RcppArmadillo package implementation for the proposed technique [1] to compute marginal likelihood in Gaussian graphical models under four different priors on the precision matrix:
Bayesian graphical lasso (BGL)
Graphical horseshoe (GHS)
Wishart
G-Wishart
This package can be installed directly from github using the R
package devtools
.
> install.packages("devtools")
> library(devtools)
> install_github("dp-rho/graphicalEvidence")
This package allows estimation of marginal likelihood in Gaussian graphical models through a novel telescoping block decomposition of the precision matrix which allows estimation of model evidence via an application of Chib’s [2] method. This package also provides an MCMC prior sampler for the priors of BGL, GHS, and G-Wishart.
First, we can use entirely pre-determined test parameters and a fixed
random seed to verify the package is working as expected. The function
test_evidence
can be called by specifying the number of
complete runs for the marginal estimation and what prior should be
tested (currently implemented options are: ‘Wishart’, ‘BGL’, ‘GHS’,
‘G_Wishart’). The dimension of all data tested using this function is
set to p=5
.
> test_evidence(num_runs=10, 'Wishart')
The console will display the parameters tested, as well as display the results using a histogram if more than 1 run is requested. The average computation time per run will be displayed, and the entire results vector, as well as the mean and standard deviation of this vector will be returned.
Params are:
$x_mat
V1 V2 V3 V4 V5
1 -0.327510 -0.180860 -0.054457 -0.342300 0.99165
2 -0.092703 -0.010816 -0.094554 -0.321180 -0.53221
3 0.752180 0.885270 0.369450 0.685170 -0.56842
4 0.179810 0.018306 -0.022333 -0.019137 -0.39041
5 0.570070 -0.147280 0.391650 0.233730 -0.25239
6 -0.195330 0.087235 -0.292460 0.346490 -0.10594
7 1.036400 0.797540 -0.473170 -0.371080 -0.71219
8 -1.219000 -1.267100 -0.114760 0.342460 0.32281
9 0.126190 0.732330 -0.402690 -0.166400 0.55104
10 -0.184100 -0.288940 0.056100 0.345210 -0.29425
$scale_mat
V1 V2 V3 V4 V5
1 0.142860 0.035714 0.000000 0.000000 0.000000
2 0.035714 0.142860 0.035714 0.000000 0.000000
3 0.000000 0.035714 0.142860 0.035714 0.000000
4 0.000000 0.000000 0.035714 0.142860 0.035714
5 0.000000 0.000000 0.000000 0.035714 0.142860
0 runs excluded for NaN
Execution time in R program per run (seconds):
user system elapsed
0.151 0.001 0.155
$mean
[1] -84.13947
$sd
[1] 0.04027397
$results
[1] -84.23698 -84.13235 -84.13171 -84.14765 -84.14498 -84.13035 -84.09755 -84.08554 -84.15069 -84.13690
Note that results returned from test_evidence
should be
reproducible, as the random seed is reset during each call to the
function. The pre-existing parameters used for these tests can be
generated using the function gen_params_evidence
.
> gen_params_evidence('Wishart')
$x_mat
V1 V2 V3 V4 V5
1 -0.327510 -0.180860 -0.054457 -0.342300 0.99165
2 -0.092703 -0.010816 -0.094554 -0.321180 -0.53221
3 0.752180 0.885270 0.369450 0.685170 -0.56842
4 0.179810 0.018306 -0.022333 -0.019137 -0.39041
5 0.570070 -0.147280 0.391650 0.233730 -0.25239
6 -0.195330 0.087235 -0.292460 0.346490 -0.10594
7 1.036400 0.797540 -0.473170 -0.371080 -0.71219
8 -1.219000 -1.267100 -0.114760 0.342460 0.32281
9 0.126190 0.732330 -0.402690 -0.166400 0.55104
10 -0.184100 -0.288940 0.056100 0.345210 -0.29425
$scale_mat
V1 V2 V3 V4 V5
1 0.142860 0.035714 0.000000 0.000000 0.000000
2 0.035714 0.142860 0.035714 0.000000 0.000000
3 0.000000 0.035714 0.142860 0.035714 0.000000
4 0.000000 0.000000 0.035714 0.142860 0.035714
5 0.000000 0.000000 0.000000 0.035714 0.142860
We now consider the top level function used to estimate marginal
likelihood. The function evidence
requires an input data
matrix, the number of iterations for both burnin and sampling, the
specified prior, and any prior specific parameters. The following code
performs the same estimation task as the previously shown test, but note
that random variation will lead to small differences unless the random
seed is held constant.
# Compute the marginal likelihood of x_mat for Wishart prior using 1,000
# burnin and 5,000 sampled values at each call to the MCMC sampler with
# 10 total runs of the estimator
# Change prior name to 'Wishart', 'BGL', 'GHS', 'G_Wishart' as desired.
> g_params <- gen_params_evidence('Wishart')
> evidence(
xx=g_params$x_mat, burnin=1e3, nmc=5e3, prior_name='Wishart',
runs=10, alpha=7, V=g_params$scale_mat,
)
As expected, we see small variation in the mean and standard deviation of the results.
0 runs excluded for NaN
$mean
[1] -84.15582
$sd
[1] 0.05245773
$results
[1] -84.23467 -84.10023 -84.11618 -84.15848 -84.15428 -84.12452 -84.22029 -84.10393 -84.12049 -84.22512
To make results reproducible, it is not sufficient to use the R
function set.seed
, as the compiled library linked to
graphicalEvidence calls a sampler independent of the R session. The
function set_seed_evidence
must be used. Note that by
setting the evidence seed to 123456789
, we can now
perfectly replicate the results returned by
test_evidence
.
> g_params <- gen_params_evidence('Wishart')
> set_seed_evidence(123456789)
> evidence(
xx=g_params$x_mat, burnin=1e3, nmc=5e3, prior_name='Wishart',
runs=10, alpha=7, V=g_params$scale_mat,
)
$mean
[1] -84.13947
$sd
[1] 0.04027397
$results
[1] -84.23698 -84.13235 -84.13171 -84.14765 -84.14498 -84.13035 -84.09755 -84.08554 -84.15069 -84.13690
The function prior_sampling
allows a user to specify one
of BGL, GHS, or G_Wishart and any related parameters and sample
burnin + nmc
iterations of an MCMC sampler on the precision
matrix modified slightly from a highly similar approach used in
evidence
. This code will execute 2,000 total iterations and
discard the first half for the prior of GHS with lambda=2
and dimension p=5
.
> samples <- prior_sampling(p=5, burnin=1e3, nmc=1e3, prior_name='GHS', lambda=2)
> dim(samples)
[1] 5 5 1000
> samples[, , 1000]
[,1] [,2] [,3] [,4] [,5]
[1,] 9.7316617 1.2097120 5.4897852 1.0853305 0.4333838
[2,] 1.2097120 0.4274469 0.2543827 0.9397151 0.2727555
[3,] 5.4897852 0.2543827 5.9593794 0.1234130 0.1205787
[4,] 1.0853305 0.9397151 0.1234130 4.2562709 -1.8937773
[5,] 0.4333838 0.2727555 0.1205787 -1.8937773 9.9557340
[1] Bhadra, A., Sagar, K., Rowe, D., Banerjee, S., & Datta, J. (2022). Evidence Estimation in Gaussian Graphical Models Using a Telescoping Block Decomposition of the Precision Matrix. arXiv preprint arXiv:2205.01016.
[2] Chib, S. (1995). Marginal likelihood from the Gibbs output. Journal of the American Statistical Association 90, 1313–1321.