The GeoSpatialSuite package provides comprehensive tools for water quality assessment using remote sensing data. This vignette demonstrates water detection indices, quality parameter monitoring, and basic trend analysis using the package’s reliable functions.
By the end of this vignette, you will be able to:
The package includes multiple water indices for different applications:
# Load sample bands (Green, NIR, SWIR1)
green_band <- rast(nrows = 100, ncols = 100,
xmin = -84, xmax = -83, ymin = 40, ymax = 41)
values(green_band) <- runif(10000, 0.2, 0.4)
nir_band <- rast(nrows = 100, ncols = 100,
xmin = -84, xmax = -83, ymin = 40, ymax = 41)
values(nir_band) <- runif(10000, 0.4, 0.8)
swir1_band <- rast(nrows = 100, ncols = 100,
xmin = -84, xmax = -83, ymin = 40, ymax = 41)
values(swir1_band) <- runif(10000, 0.1, 0.3)
# Calculate Original NDWI (McFeeters 1996) - Water body detection
ndwi <- calculate_water_index(
green = green_band,
nir = nir_band,
index_type = "NDWI",
verbose = TRUE
)
# Calculate Modified NDWI (Xu 2006) - Enhanced water detection
mndwi <- calculate_water_index(
green = green_band,
nir = nir_band,
swir1 = swir1_band,
index_type = "MNDWI",
verbose = TRUE
)
# Calculate NDMI (Gao 1996) - Vegetation moisture content
ndmi <- calculate_water_index(
green = green_band,
nir = nir_band,
swir1 = swir1_band,
index_type = "NDMI",
verbose = TRUE
)
See all available water indices and their applications:
# List all available water indices
water_indices_info <- list_water_indices(detailed = TRUE)
print(water_indices_info)
# Get indices for specific applications
water_detection <- list_water_indices(application_filter = "water_detection")
moisture_monitoring <- list_water_indices(application_filter = "moisture_monitoring")
Calculate multiple indices simultaneously for comprehensive analysis:
# Calculate multiple water indices at once
water_analysis <- calculate_multiple_water_indices(
green = green_band,
nir = nir_band,
swir1 = swir1_band,
indices = c("NDWI", "MNDWI", "NDMI", "MSI"),
output_stack = TRUE,
verbose = TRUE
)
# Access individual indices
ndwi_layer <- water_analysis[["NDWI"]]
mndwi_layer <- water_analysis[["MNDWI"]]
# Perform complete water body analysis
water_body_analysis <- analyze_water_bodies(
green = green_band,
nir = nir_band,
swir1 = swir1_band,
water_threshold_ndwi = 0.3,
water_threshold_mndwi = 0.5,
verbose = TRUE
)
# Access results
water_indices <- water_body_analysis$water_indices
water_masks <- water_body_analysis$water_masks
statistics <- water_body_analysis$statistics
# Print water body statistics
print(statistics)
# Create sample water quality monitoring data
sample_water_data <- data.frame(
station_id = paste0("WQ_", 1:50),
longitude = runif(50, -84, -83),
latitude = runif(50, 40, 41),
temperature = runif(50, 15, 25),
ph = runif(50, 6.5, 8.5),
dissolved_oxygen = runif(50, 5, 12),
turbidity = runif(50, 2, 15),
nitrate = runif(50, 0.5, 5.0),
phosphorus = runif(50, 0.1, 2.0),
sample_date = as.Date("2023-06-01") + sample(0:180, 50, replace = TRUE)
)
# Comprehensive water quality analysis
water_quality_results <- analyze_water_quality_comprehensive(
water_data = sample_water_data,
variable = "dissolved_oxygen",
coord_cols = c("longitude", "latitude"),
thresholds = list(
Excellent = c(8, Inf),
Good = c(6, 8),
Fair = c(4, 6),
Poor = c(0, 4)
),
verbose = TRUE
)
# Access analysis results
quality_stats <- water_quality_results$statistics
spatial_patterns <- water_quality_results$spatial_analysis
temporal_trends <- water_quality_results$temporal_analysis
# Analyze multiple water quality parameters
parameters <- c("temperature", "ph", "dissolved_oxygen", "turbidity")
multi_param_results <- list()
for (param in parameters) {
multi_param_results[[param]] <- analyze_water_quality_comprehensive(
water_data = sample_water_data,
variable = param,
verbose = FALSE
)
}
# Extract key statistics
param_summary <- sapply(parameters, function(p) {
stats <- multi_param_results[[p]]$statistics$primary_variable
c(mean = stats$mean, sd = stats$sd, min = stats$min, max = stats$max)
})
print(param_summary)
# Quick water index mapping
quick_map(ndwi, title = "NDWI - Water Detection")
quick_map(mndwi, title = "MNDWI - Enhanced Water Detection")
# Create water quality map with region boundary
water_map <- create_spatial_map(
spatial_data = water_quality_results$water_data,
fill_variable = "dissolved_oxygen",
region_boundary = c(-84, 40, -83, 41), # Custom bounding box
color_scheme = "water",
title = "Dissolved Oxygen Concentrations",
point_size = 4
)
# Apply water quality standards
quality_thresholds <- list(
Excellent = c(9, Inf),
Good = c(7, 9),
Moderate = c(5, 7),
Poor = c(3, 5),
Very_Poor = c(0, 3)
)
# Classify water quality
classified_results <- analyze_water_quality_comprehensive(
water_data = sample_water_data,
variable = "dissolved_oxygen",
thresholds = quality_thresholds,
verbose = TRUE
)
# View classification results
threshold_stats <- classified_results$threshold_analysis$threshold_statistics
print(threshold_stats$category_percentages)
# Apply standard water detection thresholds
water_pixels_ndwi <- ndwi > 0.3 # Standard NDWI threshold
water_pixels_mndwi <- mndwi > 0.5 # Standard MNDWI threshold
# Combine for consensus water mask
consensus_water <- water_pixels_ndwi & water_pixels_mndwi
names(consensus_water) <- "consensus_water_mask"
# Visualize water detection
quick_map(consensus_water, title = "Consensus Water Detection")
# Create temporal water quality data
temporal_data <- data.frame(
station_id = rep(paste0("WQ_", 1:10), each = 12),
longitude = rep(runif(10, -84, -83), each = 12),
latitude = rep(runif(10, 40, 41), each = 12),
month = rep(1:12, 10),
dissolved_oxygen = runif(120, 4, 12),
temperature = runif(120, 5, 25),
sample_date = rep(seq(as.Date("2023-01-01"),
as.Date("2023-12-01"), by = "month"), 10)
)
# Analyze temporal patterns
temporal_results <- analyze_water_quality_comprehensive(
water_data = temporal_data,
variable = "dissolved_oxygen",
date_column = "sample_date",
station_id_col = "station_id",
verbose = TRUE
)
# Check for temporal trends
if (!is.null(temporal_results$temporal_analysis$trend)) {
trend_info <- temporal_results$temporal_analysis$trend
cat("Temporal trend slope:", trend_info$slope, "\n")
cat("Significance (p-value):", trend_info$p_value, "\n")
cat("R-squared:", trend_info$r_squared, "\n")
}
# Simulate lake monitoring scenario
lake_stations <- data.frame(
station = paste0("Lake_", LETTERS[1:20]),
lon = runif(20, -83.5, -83.0),
lat = runif(20, 40.2, 40.7),
depth_m = runif(20, 1, 15),
temp_celsius = runif(20, 18, 24),
ph = runif(20, 7.0, 8.5),
do_mg_l = runif(20, 6, 11),
chlorophyll_ug_l = runif(20, 5, 25),
secchi_depth_m = runif(20, 1, 4)
)
# Comprehensive lake analysis
lake_analysis <- analyze_water_quality_comprehensive(
water_data = lake_stations,
variable = "do_mg_l",
coord_cols = c("lon", "lat"),
thresholds = list(
Hypoxic = c(0, 2),
Low = c(2, 5),
Adequate = c(5, 8),
High = c(8, Inf)
)
)
# Analyze chlorophyll patterns
chlorophyll_analysis <- analyze_water_quality_comprehensive(
water_data = lake_stations,
variable = "chlorophyll_ug_l",
thresholds = list(
Oligotrophic = c(0, 4),
Mesotrophic = c(4, 10),
Eutrophic = c(10, Inf)
)
)
# Analyze water quality along stream network
stream_monitoring <- data.frame(
site_id = paste0("Stream_", 1:30),
longitude = runif(30, -83.8, -83.2),
latitude = runif(30, 40.1, 40.8),
stream_order = sample(1:4, 30, replace = TRUE),
flow_cms = runif(30, 0.1, 50),
water_temp = runif(30, 12, 22),
conductivity = runif(30, 200, 800),
total_nitrogen = runif(30, 0.5, 8.0),
total_phosphorus = runif(30, 0.05, 1.5)
)
# Analyze nutrient patterns
nitrogen_analysis <- analyze_water_quality_comprehensive(
water_data = stream_monitoring,
variable = "total_nitrogen",
thresholds = list(
Low = c(0, 2),
Moderate = c(2, 5),
High = c(5, Inf)
),
verbose = TRUE
)
phosphorus_analysis <- analyze_water_quality_comprehensive(
water_data = stream_monitoring,
variable = "total_phosphorus",
thresholds = list(
Low = c(0, 0.3),
Moderate = c(0.3, 0.8),
High = c(0.8, Inf)
)
)
# Handle missing coordinate data
incomplete_data <- sample_water_data
incomplete_data$latitude[1:5] <- NA
# The function automatically handles missing coordinates
robust_results <- analyze_water_quality_comprehensive(
water_data = incomplete_data,
variable = "dissolved_oxygen",
verbose = TRUE
)
# Handle different coordinate column names
alt_coord_data <- sample_water_data
names(alt_coord_data)[names(alt_coord_data) == "longitude"] <- "x"
names(alt_coord_data)[names(alt_coord_data) == "latitude"] <- "y"
# Function auto-detects coordinate columns
auto_detect_results <- analyze_water_quality_comprehensive(
water_data = alt_coord_data,
variable = "ph",
verbose = TRUE
)
# Calculate both water and vegetation indices from the same data
# Assume we have a multi-band satellite image
red_band <- nir_band * 0.6 # Simulate red band
# Water detection
water_indices <- calculate_multiple_water_indices(
green = green_band,
nir = nir_band,
swir1 = swir1_band,
indices = c("NDWI", "MNDWI", "NDMI")
)
# Vegetation analysis
veg_indices <- calculate_multiple_indices(
red = red_band,
nir = nir_band,
green = green_band,
indices = c("NDVI", "GNDVI", "DVI"),
output_stack = TRUE
)
# Create combined analysis
combined_stack <- c(water_indices, veg_indices)
names(combined_stack) <- c("NDWI", "MNDWI", "NDMI", "NDVI", "GNDVI", "DVI")
# Extract satellite-derived water indices to field monitoring points
extracted_values <- universal_spatial_join(
source_data = sample_water_data,
target_data = water_indices,
method = "extract",
buffer_distance = 100, # 100m buffer around each point
summary_function = "mean"
)
# Check correlations between field measurements and remote sensing
field_vs_remote <- data.frame(
field_turbidity = extracted_values$turbidity,
remote_ndwi = extracted_values$extracted_NDWI,
remote_mndwi = extracted_values$extracted_MNDWI
)
# Calculate correlations
cor(field_vs_remote, use = "complete.obs")
# Standard water detection thresholds
standard_thresholds <- list(
NDWI = list(water = 0.3, vegetation = 0.0),
MNDWI = list(water = 0.5, built_up = 0.0),
NDMI = list(high_moisture = 0.4, low_moisture = 0.1)
)
# Apply thresholds to create binary water masks
water_mask_ndwi <- ndwi > standard_thresholds$NDWI$water
water_mask_mndwi <- mndwi > standard_thresholds$MNDWI$water
# Always mask invalid values and apply reasonable ranges
quality_controlled_ndwi <- calculate_water_index(
green = green_band,
nir = nir_band,
index_type = "NDWI",
clamp_range = c(-1, 1),
mask_invalid = TRUE,
verbose = TRUE
)
# Check data coverage
values_ndwi <- values(quality_controlled_ndwi, mat = FALSE)
coverage_percent <- (sum(!is.na(values_ndwi)) / length(values_ndwi)) * 100
cat("Data coverage:", round(coverage_percent, 1), "%\n")
This vignette demonstrated:
calculate_water_index()
- Single water index
calculationcalculate_multiple_water_indices()
- Multiple indices
at onceanalyze_water_bodies()
- Comprehensive water body
analysisanalyze_water_quality_comprehensive()
- Field data
analysislist_water_indices()
- Available indices
informationuniversal_spatial_join()
- Spatial data
integrationcreate_spatial_map()
and quick_map()
-
VisualizationThis work was developed by the GeoSpatialSuite team with contributions from: Olatunde D. Akanbi, Vibha Mandayam, Yinghui Wu, Jeffrey Yarus, Erika I. Barcelos, and Roger H. French.