-
puts.

ext_inputs A list of matrices; ext_inputs[[i]] is a matrix that for layer i specifies the external
input to each of its units. An empty matrix (NULL) denotes no input to that layer. You can
also use a vector instead of a matrix, because the matrix is vectorized anyway.

clamp_inp Logical variable; TRUE: external inputs are clamped to the activities of the units
in the layers, FALSE: external inputs are summed to excitatory conductance values (note:
not to the activation) of the units in the layers.

chg_wt() Changes the weights of the entire network with the XCAL learning equation.

reset(random = F) Sets the activation of all units in all layers to 0, and sets all activation time
averages to that value. Used to begin trials from a random stationary point. The activation
values may also be set to a random value.

random Logical variable, if TRUE set activation randomly between .05 and .95, if FALSE set
activation to 0, which is the default.

create_inputs(which_layers, n_inputs, prop_active = 0.3) Returns a list of length n_inputs
with random input patterns (either 0.05, or. 0.95) for the layers specified in which_layers.
All other layers will have an input of NULL.
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which_layers Vector of layer numbers, for which you want to create random inputs.
n_inputs Single numeric value, how many inputs should be created.
prop_active Average proportion of active units in the input patterns, default is 0.3.

learn_error_driven(inputs_minus, inputs_plus, lrate = 0.1, n_cycles_minus = 50, n_cycles_plus = 25, random_order = FALSE, show_progress = TRUE)
Learns to associate specific inputs with specific outputs in an error-driven fashion.

inputs_minus Inputs for the minus phase (the to be learned output is not presented).
inputs_plus Inputs for the plus phase (the to be learned output is presented).
lrate Learning rate, default is 0.1.
n_cycles_minus How many cycles to run in the minus phase, default is 50.
n_cycles_plus How many cycles to run in the plus phase, default is 25.
random_order Should the order of stimulus presentation be randomized? Default is FALSE.
show_progress Whether progress of learning should be shown. Default is TRUE.

learn_self_organized(inputs, lrate = 0.1, n_cycles = 50, random_order = FALSE, show_progress = TRUE)
Learns to categorize inputs in a self-organized fashion.
inputs Inputs for cycling.
lrate Learning rate, default is 0.1.
n_cycles How many cycles to run, default is 50.
random_order Should the order of stimulus presentation be randomized? Default is FALSE.
show_progress Whether progress of learning should be shown. Default is TRUE.

test_inputs = function(inputs, n_cycles = 50, show_progress = FALSE) Tests inputs with-
out changing the weights (without learning). This is usually done after several learning runs.

inputs Inputs for cycling.
n_cycles How many cycles to run, default is 50.
show_progress Whether progress of learning should be shown. Default is FALSE.

mad_per_epoch(outs_per_epoch, inputs_plus, layer) Calculates mean absolute distance for
two lists of activations for a specific layer. This can be used to compare whether the network
has learned what it was supposed to learn.

outs_per_epoch Output activations for entire network for each trial for every epoch. This is
what the network produced on its own.

inputs_plus Original inputs for the plus phase. This is what the network was supposed to
learn.

layer Single numeric, for which layer to calculate the mean absolute distance. Usually, this
is the "output" layer.

set_weights(weights) Sets new weights for entire network, useful to load networks that have
already learned and thus very specific weights.
weights Matrix of matrices (like a cell array in ’MATLAB’) with new weight values.

get_weights() Returns the complete weight matrix, w[i, j] contains the weight matrix for the
projections from layer j to layer i. Note that this is a matrix of matrices (equivalent to a
’MATLAB’ cell array).

get_layer_and_unit_vars(show_dynamics = T, show_constants = F) Returns a data frame with
the current state of all layer and unit variables. Every row is a unit. You can choose whether
you want dynamic values and / or constant values. This might be useful if you want to analyze
what happens in the network overall, which would otherwise not be possible, because most of
the variables (fields) are private in the layer and unit class.
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show_dynamics Should dynamic values be shown? Default is TRUE.
show_constants Should constant values be shown? Default is FALSE.

get_network_vars(show_dynamics = T, show_constants = F) Returns a data frame with 1 row
with the current state of the variables in the network. You can choose whether you want
dynamic values and / or constant values. This might be useful if you want to analyze what
happens in a network, which would otherwise not be possible, because some of the variables
(fields) are private in the network class. There are some additional variables in the network
class that cannot be extracted this way because they are matrices; if it is necessary to extract
them, look at the source code.

show_dynamics Should dynamic values be shown? Default is TRUE.
show_constants Should constant values be shown? Default is FALSE.

References

O’Reilly, R. C., Munakata, Y., Frank, M. J., Hazy, T. E., and Contributors (2016). Computational
Cognitive Neuroscience. Wiki Book, 3rd (partial) Edition. URL: http://ccnbook.colorado.edu

Have also a look at https://grey.colorado.edu/emergent/index.php/Leabra (especially the
link to the ’MATLAB’ code) and https://en.wikipedia.org/wiki/Leabra

Examples

# create a small network with 3 layers
dim_lays <- list(c(2, 5), c(2, 10), c(2, 5))
cxn <- matrix(c(0, 0, 0,

1, 0, 0.2,
0, 1, 0), nrow = 3, byrow = TRUE)

net <- network$new(dim_lays, cxn)

net$m_in_s # private values cannot be accessed
# if you want to see alle variables, you need to use the function
net$get_network_vars(show_dynamics = TRUE, show_constants = TRUE)
# if you want to see a summary of all units (with layer information) without
# constant values
net$get_layer_and_unit_vars(show_dynamics = TRUE, show_constants = FALSE)

# let us create 10 random inputs for layer 1 and 3
inputs <- net$create_inputs(c(1, 3), 10)
inputs # a list of lists

# the input in layer 1 should be associated with the output in layer 3; we
# can use error driven learning to achieve this

# first we will need the input for the minus phase (where no correct output
# is presented; layer 3 is NULL)
inputs_minus <- lapply(inputs, function(x) replace(x, 3, list(NULL)))
inputs_minus # layer 3 is indeed NULL
# now we can learn with default parameters; we will run 10 epochs,
# inputs_plus is equivalent to inputs; the output will be activations after
# each trial for the wohle network; this might take a while depending on your
# system

http://ccnbook.colorado.edu
https://grey.colorado.edu/emergent/index.php/Leabra
https://en.wikipedia.org/wiki/Leabra
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n_epochs <- 10
## Not run:
output <- lapply(seq(n_epochs),

function(x) net$learn_error_driven(inputs_minus,
inputs,
lrate = 0.5))

# let's compare the actual output with what should have been learned we can
# use the method mad_per_epoch for this; it will calculate the mean absolute
# distance for each epoch; we are interested in layer 3
mad <- net$mad_per_epoch(output, inputs, 3)
# the error should decrease with increasing epoch number
plot(mad)
## End(Not run)

unit Leabra unit (neuron) class

Description

This class simulates a biologically realistic neuron (also called unit) in the Leabra framework. When
you use the layer class, you will see that a layer object has a variable (field) units, which is a list
of unit objects.

Usage

unit

Format

R6Class object.

Value

Object of R6Class with methods for calculating neuron activation changes.

Fields

activation Percentage activation ("firing rate") of the unit, which is sent to other units, think of it
as a percentage of how many neurons are active in a microcolumn of 100 neurons.

avg_s Short-term running average activation, integrates over avg_ss (a private variable, which in-
tegrates over activation), represents plus phase learning signal.

avg_m Medium-term running average activation, integrates over avg_s, represents minus phase
learning signal.

avg_l Long-term running average activation, integrates over avg_m, drives long-term floating av-
erage for self-organized learning.

unit_number Number of unit in layer, if the unit is not created within a layer, this value will be 1.
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Methods

new() Creates an object of this class with default parameters.

cycle(g_e_raw, g_i) Cycles 1 ms with given excitatory conductance g_e_raw and inhibitory
conductance g_i. Excitatory conductance depends on the connection weights to other units
and the activity of those other units. Inhibitory conductance depends on feedforward and
feedback inhibition. See layer cycle method.

g_e_raw Raw excitatory conductance. The actual excitatory conductance will incrementally
approach this value with every cycle.

g_i Inhibitory conductance.

clamp_cycle(activation) Clamps the value of activation to the activation variable of the
unit without any time integration. Then updates averages (avg_ss, avg_s, avg_m). This is
usually done when presenting external input.

activation Activation to clamp.

updt_avg_l() Updates the variable avg_l. This usually happens before the weights are changed
in the network (after the plus phase), and not every cycle.

get_vars(show_dynamics = TRUE, show_constants = FALSE) Returns a data frame with 1 row
with the current state of all the variables of the unit. You can choose whether you want dy-
namic values and / or constant values. This might be useful if you want to analyze what hap-
pens in a unit, which would otherwise not be possible, because most of the variables (fields)
are private in this class.

show_dynamics Should dynamic values be shown? Default is TRUE
show_constants Should constant values be shown? Default is FALSE

References

O’Reilly, R. C., Munakata, Y., Frank, M. J., Hazy, T. E., and Contributors (2016). Computational
Cognitive Neuroscience. Wiki Book, 3rd (partial) Edition. URL: http://ccnbook.colorado.edu

Have also a look at https://grey.colorado.edu/emergent/index.php/Leabra (especially the
link to the ’MATLAB’ code) and https://en.wikipedia.org/wiki/Leabra

Examples

u <- unit$new() # creates a new unit with default leabra values

print(u) # a lot of private values
u$v # private values cannot be accessed
# if you want to see alle variables, you need to use the function
u$get_vars(show_dynamics = TRUE, show_constants = TRUE)

# let us clamp the activation to 0.7
u$activation
u$clamp_cycle(0.7)
c(u$activation, u$avg_s, u$avg_m, u$avg_l)
# activation is indeed 0.7, but avg_l was not updated, this only happens
# before the weights are changed, let us update it now
u$updt_avg_l()

http://ccnbook.colorado.edu
https://grey.colorado.edu/emergent/index.php/Leabra
https://en.wikipedia.org/wiki/Leabra
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c(u$activation, u$avg_s, u$avg_m, u$avg_l)
# seems to work

# let us run 10 cycles with unclamped activation and output the activation
# produced because of changes in conductance
u <- unit$new()
cycle_number <- 1:10
result <- lapply(cycle_number, function(x)

u$cycle(g_e_raw = 0.5, g_i = 0.5)$get_vars())
# make a data frame out of the list
result <- plyr::ldply(result)
# plot activation
plot(result$activation, type = "b", xlab = "cycle", ylab = "activation")
# add conductance g_e to plot, should approach g_e_raw
lines(result$g_e, type = "b", col = "blue")
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