The Explainable Ensemble Trees 'e2tree' approach has been proposed by Aria et al. (2024) <doi:10.1007/s00180-022-01312-6>. It aims to explain and interpret decision tree ensemble models using a single tree-like structure. 'e2tree' is a new way of explaining an ensemble tree trained through 'randomForest' or 'xgboost' packages.
| Version: | 0.2.0 | 
| Imports: | dplyr, doParallel, parallel, foreach, future.apply, ggplot2, Matrix, partitions, purrr, tidyr, ranger, randomForest, rpart.plot, Rcpp, RSpectra, ape | 
| LinkingTo: | Rcpp | 
| Suggests: | testthat (≥ 3.0.0) | 
| Published: | 2025-07-16 | 
| DOI: | 10.32614/CRAN.package.e2tree | 
| Author: | Massimo Aria  [aut, cre, cph],
  Agostino Gnasso  [aut] | 
| Maintainer: | Massimo Aria  <aria at unina.it> | 
| BugReports: | https://github.com/massimoaria/e2tree/issues | 
| License: | MIT + file LICENSE | 
| URL: | https://github.com/massimoaria/e2tree | 
| NeedsCompilation: | yes | 
| Citation: | e2tree citation info | 
| Materials: | README, NEWS | 
| CRAN checks: | e2tree results |