Pedigrees Available from create_GSP()
Rachel Giglio
2024-02-27
The function create_GSP()
allows the user to quickly
create several different pedigree structures that are “saturated” in the
sense of using all the genomic material of the founders. There are 15
different pedigrees, and they can be specified by the user according to
whether the user wants to have any of the following four hybrid
categories to be present amongst the simulated descendants:
F1
: a first generation F1 hybrid—the product of mating
between two parentals, one from population p1 and the other from
population p2.
F2
: the product of a mating between two F1s
F1B
: an F1-backcross—the product of a mating between an
F1 and a parental (non-admixed) individual from population p1.
F1B2
: a second-generation F1-backcross—the product of a
mating between an F1B and another parental from population p1.
The following images show the pedigrees created by
create_GSP()
with different inputs (TRUE
or
FALSE
) for the four parameters, F1
,
F2
, F1B
, F1B2
, to the
function.
See the documentation ?create_GSP
for more
information.
F1 = TRUE, F2 = FALSE, F1B = FALSE, F1B2 = FALSE,
xxx
1a
p1
1
1
1a->1
2a
p2
2
2
2a->2
1b
p1
1b->1
2b
p2
2b->2
3
3
1->3
2
2->3
2
s3
s3
3->s3
2
F1 = FALSE, F2 = TRUE, F1B = FALSE, F1B2 = FALSE,
xxx
1a
p1
1
1
1a->1
2a
p1
2
2
2a->2
3a
p2
3
3
3a->3
4a
p2
4
4
4a->4
1b
p1
1b->1
2b
p1
2b->2
3b
p2
3b->3
4b
p2
4b->4
5
5
1->5
2
6
6
2->6
2
3->5
2
4->6
2
7
7
5->7
4
6->7
4
s7
s7
7->s7
4
F1 = TRUE, F2 = TRUE, F1B = FALSE, F1B2 = FALSE,
xxx
1a
p1
1
1
1a->1
2a
p2
2
2
2a->2
3a
p1
3
3
3a->3
4a
p2
4
4
4a->4
1b
p1
1b->1
2b
p2
2b->2
3b
p1
3b->3
4b
p2
4b->4
5
5
1->5
2
2->5
2
6
6
3->6
2
4->6
2
7
7
5->7
2
s5
s5
5->s5
1
6->7
2
s6
s6
6->s6
1
s7
s7
7->s7
2
F1 = FALSE, F2 = FALSE, F1B = TRUE, F1B2 = FALSE,
xxx
1a
p1
1
1
1a->1
2a
p2
2
2
2a->2
3a
p1
3
3
3a->3
4a
p1
4
4
4a->4
1b
p1
1b->1
2b
p2
2b->2
3b
p1
3b->3
4b
p1
4b->4
5
5
1->5
2
2->5
2
6
6
3->6
2
7
7
4->7
2
5->6
2
5->7
2
s6
s6
6->s6
2
s7
s7
7->s7
2
F1 = TRUE, F2 = FALSE, F1B = TRUE, F1B2 = FALSE,
xxx
1a
p1
1
1
1a->1
2a
p2
2
2
2a->2
3a
p1
3
3
3a->3
1b
p1
1b->1
2b
p2
2b->2
3b
p1
3b->3
4
4
1->4
2
2->4
2
5
5
3->5
2
4->5
2
s4
s4
4->s4
1
s5
s5
5->s5
2
F1 = FALSE, F2 = TRUE, F1B = TRUE, F1B2 = FALSE,
xxx
1a
p1
1
1
1a->1
2a
p1
2
2
2a->2
3a
p1
3
3
3a->3
4a
p1
4
4
4a->4
5a
p2
5
5
5a->5
6a
p2
6
6
6a->6
1b
p1
1b->1
2b
p1
2b->2
3b
p1
3b->3
4b
p1
4b->4
5b
p2
5b->5
6b
p2
6b->6
7
7
1->7
2
8
8
2->8
2
9
9
3->9
2
10
10
4->10
2
5->7
2
6->8
2
7->9
2
11
11
7->11
2
8->10
2
8->11
2
s9
s9
9->s9
2
s10
s10
10->s10
2
s11
s11
11->s11
2
F1 = TRUE, F2 = TRUE, F1B = TRUE, F1B2 = FALSE,
xxx
1a
p1
1
1
1a->1
2a
p1
2
2
2a->2
3a
p1
3
3
3a->3
4a
p2
4
4
4a->4
5a
p2
5
5
5a->5
1b
p1
1b->1
2b
p1
2b->2
3b
p1
3b->3
4b
p2
4b->4
5b
p2
5b->5
6
6
1->6
2
7
7
2->7
2
8
8
3->8
2
4->6
2
5->7
2
6->8
2
9
9
6->9
2
7->9
2
s7
s7
7->s7
1
s8
s8
8->s8
2
s9
s9
9->s9
2
F1 = FALSE, F2 = FALSE, F1B = FALSE, F1B2 = TRUE,
xxx
1a
p1
1
1
1a->1
2a
p2
2
2
2a->2
3a
p1
3
3
3a->3
4a
p1
4
4
4a->4
5a
p1
5
5
5a->5
6a
p1
6
6
6a->6
7a
p1
7
7
7a->7
8a
p1
8
8
8a->8
1b
p1
1b->1
2b
p2
2b->2
3b
p1
3b->3
4b
p1
4b->4
5b
p1
5b->5
6b
p1
6b->6
7b
p1
7b->7
8b
p1
8b->8
9
9
1->9
2
2->9
2
10
10
3->10
2
11
11
4->11
2
12
12
5->12
2
13
13
6->13
2
14
14
7->14
2
15
15
8->15
2
9->10
2
9->11
2
10->12
2
10->13
2
11->14
2
11->15
2
s12
s12
12->s12
2
s13
s13
13->s13
2
s14
s14
14->s14
2
s15
s15
15->s15
2
F1 = TRUE, F2 = FALSE, F1B = FALSE, F1B2 = TRUE,
xxx
1a
p1
1
1
1a->1
2a
p2
2
2
2a->2
3a
p1
3
3
3a->3
4a
p1
4
4
4a->4
5a
p1
5
5
5a->5
1b
p1
1b->1
2b
p2
2b->2
3b
p1
3b->3
4b
p1
4b->4
5b
p1
5b->5
6
6
1->6
2
2->6
2
7
7
3->7
2
8
8
4->8
2
9
9
5->9
2
6->7
2
s6
s6
6->s6
1
7->8
2
7->9
2
s8
s8
8->s8
2
s9
s9
9->s9
2
F1 = FALSE, F2 = TRUE, F1B = FALSE, F1B2 = TRUE,
xxx
1a
p1
1
1
1a->1
2a
p1
2
2
2a->2
3a
p1
3
3
3a->3
4a
p1
4
4
4a->4
5a
p1
5
5
5a->5
6a
p1
6
6
6a->6
7a
p1
7
7
7a->7
8a
p1
8
8
8a->8
9a
p2
9
9
9a->9
10a
p2
10
10
10a->10
1b
p1
1b->1
2b
p1
2b->2
3b
p1
3b->3
4b
p1
4b->4
5b
p1
5b->5
6b
p1
6b->6
7b
p1
7b->7
8b
p1
8b->8
9b
p2
9b->9
10b
p2
10b->10
11
11
1->11
2
12
12
2->12
2
14
14
3->14
2
15
15
4->15
2
16
16
5->16
2
17
17
6->17
2
18
18
7->18
2
19
19
8->19
2
9->11
2
10->12
2
13
13
11->13
2
11->14
2
12->13
2
12->15
2
s13
s13
13->s13
2
14->16
2
14->17
2
15->18
2
15->19
2
s16
s16
16->s16
2
s17
s17
17->s17
2
s18
s18
18->s18
2
s19
s19
19->s19
2
F1 = TRUE, F2 = TRUE, F1B = FALSE, F1B2 = TRUE,
xxx
1a
p1
1
1
1a->1
2a
p1
2
2
2a->2
3a
p1
3
3
3a->3
4a
p1
4
4
4a->4
5a
p1
5
5
5a->5
6a
p2
6
6
6a->6
7a
p2
7
7
7a->7
1b
p1
1b->1
2b
p1
2b->2
3b
p1
3b->3
4b
p1
4b->4
5b
p1
5b->5
6b
p2
6b->6
7b
p2
7b->7
8
8
1->8
2
9
9
2->9
2
10
10
3->10
2
11
11
4->11
2
12
12
5->12
2
6->8
2
7->9
2
8->10
2
13
13
8->13
2
9->13
2
s9
s9
9->s9
1
10->11
2
10->12
2
s11
s11
11->s11
2
s12
s12
12->s12
2
s13
s13
13->s13
2
F1 = FALSE, F2 = FALSE, F1B = TRUE, F1B2 = TRUE,
xxx
1a
p1
1
1
1a->1
2a
p1
2
2
2a->2
3a
p1
3
3
3a->3
4a
p1
4
4
4a->4
5a
p1
5
5
5a->5
6a
p2
6
6
6a->6
1b
p1
1b->1
2b
p1
2b->2
3b
p1
3b->3
4b
p1
4b->4
5b
p1
5b->5
6b
p2
6b->6
7
7
1->7
2
8
8
2->8
2
10
10
3->10
2
9
9
4->9
2
11
11
5->11
2
6->7
2
7->8
2
7->9
2
8->10
2
s8
s8
8->s8
1
9->11
2
s9
s9
9->s9
1
s10
s10
10->s10
2
s11
s11
11->s11
2
F1 = TRUE, F2 = FALSE, F1B = TRUE, F1B2 = TRUE,
xxx
1a
p1
1
1
1a->1
2a
p1
2
2
2a->2
3a
p1
3
3
3a->3
4a
p2
4
4
4a->4
1b
p1
1b->1
2b
p1
2b->2
3b
p1
3b->3
4b
p2
4b->4
5
5
1->5
2
6
6
2->6
2
7
7
3->7
2
4->5
2
5->6
2
s5
s5
5->s5
1
6->7
2
s6
s6
6->s6
1
s7
s7
7->s7
2
F1 = FALSE, F2 = TRUE, F1B = TRUE, F1B2 = TRUE,
xxx
1a
p1
1
1
1a->1
2a
p1
2
2
2a->2
3a
p1
3
3
3a->3
4a
p1
4
4
4a->4
5a
p1
5
5
5a->5
6a
p1
6
6
6a->6
7a
p2
7
7
7a->7
8a
p2
8
8
8a->8
1b
p1
1b->1
2b
p1
2b->2
3b
p1
3b->3
4b
p1
4b->4
5b
p1
5b->5
6b
p1
6b->6
7b
p2
7b->7
8b
p2
8b->8
9
9
1->9
2
10
10
2->10
2
11
11
3->11
2
12
12
4->12
2
13
13
5->13
2
14
14
6->14
2
7->9
2
8->10
2
9->11
2
15
15
9->15
2
10->12
2
10->15
2
11->13
2
s11
s11
11->s11
1
12->14
2
s12
s12
12->s12
1
s13
s13
13->s13
2
s14
s14
14->s14
2
s15
s15
15->s15
2
F1 = TRUE, F2 = TRUE, F1B = TRUE, F1B2 = TRUE,
xxx
1a
p1
1
1
1a->1
2a
p1
2
2
2a->2
3a
p1
3
3
3a->3
4a
p1
4
4
4a->4
5a
p2
5
5
5a->5
6a
p2
6
6
6a->6
1b
p1
1b->1
2b
p1
2b->2
3b
p1
3b->3
4b
p1
4b->4
5b
p2
5b->5
6b
p2
6b->6
7
7
1->7
2
8
8
2->8
2
9
9
3->9
2
10
10
4->10
2
5->7
2
6->8
2
11
11
7->11
2
s7
s7
7->s7
1
8->9
2
8->11
2
9->10
2
s9
s9
9->s9
1
s10
s10
10->s10
2
s11
s11
11->s11
2