The enrichit package provides fast, efficient, and
lightweight implementations of common functional enrichment analysis
methods, including Over-Representation Analysis (ORA)
and Gene Set Enrichment Analysis (GSEA). The core
algorithms are implemented in C++ using Rcpp to ensure high
performance, making it suitable for analyzing large datasets or running
simulations.
You can install the development version of enrichit from
GitHub using devtools:
# install.packages("devtools")
devtools::install_github("YuLab-SMU/enrichit")fgsea).GSON
objects for gene set management.enrichResult and gseaResult objects compatible
with the clusterProfiler ecosystem.library(enrichit)
# Example gene sets
gene_sets <- list(
pathway1 = paste0("Gene", 1:50),
pathway2 = paste0("Gene", 51:100)
)
# Define a universe and a list of significant genes
universe <- paste0("Gene", 1:1000)
sig_genes <- paste0("Gene", 1:20) # Significant genes
# Run ORA
ora_res <- ora(gene = sig_genes,
gene_sets = gene_sets,
universe = universe)
print(ora_res)library(enrichit)
# Generate a ranked gene list
set.seed(123)
geneList <- sort(rnorm(1000), decreasing = TRUE)
names(geneList) <- paste0("Gene", 1:1000)
# Define gene sets
gene_sets <- list(
pathway1 = paste0("Gene", 1:50), # Enriched at top
pathway2 = paste0("Gene", 951:1000) # Enriched at bottom
)
# Run GSEA
gsea_res <- gsea(geneList = geneList,
gene_sets = gene_sets,
method = "multilevel")
print(gsea_res)