| Title: | Normalize Laboratory Measurements by Age and Sex | 
| Version: | 1.0.1 | 
| Description: | Provides functions for normalizing standard laboratory measurements (e.g. hemoglobin, cholesterol levels) according to age and sex, based on the algorithms described in "Personalized lab test models to quantify disease potentials in healthy individuals" (Netta Mendelson Cohen, Omer Schwartzman, Ram Jaschek, Aviezer Lifshitz, Michael Hoichman, Ran Balicer, Liran I. Shlush, Gabi Barbash & Amos Tanay, <doi:10.1038/s41591-021-01468-6>). Allows users to easily obtain normalized values for standard lab results, and to visualize their distributions. See more at https://tanaylab.weizmann.ac.il/labs/. | 
| License: | MIT + file LICENSE | 
| Suggests: | covr, mockery, spelling, testthat (≥ 3.0.0) | 
| Config/testthat/edition: | 3 | 
| Config/testthat/start-first: | download | 
| Encoding: | UTF-8 | 
| Language: | en-US | 
| RoxygenNote: | 7.2.3 | 
| Imports: | cli, dplyr, forcats, ggplot2, glue, purrr, rappdirs, scales, stats, tibble, utils, withr, yesno | 
| Depends: | R (≥ 2.10) | 
| LazyData: | true | 
| NeedsCompilation: | no | 
| Packaged: | 2023-01-15 06:44:16 UTC; aviezerl | 
| Author: | Aviezer Lifshitz [aut, cre], Netta Mendelson-Cohen [aut], Weizmann Institute of Science [cph] | 
| Maintainer: | Aviezer Lifshitz <aviezer.lifshitz@weizmann.ac.il> | 
| Repository: | CRAN | 
| Date/Publication: | 2023-01-15 14:30:05 UTC | 
labNorm: Normalize Laboratory Measurements by Age and Sex
Description
 
Provides functions for normalizing standard laboratory measurements (e.g. hemoglobin, cholesterol levels) according to age and sex, based on the algorithms described in "Personalized lab test models to quantify disease potentials in healthy individuals" (Netta Mendelson Cohen, Omer Schwartzman, Ram Jaschek, Aviezer Lifshitz, Michael Hoichman, Ran Balicer, Liran I. Shlush, Gabi Barbash & Amos Tanay, doi:10.1038/s41591-021-01468-6). Allows users to easily obtain normalized values for standard lab results, and to visualize their distributions. See more at https://tanaylab.weizmann.ac.il/labs/.
Author(s)
Maintainer: Aviezer Lifshitz aviezer.lifshitz@weizmann.ac.il
Authors:
- Netta Mendelson-Cohen netta.mendelsoncohen@weizmann.ac.il 
Other contributors:
- Weizmann Institute of Science [copyright holder] 
Available lab names
Description
Names of the labs available in the package.
Usage
LAB_DETAILS
Format
LAB_DETAILS
A data frame with 95 rows and 4 columns:
- short_name
- Short lab name 
- long_name
- Long lab name 
- units
- a list column with all the units available for the lab 
- default_units
- the default units for the lab 
- low_male,high_male,low_female,high_female
- the reference ranges for the lab, taken from the American Board of Internal Medicine. Can be NA if the lab does not have reference ranges. 
Source
American Board of Internal Medicine. ABIM Laboratory Test Reference Ranges — July 2021. https://www.abim.org/~/media/ABIM%20Public/Files/pdf/exam/laboratory-reference-ranges.pdf (2021).
Examples
head(LAB_DETAILS)
Example values of Hemoglobin and Creatinine
Description
Example datasets of Hemoglobin and Creatinine values for testing
Usage
hemoglobin_data
creatinine_data
Format
hemoglobin_data creatinine_data
A data frame with 1000 rows and 3 columns:
- age
- age of the patient 
- sex
- sex of the patient 
- value
- the lab value for the patient, in the default units for the lab 
An object of class data.frame with 1000 rows and 3 columns.
Examples
head(hemoglobin_data)
head(creatinine_data)
Convert values to the default units for the lab
Description
Convert values to the default units for the lab
Usage
ln_convert_units(values, units, lab)
Arguments
| values | a vector of lab values | 
| units | the units of the lab values. See  | 
| lab | the lab name. See  | 
Value
the values converted to the default units for the lab
Examples
# emulate a dataset with different units
hemoglobin_diff_units <- hemoglobin_data
# first 50 values will be in mg/ML
hemoglobin_diff_units$value[1:50] <- hemoglobin_diff_units$value[1:50] * 10
# last 50 values will be in mmol/L
hemoglobin_diff_units$value[51:100] <- hemoglobin_diff_units$value[51:100] / 1.61
converted <- ln_convert_units(
    hemoglobin_diff_units$value[1:100],
    c(rep("mg/mL", 50), rep("mmol/L", 50)),
    "Hemoglobin"
)
head(converted)
head(hemoglobin_data$value)
Download high-resolution reference distributions
Description
The data is downloaded to the directory specified by the dir parameter. Note
that if you specified a directory different from the default, you will need to set options(labNorm.dir = dir) in order for the package to use the downloaded data in future sessions.
Default directories are:
- Unix: ~/.local/share/LabNorm 
- Mac OS X: - ~/Library/Application Support/LabNorm
- Win XP (not roaming): - C:\\Documents and Settings\\<username>\\Data\\<AppAuthor>\\LabNorm
- Win XP (roaming): - C:\\Documents and Settings\\<username>\\Local Settings\\Data\\<AppAuthor>\\LabNorm
- Win 7 (not roaming): - C:\\Users\\<username>\\AppData\\Local\\<AppAuthor>\\LabNorm
- Win 7 (roaming): - C:\\Users\\<username>\\AppData\\Roaming\\<AppAuthor>\\LabNorm
Usage
ln_download_data(dir = NULL)
ln_data_downloaded()
Arguments
| dir | the directory to download the data to. If  | 
Value
None.
True if the data was downloaded, false otherwise.
Examples
ln_download_data()
ln_data_downloaded()
Get available units for a lab
Description
Get available units for a lab
Get the default units for a lab
Usage
ln_lab_units(lab)
ln_lab_default_units(lab)
Arguments
| lab | the lab name. See  | 
Value
a vector of available units for the lab
the default units for the lab
Examples
ln_lab_units("Hemoglobin")
ln_lab_default_units("Hemoglobin")
Normalize lab values to age and sex
Description
Normalize standard laboratory measurements (e.g. hemoglobin, cholesterol levels) according to age and sex, based on the algorithms described in "Personalized lab test models to quantify disease potentials in healthy individuals" doi:10.1038/s41591-021-01468-6. 
 
The "Clalit" reference distributions are based on 2.1B lab measurements taken from 2.8M individuals between 2002-2019, filtered to exclude severe chronic diseases and medication effects. The resulting normalized value is a quantile between 0 and 1, representing the value's position in the reference distribution. 
 
The "UKBB" reference distributions are based on the UK-Biobank, a large-scale population-based cohort study of 500K individuals, which underwent the same filtering process as the "Clalit" reference distributions.
 
The list of supported labs can be found below or by running LAB_DETAILS$short_name.
Usage
ln_normalize(
  values,
  age,
  sex,
  lab,
  units = NULL,
  reference = "Clalit",
  na.rm = FALSE
)
ln_normalize_multi(labs_df, reference = "Clalit", na.rm = FALSE)
Arguments
| values | a vector of lab values | 
| age | a vector of ages between 20-89 for "Clalit" reference and 35-80 for "UKBB". Can be a single value if all values are the same age. | 
| sex | a vector of either "male" or "female". Can be a single value if all values are the same sex. | 
| lab | the lab name. See  | 
| units | the units of the lab values. See  | 
| reference | the reference distribution to use. Can be either "Clalit" or "UKBB" or "Clalit-demo". Please download the Clalit and UKBB reference distributions using  | 
| na.rm | if  | 
| labs_df | a data frame with the columns "value", "age", "sex", "units", and "lab". The "lab" column should be a vector with the lab name per row. See  | 
Value
a vector of normalized values. If ln_download_data() was not run, a lower resolution reference distribution will be used, which can have an error of up to 5 quantiles (0.05). Otherwise, the full reference distribution will be used. You can check if the high resolution data was downloaded using ln_data_downloaded(). 
You can force the function to use the lower resolution distribution by setting options(labNorm.use_low_res = TRUE). 
If the quantile information is not available (e.g. "Estradiol" for male patients, various labs which are not available in the UKBB data), then the function will return NA.
reference distribution
It is highly recommended to use ln_download_data to download the "Clalit" and "UKBB" reference distributions. If you choose not to download the data, the package will use the demo reference distributions included in the package ("Clalit-demo"), which doesn't include all the labs, and has a resolution of 20 quantile bins and therefore may have an error of up to 5 percentiles (0.05), particularly at the edges of the distribution. 
labs
The following labs are supported in the "Clalit" reference (some labs are missing from the UKBB reference): 
- WBC 
- RBC 
- Hemoglobin 
- Hematocrit 
- Platelets 
- MCV 
- MCH 
- MCHC 
- RDW 
- MPV 
- Large unstained cells, Abs 
- Albumin 
- Total Cholesterol 
- Triglycerides 
- BMI 
- Iron 
- Transferrin 
- Ferritin 
- PDW 
- MPXI 
- Total Globulin 
- PCT 
- HDW 
- Fibrinogen 
- CH 
- Chloride 
- Large unstained cells, % 
- Macrocytic 
- Microcytic 
- Hyperchromic 
- Hypochromic 
- Lymphocytes, Abs 
- Lymphocytes, % 
- Neutrophils, Abs 
- Neutrophils, % 
- Monocytes, Abs 
- Monocytes, % 
- Eosinophils, Abs 
- Eosinophils, % 
- Basophils, Abs 
- Basophils, % 
- Microcytic:Hypochromic 
- Glucose 
- Urea 
- Creatinine 
- Uric Acid 
- Calcium 
- Phosphorus 
- Total Protein 
- HDL Cholesterol 
- LDL Cholesterol 
- Alk. Phosphatase 
- AST 
- ALT 
- GGT 
- LDH 
- CPK 
- Total Bilirubin 
- Direct Bilirubin 
- Hemoglobin A1c 
- Sodium 
- Potassium 
- Vitamin D (25-OH) 
- Microalbumin:Creatinine 
- Urine Creatinine 
- Urine Microalbumin 
- Non-HDL 
- TSH 
- T3, Free 
- T4, Free 
- Blood Pressure, Systolic 
- Blood Pressure, Diastolic 
- Urine Specific Gravity 
- Urine pH 
- PT, INR 
- PT, sec 
- PT, % 
- Vitamin B12 
- PSA 
- ESR 
- aPTT, sec 
- CRP 
- Amylase 
- Folic Acid 
- Total:HDL 
- Hematocrit:Hemoglobin 
- Magnesium 
- aPTT, ratio 
- Indirect Bilirubin 
- RDW-SD 
- RDW-CV 
- LH 
- Estradiol 
Examples
# Normalize Hemoglobin values to age and sex
hemoglobin_data$quantile <- ln_normalize(
    hemoglobin_data$value,
    hemoglobin_data$age,
    hemoglobin_data$sex,
    "Hemoglobin"
)
# plot the quantiles vs values for age 50-60
library(ggplot2)
library(dplyr)
hemoglobin_data %>%
    filter(age >= 50 & age <= 60) %>%
    ggplot(aes(x = value, y = quantile, color = sex)) +
    geom_point() +
    theme_classic()
# Different units
hemoglobin_diff_units <- hemoglobin_data
hemoglobin_diff_units$value <- hemoglobin_diff_units$value * 0.1
hemoglobin_diff_units$quantile <- ln_normalize(
    hemoglobin_data$value,
    hemoglobin_data$age,
    hemoglobin_data$sex,
    "Hemoglobin",
    "mg/mL"
)
# Multiple units
creatinine_diff_units <- creatinine_data
creatinine_diff_units$value <- c(
    creatinine_diff_units$value[1:500] * 0.011312,
    creatinine_diff_units$value[501:1000] * 11.312
)
creatinine_diff_units$quantile <- ln_normalize(
    creatinine_diff_units$value,
    creatinine_diff_units$age,
    creatinine_diff_units$sex,
    "Creatinine",
    c(rep("umol/L", 500), rep("mmol/L", 500))
)
# Use UKBB as reference
hemoglobin_data_ukbb <- hemoglobin_data %>% filter(age >= 35 & age <= 80)
hemoglobin_data_ukbb$quantile_ukbb <- ln_normalize(
    hemoglobin_data_ukbb$value,
    hemoglobin_data_ukbb$age,
    hemoglobin_data_ukbb$sex,
    "Hemoglobin",
    reference = "UKBB"
)
# plot UKBB vs Clalit
hemoglobin_data_ukbb %>%
    filter(age >= 50 & age <= 60) %>%
    ggplot(aes(x = quantile, y = quantile_ukbb, color = sex)) +
    geom_point() +
    geom_abline() +
    theme_classic()
# examples on the demo data
library(dplyr)
multi_labs_df <- bind_rows(
    hemoglobin_data %>% mutate(lab = "Hemoglobin"),
    creatinine_data %>% mutate(lab = "Creatinine")
)
multi_labs_df$quantile <- ln_normalize_multi(multi_labs_df)
# on the demo data
head(multi_labs_df)
Plot age-sex distribution of a lab
Description
Plot age-sex distribution of a lab
Usage
ln_plot_dist(
  lab,
  quantiles = c(0.03, 0.1, 0.15, 0.25, 0.35, 0.65, 0.75, 0.85, 0.9, 0.97),
  reference = "Clalit",
  pal = c("#D7DCE7", "#B0B9D0", "#8997B9", "#6274A2", "#3B528B", "#6274A2", "#8997B9",
    "#B0B9D0", "#D7DCE7"),
  sex = NULL,
  patients = NULL,
  patient_color = "yellow",
  patient_point_size = 2,
  ylim = NULL,
  show_reference = TRUE
)
Arguments
| lab | the lab name. See  | 
| quantiles | a vector of quantiles to plot, without 0 and 1. Default is  | 
| reference | the reference distribution to use. Can be either "Clalit" or "UKBB" or "Clalit-demo". Please download the Clalit and UKBB reference distributions using  | 
| pal | a vector of colors to use for the quantiles. Should be of length  | 
| sex | Plot only a single sex ("male" or "female"). If NULL -  | 
| patients | (optional) a data frame of patients to plot as dots over the distribution. See the  | 
| patient_color | (optional) the color of the patient dots. Default is "yellow". | 
| patient_point_size | (optional) the size of the patient dots. Default is 2. | 
| ylim | (optional) a vector of length 2 with the lower and upper limits of the plot. Default would be determined based on the values of the upper and lower percentiles of the lab in each age. | 
| show_reference | (optional) if TRUE, plot two lines of the upper and lower reference ranges. Default is TRUE. | 
Value
a ggplot2 object
Examples
set.seed(60427)
ln_plot_dist("Hemoglobin")
# Plot only females
ln_plot_dist("Creatinine", sex = "female", ylim = c(0, 2))
# Set the ylim
ln_plot_dist("BMI", ylim = c(8, 50))
# Project the distribution of three Hemoglobin values
ln_plot_dist("Hemoglobin", patients = dplyr::sample_n(hemoglobin_data, 3))
# Change the quantiles
ln_plot_dist("Hemoglobin",
    quantiles = seq(0.05, 0.95, length.out = 10)
)
# Change the colors
ln_plot_dist(
    "Hemoglobin",
    quantiles = c(0.03, 0.1, 0.25, 0.5, 0.75, 0.9, 0.97),
    pal = c("red", "orange", "yellow", "green", "blue", "purple")
)
# Change the reference distribution
ln_plot_dist("Hemoglobin", reference = "UKBB")
# on the demo data
Compute the lab value for a given quantile
Description
The function ln_quantile_value calculates lab values at a specified quantile, using the default units for that lab. The function ln_patients_quantile_value does the same calculation for a specific group of patients. 
Default units for a lab can be obtained using ln_lab_default_units. 
If no quantile data is available for a particular lab, age, and sex, the function returns 'NA'. 
It should be noted that the values of extreme quantiles (e.g. >0.95 or <0.05 on low resolution, >0.99 or <0.01 on high resolution) may not be reliable, as they may represent outliers in the data. 
 
Note that ln_quantile_value returns values for all combinations of age, sex, and lab, while ln_patients_quantile_value returns values for a specific set of patients, similar to ln_normalize.
Usage
ln_quantile_value(
  quantiles,
  age,
  sex,
  lab,
  reference = "Clalit",
  allow_edge_quantiles = FALSE
)
ln_patients_quantile_value(
  quantiles,
  age,
  sex,
  lab,
  reference = "Clalit",
  allow_edge_quantiles = FALSE
)
Arguments
| quantiles | a vector of quantiles (in the range 0-1) to compute the lab value for, or a vector with a quantile for each patient when running  | 
| age | a vector of ages to compute the lab values for or a vector with an age for each patient when running  | 
| sex | the sexes to compute the lab values for, or a vector with a sex for each patient when running  | 
| lab | The lab name. | 
| reference | the reference distribution to use. Can be either "Clalit" or "UKBB" or "Clalit-demo". Please download the Clalit and UKBB reference distributions using  | 
| allow_edge_quantiles | If  | 
Value
ln_quantile_value returns a data frame which contains the values for each combination of quantile, age and sex.
The data frame has the the following columns:
- age: age in years 
- sex: "male" or "female" 
- quantile: he quantile 
- value: the lab value 
- unit: the lab unit 
- lab: the lab name 
ln_patients_quantile_value returns a vector of value per patient.
Examples
ln_quantile_value(c(0.05, 0.5, 0.95), 50, "male", "WBC")
ln_quantile_value(
    c(0, 0.05, 0.1, 0.4, 0.5, 0.6, 0.9, 1),
    c(50, 60),
    c("male", "female"),
    "Glucose"
)
# on the demo data
hemoglobin_data$quantile <- ln_normalize(
    hemoglobin_data$value,
    hemoglobin_data$age,
    hemoglobin_data$sex,
    "Hemoglobin"
)
hemoglobin_data$value1 <- ln_patients_quantile_value(
    hemoglobin_data$quantile,
    hemoglobin_data$age,
    hemoglobin_data$sex,
    "Hemoglobin"
)
head(hemoglobin_data)