Package ‘disprose’

October 13, 2022
Type Package

Title Discriminating Probes Selection
Version 0.1.6
Maintainer Elena Filatova <filatova@nniiem.ru>

Description
Set of tools for molecular probes selection and design of a microarray, e.g. the assessment of phys-
ical and chemical properties, blast performance, selection according to sensitivity and selectiv-
ity. Methods used in package are described in: Lorenz R., Stephan H.B., Honer zu Siederdis-
sen C. et al. (2011) <doi:10.1186/1748-7188-6-26>; Camacho C., Coulouris G., Av-
agyan V. et al. (2009) <doi:10.1186/1471-2105-10-421>.

License GPL-3
Encoding UTF-8
Language en-us
LazyData true

Suggests BBmisc, biomartr, curl, DBI, dplyr, rentrez, reutils,
RSQLite, stats, stringr, seqinr, TmCalculator, utils, XML

Depends R (>=3.5.0)
RoxygenNote 7.1.2
NeedsCompilation no

Author Elena Filatova [aut, cre] (<https://orcid.org/0000-0002-6683-7191>),
Oleg Utkin [ctb] (<https://orcid.org/0000-0002-7571-525X>),
Blokhina Scientific Research Institute of Epidemiology and Microbiology
of Nizhny Novgorod, Russia [fnd]

Repository CRAN
Date/Publication 2022-03-18 23:30:02 UTC

R topics documented:

add_adapters e 2
ann.data oL L. e e e e 4
annotate_probes L.l e 5

https://doi.org/10.1186/1748-7188-6-26
https://doi.org/10.1186/1471-2105-10-421
https://orcid.org/0000-0002-6683-7191
https://orcid.org/0000-0002-7571-525X

2 add_adapters
blast.fill e 7
blast.raw e e e e e e e e e e e e e e 8
blast_local e 9
count_PhCh e 11
CUL_PIODES . . . o v v o i et e e e e e e e e e e e e e 16
CULSIIING o o e 18
delete_duplicates_DF 18
fill_blast_result e e e 20
get_GA_files e e e 22
get_GIS e e e 23
get_seq_for_ DB 26
get_seq_info 27
make_blast DB e 30
make idSo s, 31
meta.all e 32
Meta.target e e e e e e e e e e 33
normalize DF e 34
rate_DFE . . . 35
read_and_unite_files L 36
read_from_table_file 37
store_in_DB 39
summarize_blast_result 41
trim_DF . . . 45
unite. NCBI _ac.nums 46
unite_two_DF e 47

Index 49

add_adapters Add adapters to probes
Description

Add set of adapters to oligonucleotide probes

Usage

add_adapters(

probe.id.var,
probe.var,

ad.len,

ad.nucl = "t",

end = c(3, 5),
mc.cores = 1,

digits = 4,

return = "dataframe”,
data,
data.probe.id.var,

add_adapters 3

count.mfe = FALSE,
RNAfold.path,

temperature = 40,
trim.mfe = FALSE,

MFEmin = 0,

MFE.files.dir = NULL,
delete.MFE.files = FALSE,
verbose = TRUE

Arguments

probe.id.var vector of probes’ identification numbers

probe.var character; character; vector of nucleotide probes

ad.len integer; vector of adapter length

ad.nucl character; vector of adapter nucleotides

end integer; probe’s end for adapter attachment. Possible values are 3 and 5.

mc.cores integer; number of processors for parallel computation (not supported on Win-
dows)

digits integer; number of decimal places to round the result (MFE)

return character; returned object; possible values are: "vector” (vector of nucleotide

probes with added adapters), "dataframe"” (data frame with probes, adapters
and their characteristics), "add” (user’s data frame with added data of probes,
adapters and their characteristics)

data, data.probe.id.var
user’s data frame and it’s variable with probes identification numbers (used if
return = "add")
count.mfe logical; count minimum folding energy for probes with adapters
RNAfold.path, temperature, trim.mfe, MFEmin, MFE.files.dir, delete.MFE.files
used if count.mfe = TRUE; see count_MFE[disprose] for details

verbose logical; show messages

Details

ad. len parameter indicates number of ad. nucl repeats. For example, with ad. 1en =5 for ad. nucl
= "t" adapter will be "ttttt" and for ad.nucl = "ac"” adapter will be "acacacacac”.

ad.len, ad.nucl and end might be vectors of any length. All possible variants of adapters will be
added to probes and tested.

For MFE counting ViennaRNA Package (UNIX or Windows) must be installed. see count_MFE[disprose]
for details

Value

Vector of nucleotide probes with added adapters, or data frame with probes, adapters and their
characteristics, or user’s data frame with added data of probes, adapters and their characteristics.

4 ann.data

Author(s)

Elena N. Filatova

Examples

probes <- data.frame (ids = 1:3, probes = ¢ ("acacacacacaca"”, "aaaaagggggtttttccccc”,
"atgcgctagctcage”))
ad.data <- add_adapters(probe.var = probes$probes, probe.id.var = probes$ids,
ad.len = c(5, 8), ad.nucl = c("t", "dt"), end = c(3, 5),
count.mfe = FALSE, mc.cores = 1, digits = 4,
return = "dataframe”, data = probes, data.probe.id.var = probes$ids)

ann.data Chlamydia pneumoniae genome annotation.

Description

A dataset containing Chlamydia pneumoniae TW-183 (complete sequence, NC_005043.1.) genome
annotation

Usage

ann.data

Format

A data frame with 2218 rows and 9 variables:

seqid sequence identification number
source source database name

type type of annotated region

start region’s start position

end region’s end position

score score

strand strand

phase phase

attribute region description

Source

https://www.ncbi.nlm.nih.gov/

https://www.ncbi.nlm.nih.gov/

annotate_probes 5

annotate_probes Annotate probes

Description

Get genome annotation for oligonucleotide sequence

Usage

annotate_probes(
source = "data.frame”,
ann.data = NULL,
gff.path = NULL,
org.name,
db = "refseq”,
refs = TRUE,

probe.id.var,
probe.start.var,
probe.stop.var,
file.annot = NULL,

save.format = "txt",

sep = ";",

return = "add.resume”,

priority = c("CDS", "gene", "region"),
data,

data.probe.id.var,
delete.downloads = FALSE,
verbose = TRUE

)
Arguments

source character; genome annotation source. Possible values are: "data. frame” (from
data frame), "giff" (from GIFF file), "load" (download from NCBI with get-
GFF function)

ann.data genome annotation data frame

gff.path character; .gff file name and path

org.name character; the scientific name of the organism of interest

db character; database from which the genome shall be retrieved; possible values
are "refseq”, "genbank”, "ensembl”

refs logical; download genome if it isn’t marked in the database as either a reference

or a representative genome

probe.id.var vector of probes’ identification numbers
probe.start.var, probe.stop.var
integer; vector of probes’ start and end coordinates

6 annotate_probes

file.annot character; resulting annotation file name and path

save.format character; format of resulting annotation file; possible values are "txt", "csv”
sep character; field separator string

return character; returned object; possible values are: "annotation” (annotation data

frame), "resume” (annotation attributes only), "add. resume” (user’s data frame
with added annotation attributes)

priority character; vector of sequence ontology types that should be returned in resume

in the first place
data, data.probe.id.var

users data frame and probes’ identification variable in it (used if return = "add. resume”)
delete.downloads

logical; delete files that were downloaded from NCBI

verbose logical; show messages

Details

This function uses boimartr genome annotation retrieval instruments. See getGFF for details. If
retrieval is not available, GFF file may be used.

This function creates annotation ".txt" or ".csv" file. By default file is created in working directory.
Optionally function returns annotation resume, i.e. annotation attribute for specified sequence on-
tology (SO). Priorities of SOs are set by user in priopity parameter. For example, if priopity
=c("CDS", "gene", "region"), the function returns resume for "CDS" SO, if there are none -
for "gene" CO etc. If there are several attributes meet priority, the first annotation attribute is
returned. If none of priority COs found, the first annotation attribute is returned.

Number of found annotations are indicated in returned data ("ann.n" column).

Value

Annotation data frame, or annotation attributes, or user’s data frame with added annotation at-
tributes. Also annotation file is created.

Author(s)

Elena N. Filatova

Examples

path<-tempdir()
dir.create(path) # create temporal directory
data(ann.data) # load genome annotation data frame
annotation<-annotate_probes(source = "data.frame”, ann.data = ann.data,
probe.id.var = 1:5,
probe.start.var = ¢ (1, 100, 200, 300, 400),
probe.stop.var = ¢ (99, 199, 299, 399, 499),
file.annot = paste@(path, "/annotation.txt"), save.format = "txt",
return = "resume")
file.remove(paste@(path, "/annotation.txt"”)) # delete files
unlink(path, recursive = TRUE)

blast.fill 7

blast.fill Local BLAST results with added content.

Description

Result of BLAST of 5 probes against local database of target nucleotide sequences of Chlamy-
dia pneumoniae. Local BLAST was performed with blast_local () function. Subjects’ Genbank
Identifiers are added with fill_blast_result () function.

Usage
blast.fill

Format

A data frame with 72 rows and 19 variables:

probe probe sequence

probe.length probe sequence’s length
Qid query identification number
Qstart query start position

Qend query end position

Rgi subject Genlnfo Identifier number
Racc subject NCBI accession number
Rtitle subject title

Rtaxid subject taxon identificator
Rstart subject start position

Rend subject end position

alig.length length of alignment
mismatch amount of mismatches
gaps amount of gaps

ident.number amount of identical positions
score alignment score

bitscore alignment bitscore

Evalue alignment e-value

Qcover query coverage, %

8 blast.raw

blast.raw Local BLAST results.

Description

Result of BLAST of 5 probes against local database of target nucleotide sequences of Chlamydia
pneumoniae. Local BLAST was performed with blast_local () function.

Usage

blast.raw

Format

A data frame with 72 rows and 19 variables:

probe probe sequence

probe.length probe sequence’s length
Qid query identification number
Qstart query start position

Qend query end position

Rgi subject Genlnfo Identifier number
Racc subject NCBI accession number
Rtitle subject title

Rtaxid subject taxon identificator
Rstart subject start position

Rend subject end position

alig.length length of alignment
mismatch amount of mismatches
gaps amount of gaps

ident.number amount of identical positions
score alignment score

bitscore alignment bitscore

Evalue alignment e-value

Qcover query coverage, %

blast_local

blast_local

Local BLAST

Description

Perform nucleotide BLAST with local database

Usage

blast_local(
probe.var,
probe.id.var

= NULL,

fasta.way = NULL,
blastn.way = NULL,
db.way = NULL,
out.way = NULL,

mc.cores = 1,

add.query.info = FALSE,
temp.db = NULL,

delete.files
eval = 1000,
ws =7,
reward = 1,

penalty = -3,

gapopen = 5,
gapextend =

= FALSE,

’

maxtargetseqs = 500,
verbose = TRUE

Arguments

probe.var
probe.id.var
fasta.way
blastn.way
db.way
out.way

mc.cores

add.query.info
temp.db
delete.files

eval

character; query - vector of nucleotide sequences
vector of identification numbers for query sequences
character; name and path to FASTA file

character; name and path to blastn executable file
character; name and path to local BLAST database
character; name and path to blastn output file

integer; number of processors for parallel computation (not supported on Win-
dows)

logical; add query nucleotide sequence and its length to result
character; temporal SQLite database name and path
logical; delete created FASTA and output files

integer; expect value for saving hits

10 blast_local

WS integer; length of initial exact match
reward integer; reward for a nucleotide match
penalty integer; penalty for a nucleotide mismatch
gapopen integer; cost to open a gap

gapextend integer; cost to extend a gap

maxtargetseqs integer; number of aligned sequences to keep

verbose logical; show messages

Details

For this function BLAST+ executables (blastn) must be installed and local nucleotide database must
be created.

While working, the function creates blastn input FASTA file and output file. If files exist already,
they will be overwritten. Those files could be deleted by delete.files = TRUE parameter.

If no probe. id. var is provided, query sequences are numbered in order, starting with 1.
Query cover is query coverage per HSP (as a percentage)

If add.query. info = TRUE function saves data in temporal SQLite database. Function will stop if
same database already exists, so deleting temporal database (by setting delete.files = TRUE) is
highly recommended.

"no lines available in input" error is returned when there are no BLAST results matching the speci-
fied parameters. Adjust BLAST parameters.

Value

Data frame with BLAST alignments: query sequence id, start and end of alignment in query, subject
GI, accession, title and taxon id, start and end of alignment in subject, length of alignment, number
of mismatches and gaps, number of identical matches, raw score, bit score, expect value and query
cover. If add. result.info = TRUE, query sequence and its length are also added to data frame.

Author(s)

Elena N. Filatova

References

Camacho C., Coulouris G., Avagyan V. et al. (2009). BLAST+: architecture and applications.
BMC Bioinformatics 10, 421. https://bmcbioinformatics.biomedcentral.com/articles/
10.1186/1471-2105-10-421.

Examples

Not run:

This function is using BLAST applications. BLAST+ should be installed.
Local nucleotide database should be created

Local database of target sequences of Chlamydia pneumoniae was created
in temporal directory previously (see make_blast_DB () function)

path <- tempdir()

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-10-421
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-10-421

count_PhCh 11

dir.create (path)
#set probes for local BLAST
probes <- c¢ ("catctctatttcggtagcagctcc”, "aaagtcatagaaaagcctgtagtcge”,
"ccttcttctcgaactctgaagtacact”, "aaaaaaaaaaaaaaaaa”, "acacacacacacaac")
blast.raw <- blast_local(probe.var = probes, probe.id.var = NULL,
fasta.way = paste@ (path, "/blast.fasta"),
blastn.way = "D:/Blast/blast-2.11.0+/bin/blastn.exe"”,
db.way = paste@ (path, "/DB"),
out.way = paste@ (path, "/blast.out"),
mc.cores=1, add.query.info = TRUE, temp.db = paste@ (path, "/temp.db"),
delete.files = TRUE, eval = 1, maxtargetseqs = 200)

End(Not run)

count_PhCh Calculate physical and chemical properties

Description

Calculates GC-content, detects several nucleotides in a row, calculates minimum folding energy and
melting temperature for oligonucleotide probes.

Usage

count_PhCh(
probe.var,
trim = FALSE,
data,
digits = 4,
mc.cores = 1,
MFE.files.dir = NULL,
delete.MFE.files = FALSE,

GCmin = 40,
GCmax = 60,
nUCl.patter’n = C("a”, Iltll’)Igll’ “C"),
n.crit =5,

RNAfold.path,
temperature = 40,
MFEmin = -3,
TD.params = NULL,
TMmin = 55,

TMmax = 60,
verbose = TRUE,
Na = 50,

K =20,

Tris = 0,

Mg = 0,

12

dNTPs = ©
)

count_GC(
probe.var,
trim.gc = FALSE,
GCmin = 40,
GCmax = 60,
mc.cores = 1,
add.to.data = FALSE,
data,
digits = 4

)

count_REP(
probe.var,
trim.rep = FALSE,
nucl.pattern = c("a", "t",
n.crit = 5,
mc.cores = 1,
add.to.data = FALSE,
data

)

count_MFE(
probe.var,
RNAfold.path,
temperature = 40,
trim.mfe = FALSE,

MFEmin = -3,
add.to.data = FALSE,
data,

MFE.files.dir = NULL,
delete.MFE.files = FALSE,
mc.cores = 1,
digits = 4,
verbose = TRUE

)

count_TM(
probe.var,
TD.params = NULL,
trim.tm = FALSE,

TMmin = 55,

TMmax = 60,
add.to.data = FALSE,
data,

digits = 4,

nan

g,

n_n

C

),

count_PhCh

count_PhCh

mc.cores = 1,

13

verbose = TRUE,

Na = 50,
K =20,
Tris = 0,
Mg = 0,
dNTPs = @

Arguments

probe.var

character; vector of nucleotide probes

trim, trim.gc, trim.rep, trim.mfe, trim.tm

digits

mc.cores

MFE.files.dir

logical; whether to select results that meet the criterion
integer; number of decimal places to round the result

integer; number of processors for parallel computation (not supported on Win-
dows)

character; directory for RNAfold input and output files

delete.MFE.files

GCmin, GCmax

nucl.pattern
n.crit
RNAfold.path
temperature
MFEmin

TD.params

TMmin, TMmax

verbose
Na

Tris

Mg

logical; delete RNAfold input and output files

numeric; minimum and maximum value of GC-content (percent, used if trim =
TRUE)

character; vector of nucleotide pattern

integer; minimal amount of nucleotide pattern’s repeats in a row to detect
character; name and path to RNAfold executable file

numeric; folding design temperature

numeric; maximum value of folding energy (used if trim = TRUE)

character; vector of length 4, contains designation for four tables with thermo-
dynamic values (nn_table - thermodynamic NN values, tmm_table - thermody-
namic values for terminal mismatches, imm_table - thermodynamic values for
internal mismatches, de_table - thermodynamic values for dangling ends). See
Tm_NN for details.

numeric; minimum and maximum value of melting temperature (used if trim =
TRUE)

logical; show messages

numeric; millimolar concentration of Na, default is 50 (used for count_TM func-
tion)
numeric; millimolar concentration of K, default is O (used for count_TM func-
tion)
numeric; millimolar concentration of Tris, default is O (used for count_TM func-
tion)

numeric; millimolar concentration of Mg, default is 0 (used for count_TM func-
tion)

14 count_PhCh

dNTPs numeric; millimolar concentration of dNTPs, default is O (used for count_TM
function)

add. to.data, data
logical; add result vector to specified data frame (used unconditionally if trim
= TRUE)

Details

GC-content trimming selects results that are between GCmin and GCmax (inclusive). Nucleotides’
amount trimming deletes probes that contain n.crit or more of same nucleotides (pattern) in a
row. Minimum folding energy trimming selects results that are equal or more than MFEmin. Melting
temperature trimming selects results that are between TMmin and TMmax (inclusive).

This function is using ViennaRNA service to count minimum folding energy. ViennaRNA Pack-
age (UNIX or Windows) must be installed. While counting MFE, working directory is set to
MFE.files.dir and input and output files for ViennaRNA ("seq_in" and "seq_out") are created
in the working directory.Afterwards the working directory is changed back to user’s setting. If no
MFE.files.dir exists it is created and is not deleted even if delete.MFE.files = TRUE.

Melting temperature is counted with Tm_NN function. Indication of thermodynamic values must be
provided. By default they are: nn_table = "DNA_NN4", tmm_table = "DNA_TMM1", imm_table
="DNA_IMM1", de_table = "DNA_DEI1".

Value

If trim = FALSE, count_PhCh function returns data frame with GC-count (GC.percent), nucleotide
repeats (repeats, TRUE/FALSE), minimum folding energy (MFE) and melting temperature (TM)
columns. If trim=TRUE, count_PhCh function returns provided data frame with attached four
columns and rows selected according to values GCmin, GCmax, n.crit, MFEmin, TMmin, TMmax.

If trim. gc= FALSE, count_GC function returns GC. percent vector or data with attached GC. percent
column (when add. to.data = TRUE). If trim.gc = TRUE, count_GC function returns provided data
frame with attached GC. percent column and rows selected according to GCmin, GCmax values.

If trim.rep = FALSE, count_REP function returns repeats vector (logical; TRUE/FALSE - there
are/there are no nucleotide repeats) or data with attached repeats column (when add.to.data =
TRUE). If trim. rep = TRUE, count_REP function returns provided data frame with attached repeats
column and rows selected according to n.crit value.

If trim.mfe = FALSE, count_MFE function returns MFE vector or data with attached MFE column
(when add. to.data = TRUE). If trim.mfe = TRUE, count_MFE function returns provided data frame
with attached MFE column and rows selected according to MFEmin value.

If trim.tm = FALSE, count_TM function returns TM vector or data with attached TM column (when
add.to.data =TRUE). If trim.tm = TRUE, count_TM function returns provided data frame with
attached TM column and rows selected according to TMmin, TMmax values.

Functions
* count_PhCh: Calculates GC.percent, detects several nucleotides in a row, calculates minimum
folding energy and melting temperature
* count_GC: Calculates GC-content (percent)

e count_REP: Detects several nucleotides in a row

count_PhCh 15

* count_MFE: Calculates minimum folding energy

* count_TM: Calculates melting temperature

Author(s)

Elena N. Filatova

References

Lorenz R., Stephan H.B., Honer zu Siederdissen C. et al. (2011). ViennaRNA Package 2.0. Algo-
rithms for Molecular Biology, 6, 1. https://almob.biomedcentral.com/articles/10.1186/
1748-7188-6-26.

Examples

probes <- data.frame (ids = 1:3, probes = ¢ ("acacacacacaca”", "aaaaagggggtttttccccc”,
"atgcgctagctcage”))
probes <- count_GC (probe.var = probes$probes, trim.gc = FALSE, GCmin = 40, GCmax = 60,
add.to.data = TRUE, data = probes)

probes <- count_REP (probe.var = probes$probes, trim.rep = FALSE, n.crit = 5,
add.to.data = TRUE, data = probes)

Not run:

This function is using ViennaRNA service. ViennaRNA Package must be installed.

MFE.files.dir <- tempdir()

probes <- count_MFE (probe.var = probes$probes, RNAfold.path = "D:/Vienna/RNAfold.exe",
temperature = 40, trim.mfe = FALSE, MFEmin = 0,
MFE.files.dir = MFE.files.dir, delete.MFE.files = TRUE,
add.to.data = TRUE, data = probes, mc.cores = 1)

unlink (MFE.files.dir, recursive = TRUE)

End(Not run)
probes <- count_TM (probe.var = probes$probes, TD.params = NULL, trim.tm = FALSE,
TMmin = 55, TMmax = 60, add.to.data = TRUE, data = probes,
digits = 4, mc.cores = 1)
ALl in one command
Not run:
This function is using ViennaRNA service. ViennaRNA Package must be installed.
MFE.files.dir <- tempdir()
probes2 <- count_PhCh (probe.var = probes$probes, trim = FALSE,
nucl.pattern = ¢ ("a", "t", "g", "c"), n.crit = 5,
MFE.files.dir = MFE.files.dir, delete.MFE.files = TRUE,
RNAfold.path = "D:/Vienna/RNAfold.exe", temperature = 40,
TD.params = NULL, digits = 3, mc.cores =1,
data = probes)
unlink (MFE.files.dir, recursive = TRUE)

End(Not run)

https://almob.biomedcentral.com/articles/10.1186/1748-7188-6-26
https://almob.biomedcentral.com/articles/10.1186/1748-7188-6-26

16 cut_probes

cut_probes Cut probes

Description

Generate probes from nucleotide reference sequences

Usage

cut_probes(
ref.seq.from.file = FALSE,
ref.seq.id,
ref.seq.db,
fasta.file = NULL,
delete.fasta = FALSE,

start = 1,

stop = NULL,
start.correction = FALSE,
size = 24:32,

delete.incomplete = FALSE,
delete.identical = FALSE,
give.probes.id = FALSE,
mc.cores = 1,

verbose = TRUE

Arguments

ref.seq.from.file
logical; read reference sequences from file (TRUE) or download them from NCBI
data base (FALSE).

ref.seq.id identification number of reference nucleotide sequences. Only used when ref . seq. from.file
= FALSE. GenBank accession numbers, Genlnfo identifiers (GI) or Entrez unique
identifiers (UID) may be used.

ref.seq.db character; NCBI database for search. See entrez_dbs for possible values. Only
used when ref.seq.from.file = FALSE.

fasta.file character; FASTA file name and path, only used when ref.seq.from.file =
TRUE.

delete.fasta logical; delete FASTA file.

start, stop integer; number of first and last nucleotide of the reference sequence’s segment

that should be cut into probes. All sequence is used by default.

start.correction
logical; count probes’ start and stop nucleotides relatively to the specified seg-
ment (FALSE) or to the whole sequence (TRUE). Only used if start>1.

size integer; vector of probe size

cut_probes 17

delete.incomplete

logical; remove probes that contain undeciphered nucleotides
delete.identical

logical; remove identical (duplicated) probes

give.probes.id logical; add probes’ identification numbers

mc.cores integer; number of processors for parallel computation (not supported on Win-
dows)
verbose logical; show messages
Details

This function takes nucleotide sequences and cut them on segments (probes) of given size. Se-
quences might be downloaded from given FASTA file or from NCBI data bases. In the latter case,
FASTA file is created. If desired, FASTA file can be deleted after.

Not all sequence must be cut on probes, you may define needed segment by start and stop pa-
rameters. Note that in this case probes’ start and stop nucleotides would be counted relatively to the
specified segment (start.correction = FALSE) or to the whole sequence (start.correction =
TRUE).

Undeciphered nucleotides are the one that are indicated by "rywsmkhbvdn" symbols.

Probes’ identification numbers are created by adding numeric indexes to reference sequence’s iden-
tification number.

See cut_string, delete_duplicates_DF and make_ids for details.

Value

Data frame with probe id (optionally), sequence id, probe size, start and stop nucleotide, sequence.

Author(s)

Elena N. Filatova

Examples

path <- tempdir()
dir.create (path)
download and save as FASTA "Chlamydia pneumoniae B21 contig@00o1,
whole genome shotgun sequence” (GI = 737435910)
if (!requireNamespace("rentrez"”, quietly = TRUE)) {
stop("Package \"rentrez\" needed for this function to work. Please install it."”, call. = FALSE)}
reference.string <- rentrez::entrez_fetch(db = "nucleotide”, id = 737435910,
rettype="fasta")
write(x= reference.string, file = paste@ (path, "/fasta"))
probes <- cut_probes (ref.seq.from.file = TRUE, fasta.file = paste@(path, "/fasta"),
delete.fasta = TRUE, start = 1000, stop = 1500,
start.correction = FALSE, size = c(400, 500),
delete.incomplete = FALSE,
delete.identical = FALSE, give.probes.id = TRUE, mc.cores = 1)
unlink (path, recursive = TRUE)

18 delete_duplicates_ DF

cut_string Cut string into segments

Description

Cuts character string into segments of given size.

Usage

cut_string(string, size)

Arguments
string character string; vector of length 1
size integral; vector of length of segments
Details

This function works with one string only. Segments are cut from start to end of a string. size might
be a vector of any length, all possible variants will be cut.

Value

Data frame with segment size, start and end point, segment string.

Author(s)

Elena N. Filatova

Examples

cut_string (string = "aaatttttttccgc”, size = 12:14)

delete_duplicates_DF Delete rows with duplicated values

Description

Delete data frame rows if they contain duplicated values.

delete_duplicates_ DF 19

Usage

delete_duplicates_DF(
data,
duplicated.var,
exact = FALSE,
stay = "first",
choose.var,
choose.stay.val,
pattern,
mc.cores = 1,
verbose = TRUE

Arguments

data data frame;
duplicated.var variable that contains duplicated values
exact logical; values are to be matched as is

stay character; which row with duplicated values will stay; possible values are "first”
(first of rows), "choose” (depending of the value of other variable) and "none”
(rows with values that contain pattern will be removed)

choose.var, choose.stay.val

vector of additional variable to choose the preferred row and it’s preferred value
(used if stay = "choose"”)

pattern deleted pattern (used if stay = "none”)
mc.cores integer; number of processors for parallel computation (not supported on Win-
dows)
verbose logical; show messages
Details

This function checks if there are repeated values in the data frame (in the duplicated.var). If
repeated values are found, the first row with duplicated value stays, others are deleted (if stay =
"first"). If stay = "choose"” the first row with duplicated values and choose.var = choose.stay.val
will stay. If there are no rows with choose.var = choose. stay.val, the first row will stay.

If stay = "none"” all rows with values that contain pattern will be removed.

Value

Data frame without rows that contain duplicates in duplicated.var

Author(s)

Elena N. Filatova

20 fill_blast_result

Examples

data <- data.frame (N = c(1:5, 11:15), name = c(rep("A",4), "AA", rep("B",3), "BB", "C"),
choose = c(rep(c("yes”, "no"), 3), "yes", "yes", "no”, "no"))
delete_duplicates_DF (data = data, duplicated.var = data$N, exact = TRUE, stay = "first")
delete_duplicates_DF (data = data, duplicated.var = data$N, exact = FALSE, stay = "first")
delete_duplicates_DF (data = data, duplicated.var = data$name, exact = TRUE, stay = "first")
delete_duplicates_DF (data = data, duplicated.var = data$name, exact = TRUE,
stay = "choose", choose.var = data$choose, choose.stay.val = "yes")
delete_duplicates_DF (data = data, duplicated.var = data$name, exact = FALSE, stay = "first")
delete_duplicates_DF (data = data, duplicated.var = data$name, exact = FALSE,

stay = "choose", choose.var = data$choose, choose.stay.val = "yes")
delete_duplicates_DF (data =data, duplicated.var = data$name, stay = "none",

pattern = c("A", "B"), exact = TRUE)
delete_duplicates_DF (data =data, duplicated.var = data$name, stay = "none”,

pattern = c("A", "B"), exact = FALSE)

fill_blast_result Complement BLAST result

Description

Provides subjects” Genlnfo Identifiers if BLAST alignment result does not contain one.

Usage

fill_blast_results(
blast.result,
AcNum.column.name = "Racc”,
GI.column.name = "Rgi”,
delete.version = FALSE,
version.sep = ".",
add.gi = "DB",
add.gi.df,
temp.db = NULL,
delete.temp = FALSE,
add.gi.db = NULL,
add.gi.table = NULL,
add.gi.ac.column.name = "AC",
add.gi.gi.column.name = "GI",
mc.cores = 1,
verbose = TRUE

non

delete_AcNum_version(ac.num.var, version.sep = ".", mc.cores = 1)

fill_blast_result 21

Arguments

blast.result data frame; BLAST alignment result

AcNum. column.name, GI.column.name
character; name of column with subject accession numbers and GenInfo Identi-
fier numbers from BLAST result data frame

delete.version logical; remove version suffix from subject accession number

version.sep character; accession number and version suffix separator (a dot for NCBI acces-
sion numbers)

add.gi character; table with linked accession and GI numbers is taken from SQLite
database ("DB") or data frame ("DF")

add.gi.df data frame with table (used if add.gi = "DF")

temp.db character; temporal SQLite database name and path

delete.temp logical; delete created temporal SQLite database

add.gi.db, add.gi.table, add.gi.ac.column.name, add.gi.gi.column.name
SQLite database name and path, table name and name of columns with accession
and GI numbers (used if add.gi = "DB")

mc.cores integer; number of processors for parallel computation (not supported on Win-
dows)
verbose logical; show messages
ac.num.var vector of accession numbers
Details

BLAST alignment, performed with local database, may not contain subject GI information. Also
subject accession may contain version suffix. This can make it difficult to analyze the results further.
This function adds subject GI and removes subject accession version suffix.

To add GI Genlnfo Identifiers table with them linked to accession numbers must be provided as
data frame or SQLite database table. add. gi.df must be a data frame with column one - accession
numbers, column two - GenlInfo Identifier numbers. If add.gi = "DF" temporal SQLite database is
created.

SQLite database table with accession and GI numbers should not contain duplicated rows. It is also
highly recommended to index accession numbers’ variable in database.

delete.version executes in the first step, so if you use this option accession numbers in add. gi
table must not contain version suffix.

AcNum. column.name, GI.column.name, add.gi.ac.column.name and dd.gi.gi.column.name
must be column names exactly as in data frame.
Value

blast.result data frame with added GI and deleted accession version suffix.

Functions

e fill_blast_results: Provides subjects’ Genbank Identifiers if BALST alignment result
does not contain one

e delete_AcNum_version: Remove accession version suffix

22 get_GA_files

Author(s)

Elena N. Filatova

Examples

path <- tempdir()
dir.create (path)
load raw blast results
data (blast.raw)
#load meta.target with result (targets' sequences) GI and Acc.nums
data (meta.target)
blast.fill <- fill_blast_results(blast.result = blast.raw, delete.version = TRUE,
add.gi = "DF", add.gi.df = meta.target[, c("GB_AcNum”, "gi")],
temp.db = paste@ (path, "/temp.db"), delete.temp = TRUE)

get_GA_files Read GISAID sequence file

Description

Get metadata and nucleotide sequence from GISAID files

Usage

get_GA_files(
dir.path,
return = "both",
seq.return = "data.frame”,
fasta.file = NULL,
verbose = TRUE

)
Arguments

dir.path character; directory name and path

return character; type of returned object; possible values are: "info" (sequence meta-
data), "seq" (nucleotide sequences), "both" (both of them).

seq.return character; sequence returned object; possible values are "vector", "data.frame"
and "fasta"

fasta.file character; FASTA file name and path, only used if return = "fasta”

verbose logical; show messages

get_Gls 23

Details

This function works with downloaded from GISAID "Input for the Augur pipeline" archives (with
"metadata.tsv" and "sequences.fasta" files). Archives must be unzipped before usage. All extracted
from GISAID archive files must be in one directory.

If return = "seq", serial numbers are used as sequence identification numbers.

Metadata is transformed into data frame of the same format as get_seq_info function does. Se-
quences are transformed into data type of the same format as get_seq_for_DB function does.

Value

List of length two, where first is metadata and second is nucleotide sequence. If return = "info"
or return = "seq"” only first or second element is returned.
Author(s)

Elena N. Filatova

Examples

Not run:

First download some sequences' archives from GISAID (https://www.gisaid.org/)
unzip them and put into "gisaidfiles” directory

res <- get_GA_files (dir.path = "gisaidfiles”, return = "info")
res <- get_GA_files (dir.path = "gisaidfiles"”, return = "seq", seq.return = "data.frame")
res <- get_GA_files (dir.path = "gisaidfiles"”, return ="both", seq.return = "fasta")

End(Not run)

get_GIs Get Genlnfo Identifier numbers

Description

Retrieves NCBI sequence identifiers (GIs) for given organism name or taxon identifier.

Usage

get_GIs(
org.name,
db,
n.start = 1,
n.stop = NULL,
step = 99999,
return.vector = TRUE,
check.result = FALSE,

24

term = NULL,
temp.dir = NULL,
delete.temp = FALSE,

get_GlIs

verbose = TRUE

)

get_GIs_fix(
gis.list,
org.name,
db,

n.start =1,

n.stop = NULL,

step = 99999,
term = NULL,
temp.dir = NULL,

delete.temp

= FALSE,

verbose = TRUE

Arguments

org.name

db
n.start

n.stop

step

return.vector

check.result
term

temp.dir
delete.temp

verbose

gis.list

Details

character; scientific name or taxon identifier (written as "txid0000") of the or-
ganism/taxon.

character; NCBI database for search. See entrez_dbs() for possible values.
integer; download starting value. Default is 1.

integer; download finishing value. Default is NULL, which provides retrieval of
all available GIs.

integer; download increment value.

logical; whether to return GI numbers as character vector (another variant is list
of vectors).

logical; check if download was done correctly.
character; search query.

character; name and path of directory for downloaded temporary files (only for
"Windows" OS)

logical; delete downloaded files (only for "Windows" OS, does not delete direc-
tory).
logical; show messages

list of previously downloaded GIs vectors.

This function sends the query to NCBI database and returns sequence identifiers according to the
query. By default the query is organism, so the function returns GI numbers for all sequences that are
associated with the requested organism. For example, if org.name = "Homo sapiens” the function
will download GI numbers for all sequences that answer the query "Homo sapiens[Organism]". For
any other query use parameter term.

get_Gls 25

The function downloads GI numbers by piecemeal, by several pieces in one block. The size of the
block is defined by parameter step. It is useful if by any reason the download was interrupted, so
later it is possible to reload only the missing blocks without the need to reload the entire amount of
data. By default, all available GI numbers are downloaded, but you may also choose start and finish
notes by specifying the parameters n.start and n. stop. The numeration starts with 1, not 0. At the
end the resulting list of blocks (list of character vectors) is unlisted into one character vector. You
may prevent this by setting return.vector = FALSE. Also, regardless of return.vector settings,
the list of blocks is returned if the download was somehow compromised.

If download was corrupted you may use get_GIs_fix () function to reload the missing block. The
corrupted list of blocks should be set in gis.list parameter. You may also check and reload data
when get_GIs() function is running by specifying check.result = TRUE.

The function checks for user’s OS type. For Windows temporal files are created while down-
loading, so temp.dir and delete.temp parameters should be set. This helps to solve the "rou-
tines:SSL23_GET_SERVER_HELLO:tlsv1 alert protocol version" problem by using curl instead
of RCurl. However it slows down the function.If there is no temp.dir directory, it will be created
and will not be removed (only temporal files will be deleted if delete. temp = TRUE).

In progress the functions turn off and on scientific notation.

Value

get_GIs() returns character vector of GI numbers. If return.vector = FALSE or there are missing
data, list of character vectors is returned.

get_GIs_fix () returns list of character vectors.

Functions

» get_GIs: Retrieves NCBI sequence identifiers (GIs) for given organism name or taxon iden-
tifier.

e get_GIs_fix: Checks the downloads and tries to retrieve the compromised data.

Author(s)

Elena N. Filatova

Examples

gi.list<-get_GIs(org.name="txid9606", db="nucleotide”,
n.start=1, n.stop=3, step=1,
return.vector = FALSE, check.result=TRUE,
temp.dir = tempdir(), delete.temp=TRUE)

26 get_seq_for_DB

get_seq_for_DB Get nucleotide sequences from NCBI

Description

Retrieves nucleotide sequences from NCBI for given identification numbers.

Usage
get_seq_for_DB(
ids,
db,
check.result = FALSE,
return = "data.frame”,

fasta.file = NULL,
exclude.from.download = FALSE,
exclude.var,

exclude.pattern,

exclude.fixed = TRUE,

verbose = TRUE

)

get_seq_for_DB_fix(res.data, db, verbose = TRUE)

Arguments
ids vector of NCBI sequences’ identification numbers: GenBank accession num-
bers, Genlnfo identifiers (GI) or Entrez unique identifiers (UID)
db character; NCBI database for search. See entrez_dbs() for possible values

check.result logical; check if download was done correctly

return character; sequence returned object; possible values are "vector”, "data.frame"
and "fasta"
fasta.file character; FASTA file name and path, only used if return = "fasta”

exclude. from.download
logical; ignore some sequences while downloading

exclude.var vector that is used to define which sequences should be ignored, only used if
exclude.from.download = TRUE.

exclude.pattern
value that matches to exclude.var and marks unwanted sequences, only used
if exclude. from.download = TRUE

exclude.fixed logical; match exclude.pattern as is, only used if exclude.from.download
= TRUE.

verbose logical; show messages

res.data data.frame; data frame of nucleotide ids and previously downloaded sequences

get_seq_info 27

Details

Master records (for example, in WGS-project) do not contain any nucleotide. They might be ex-
cluded from download with exclude. from.download parameters. However this has no affect and
such ids do not have to be excluded when loading.

If writing FASTA to existing FASTA file, sequences are appended.

Value

If return = "vector” function returns vector of nucleotide sequences, return = "data.frame" -
data frame with nucleotide ids and nucleotide sequences, return = "fasta" - writes FASTA file,
no data returned.

Functions

» get_seq_for_DB: Retrieves NCBI nucleotide sequences for given identification numbers.

» get_seq_for_DB_fix: Checks the downloads and tries to retrieve the compromised data.

Author(s)

Elena N. Filatova

Examples

ids<-c(2134240466, 2134240465, 2134240464)
fasta.file<-tempfile()
get_seq_for_DB (ids = ids, db = "nucleotide"”, check.result = TRUE,
return = "fasta”, fasta.file = fasta.file, exclude.from.download=FALSE)
file.remove(fasta.file)

get_seqg_info Get NCBI sequence record

Description

Retrieves information about sequences from NCBI records for given organism name or taxon iden-
tifier.

Usage

get_seq_info(
org.name,
db,
n.start = 1,
n.stop = NULL,
step = 500,
return.dataframe = FALSE,

28

get_seq_info

check.result = FALSE,

term = NULL,

verbose = TRUE

)

get_seq_info_fix(

info.list,

web.history = NULL,
org.name = NULL,

db,

n.start =1,

n.stop = NULL,

step = 500,
term = NULL,
verbose = TRUE

)

info_listtodata(info.list, unlist = TRUE, verbose = TRUE)

Arguments

org.name

db
n.start

n.stop

step

character; scientific name or taxon identifier (written as "txid0000") of the or-
ganism/taxon.

character; NCBI database for search. See entrez_dbs() for possible values.
integer; download starting value. Default is 1.

integer; download finishing value. Default is NULL, which provides retrieval of
all available GIs.

integer; download increment value. Maximum is 500.

return.dataframe

check.result
term

verbose
info.list

web.history

unlist

Details

integer; whether to return information as structured data frame (another variant
is list of lists).

logical; check if download was done correctly.
character; search query.

logical; show messages

list of previously downloaded records.

previously saved web_history object for use in calls to the NCBI. New web.history
is created if none is provided.

logical; unlist result before transforming (only recommended if step > 1).

This function sends the query to NCBI database and returns sequence records according to the
query. By default the query is organism, so the function returns data of all sequences that are
associated with the requested organism. For example, if org.name = "Homo sapiens” the function
will download data for all records that answer the query "Homo sapiens[Organism]". For any other
query use parameter term.

get_seq_info 29

The function downloads records by piecemeal, by several pieces in one block. The size of the block
is defined by parameter step. It is useful if by any reason the download was interrupted, so later it
is possible to reload only the missing blocks without the need to reload the entire amount of data.
By default, all available records are downloaded, but you may also choose start and finish points
by specifying the parameters n.start and n.stop. The numeration starts with 1, not 0. At the
end the resulting list of blocks (list of lists if step > 1) is unlisted into one data frame that contains
information about record GI, UID, caption, source database, organism, strain etc. You may prevent
this by setting return.dataframe = FALSE. Also, regardless of return.dataframe settings, the
list of blocks is returned if the download was somehow compromised. Optionally, you can turn the
resulting list into data frame later using the function info_listtodata(). Note that in this case,
if parameter info.list was inherited from get_seq_info() function, the result must be unlisted
first (use unlist = TRUE).

If download was corrupted you may use get_seq_info() function to reload the missing block. The
corrupted list of blocks should be set in info.list parameter. You may also check and reload data
when get_seq_infos() function is running by specifying check.result = TRUE.

In progress the functions turn off and on scientific notation.

Value

get_seq_info() returns data frame that contains most of sequence information from NCBI records.
If return.dataframer = FALSE or there are missing data, list of lists is returned. List contains full
information from NCBI records.

get_seq_info_fix() returns list of lists.

info_listtodata() returns data frame.

Functions

* get_seq_info: Retrieves NCBI sequence records for given organism name or taxon identifier.
* get_seq_info_fix: Checks the downloads and tries to retrieve the compromised data.

e info_listtodata: Transforms downloaded list into data frame.

Author(s)

Elena N. Filatova

Examples

info.dataframe <- get_seq_info (org.name = "txid9606", db = "nucleotide”, n.start =1,
n.stop = 10, step = 5, return.dataframe = TRUE,
check.result = TRUE)

30 make_blast DB

make_blast_DB Builds local database for BLAST

Description

Builds a BLAST database with local sequences using FASTA file.

Usage

make_blast_DB(
makeblastdb.way,
fasta.way,
db.way,
db.type = "nucl”,
db.title,
delete.fasta = FALSE,
verbose = TRUE

Arguments

makeblastdb.way
character; name and path to makeblastdb executable file

fasta.way character; name and path to FASTA file
db.way character; name and path to local BLAST database
db. type character; type of BLAST database
db.title character; BLAST data base title
delete.fasta logical; delete FASTA file
verbose logical; show messages
Details

This function is using BLAST applications. BLAST+ (UNIX or Windows) should be installed.

Value

The function creates local BLAST data base. No additional data is returned.

Author(s)

Elena N. Filatova

References

Camacho C., Coulouris G., Avagyan V. et al. (2009). BLAST+: architecture and applications.
BMC Bioinformatics 10, 421. https://bmcbioinformatics.biomedcentral.com/articles/
10.1186/1471-2105-10-421.

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-10-421
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-10-421

make_ids 31

Examples

Not run:

This function is using BLAST applications. BLAST+ should be installed.

FASTA file with sequences for local data base should be downloaded first (see get_seq_for_DB ())

path <- tempdir()

dir.create (path)

load metadata for target sequences of Chlamydia pneumoniae

(meta.target)

load sequences, it will take about 3 minutes

get_seq_for_DB (ids = meta.target$gi, db = "nucleotide”, check.result = TRUE,
return="fasta", fasta.file = paste@ (path, "/seq.fasta"), verbose = TRUE)

create local data base, it will take 0.235217 seconds

make_blast_DB (makeblastdb.way = "D:/Blast/blast-2.11.0+/bin/makeblastdb.exe”,
fasta.way = paste@ (path, "/seq.fasta”), db.title = "Cl_pneumoniae”,
db.way = paste@ (path, "/DB"), db.type = "nucl”, delete.fasta = FALSE)

delete FASTA file (also can set delete.fasta = TRUE)

file.remove (paste@ (path, "/seq.fasta"))

End(Not run)

make_ids Create unique identification values

Description

Creates unique identification values by adding numbers to identical values.

Usage

make_ids(var, sep = "_")
Arguments

var vector of values

sep character; string to separate the terms
Details

This function takes vector with same values and adds numbers to create unique values.

Value

Character vector of var with attached numbers.

Author(s)

Elena N. Filatova

32

Examples

" "

var<-c("one", "two", "three", "one", "two", "three", "one")

make_ids(var)

meta.all

meta.all Metadata of all available Chlamydia pneumoniae’s sequences.

Description

A dataset containing metadata of all Chlamydia pneumoniae’s nucleotide sequences that were

downloaded from NCBI Nucleotide database (November, 2021)

Usage

meta.all

Format

A data frame with 9062 rows and 21 variables:

uid sequence identification number

gi sequence identification number
GB_AcNum sequence identification number
createdate date of note’s creation
updatedate date of last note’s update
source_db database

organism organism name

title sequence title

strain strain

taxid taxon identificator

length sequence length

biomol biomolecule

moltype molecular type

genome genome type

complete sequence completness
geneticcode type of genetic and codon codes
strand strand

host host

country country

isolation_source isolation material

collection_date collection date

meta.target 33

Source

https://www.ncbi.nlm.nih.gov/

meta.target Metadata of target Chlamydia pneumoniae’s sequences.

Description

A dataset containing target nucleotide sequences of Chlamydia pneumoniae that were downloaded
from NCBI Nucleotide database (November, 2021). Target sequences are chosen from all available
sequences as targets for discriminating probes.

Usage

meta.target

Format
A data frame with 183 rows and 21 variables:

uid sequence identification number
gi sequence identification number
GB_AcNum sequence identification number
createdate date of note’s creation
updatedate date of last note’s update
source_db database

organism organism name

title sequence title

strain strain

taxid taxon identificator

length sequence length

biomol biomolecule

moltype molecular type

genome genome type

complete sequence completness
geneticcode type of genetic and codon codes
strand strand

host host

country country

isolation_source isolation material
collection_date collection date

Source

https://www.ncbi.nlm.nih.gov/

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/

34 normalize_ DF

normalize_DF Normalize variable

Description

Normalize variable in a data frame

Usage
normalize_DF(
data,
var.name,
method = "mean”,
norm. number,
return = "add.end”,
digits = 2
)
Arguments
data data frame with numeric variable that should be normalized
var.name character; data frame column name with numeric variable that should be nor-
malized
method character; normalization method; possible values are: "mean” (normalize to
mean), "median” (normalize to median), "number” (normalize to given num-
ber)
norm. number numeric; a value to normalize to (if method = "number")
return character; return object; possible values are: "vector"” (return a vector of nor-
malized values), "replace” (replace var.name values with normalized values
in data frame), "add.near"” (add normalized values next to var.name values
in data frame), "add.end"” (add normalized values as the latter column in data
frame)
digits integer; number of decimal places to round the normalized value
Details

This function scales variable to a range of (0-1), where 1 get values that are the most close to mean,
median or given number. See normalize for details.

var.name must be exact column name as in data frame.

Value

Vector or data frame with normalized values.

Author(s)

Elena N. Filatova

rate_ DF 35

Examples

data <- data.frame (N = 1:5, temperature = c(37.5, 36.6, 41.2, 38.8, 36.7),
name = c("Bob"”, "Kate"”, "Steve”, "Sonya", "Mary"))

normalize_DF (data = data, var.name = "temperature”, method = "mean”, return = "vector")
normalize_DF (data = data, var.name = "temperature”, method = "mean”, return = "replace”)
normalize_DF (data = data, var.name = "temperature”, method = "mean”, return = "add.near")
normalize_DF (data = data, var.name = "temperature”, method = "number”,
norm.number = 36.6, return = "add.end”)
rate_DF Rate variables
Description

Count data frame’s row rate according to several variables

Usage

rate_DF(
data,
rate.var,
weights,
return = "add",
as.percent = FALSE,
percent.var,

digits = 2
)
Arguments

data data frame with rated variables

rate.var character; vector of data frame column names with numeric variables of range
(0-1) that should be used for rating

weights numeric; vector of variables’ weights (their sum must be 1)

return character; return object; possible values are: "vector"” (return a vector of rate
values), "add"” (add rated values as the latter column in data frame)

as.percent logical; if some rated variables are percentages

percent.var character; vector of data frame column names with rated variables that are per-

centages

digits integer; number of decimal places to round the rate value

36 read_and_unite_files

Details

This function counts rate as rate = varixweight1 + var2xweight2 + var3xweight3 +. .. etc. All
variables must be in range (0-1) and sum of weights must be 1. If you use percentages as rating
variable, use as.percent = TRUE. Those variables would be divided by 100 before rating and then
would be multiplicated by 100 after rating.

rate.var and percent.var must be exact column names as in data frame.

Value

Vector or data frame with rate values.

Author(s)

Elena N. Filatova

Examples

data <- data.frame (N=1:5, percent = c(12, 15, 18, 20, 94), number = c(0.1, 0.5, 0.6, 0.8 ,0.9))
rate_DF (data = data, rate.var = c("percent”, "number”), weights = c(0.4, 0.6), return = "add",
as.percent = TRUE, percent.var = "percent”)

read_and_unite_files Read and unite files

Description

Read a bunch of table files and unite them in one data frame

Usage

read_and_unite_files(
path,
pattern,
sep = ";",
header = TRUE,
add.file.id = FALSE,
file.id = NULL,
unique = FALSE

)

Arguments
path character; directory path
pattern character; file names pattern

sep character; the field separator character

read_from_table_file

header
add.file.id
file.id

unique

Details

37

logical; files contain the names of the variables as its first line
logical; add file identification columns
data frame with file identification values

logical; delete repeated rows

All files must be tables of same type. All files must be in one directory.

File identification columns might be added. There might be any number of such columns. They
are added at the beginning of result data frame. File identification values are set as file.id data
frame, where each column contains possible identification values and column names are names of
identificator. If no file.id provided file names are set by default.

Value

data frame with united files’ content.

Author(s)

Elena N. Filatova

Examples

path <- tempdir()
dir.create(path)

t1<-paste@(path, "/tablel")
t2<-paste@(path, "/table2")
tablel <- data.frame (Num = 1:10, Letter = rep("A", 10))

write.table (tablel, t1, sep = ";")
table2 <- data.frame (Num = 1:10, Letter = rep("B", 10))
write.table (table2, t2, sep = ";")

read_and_unite_files (path = path, pattern = "table”, header

TRUE, sep = ";",
add.file.id = TRUE)

read_and_unite_files (path = path, pattern = "table”, header = TRUE, sep = ";",

add.file.id = TRUE,
file.id = data.frame (id1 = c(1,2), id2 = c("one"”, "two")))

file.remove (t1); file.remove (t2)

read_from_table_file Read table file

Description

Read table file and selects the required rows and columns.

38 read_from_table_file
Usage
read_from_table_file(
file,
choose.columns = FALSE,
column.names,
select = FALSE,
select.column.name,
select.val,
unique = FALSE,
sep = n ; n R
header = TRUE
)
Arguments
file character; file name and path
choose.columns logical; return chosen columns only
column.names character; vector of name of columns that are chosen to be returned
select logical; return only rows that contain selected values in one column
select.column.name
character; name of column that contains selected values
select.val vector of values that define rows that should be returned
unique logical; delete duplicated rows
sep character; the field separator character
header logical; files contain the names of the variables as its first line
Details

This function reads table files and returns data frame with selected rows (only rows with specified
values) and columns. Also duplicated rows may be deleted.

column.

Value

names and select.column.name must be exact column names as in data frame.

Data frame with file content, optionally trimmed.

Author(s)

Elena N. Filatova

Examples

mydata <- data.frame (N = 1:10, letter = c(rep ("A", 5), rep ("B", 4), "C"),

num = c(1, rep(1:4, 2), 5))

t1<-tempfile()
write.table (mydata, t1, sep = ";")
read_from_table_file (file = t1)

store_in_DB

read_from_table_file

read_from_table_file

read_from_table_file

read_from_table_file

file.remove (t1)

39

(file = t1, select = TRUE, select.column.name = "letter”,
select.val = c("A", "C"))

(file = t1, select = TRUE, select.column.name = "letter”,
select.val = c("A", "C"), unique=TRUE, choose.columns = TRUE,
column.names = c("letter”, "num"))

(file = t1, select = TRUE, select.column.name = "letter”,

select.val = c("A", "C"), unique = TRUE, choose.columns = TRUE,
column.names = c(”"N", "num"))

(file = t1, select = TRUE, select.column.name = "letter”,
select.val = c("A", "C"), unique = TRUE, choose.columns = TRUE,
column.names = c("letter”, "N"))

store_in_DB

Store data in SQLite database

Description

Write, read and delete tables from SQLite database.

Usage
list_DB(database)

write_to_DB(

database,

data,

table,

overwrite = FALSE,
append = FALSE,
verbose = TRUE

index_DB(database,

read_from_DB(
database,
table,
choose.
column.
select
select.
select.
unique

columns =
names,
= FALSE,

val,
= FALSE

delete_from_DB(database, table, verbose =

table, index.unique, index.column.name, verbose = TRUE)

FALSE,

column.name,

TRUE)

40 store_in_DB

Arguments
database character; SQLite database name and path.
data data frame that should be stored as database table.
table character; table name.
overwrite logical; use overwrite = TRUE if you want to overwrite a table that already ex-
ists in database
append logical; append rows to table
verbose logical; show messages

index.unique logical; vector of indicators to create unique or not unique indexes
index.column.name
vector of indexed columns’ names
choose.columns logical; return chosen columns only
column.names character; vector of name of columns that are chosen to be returned

select logical; return only rows that contain selected values in one column
select.column.name

character; name of column that contains selected values

select.val vector of values that define rows that should be returned
unique logical; delete duplicated rows
Details

This functions help to store big data frames in SQLite database which makes it faster to save and
read the data.

This function creates SQLIlite connection to database, fulfills the task and then disconnects. If no
database has been created yet, creates one.

Do not use overwrite = TRUE if table does not exists. Do not use append = TRUE and overwrite =
TRUE at the same time, no append is possible while overwriting.

If multiple indexes are created in one table, they are unrelated.
Do not use dots in data frame character variables, use underscore.

Parameters choose.columns=FALSE, column.names, select, select.column.name, select.val,
unique are only used with linkread_from_DB function. Those parameters define rows and columns
that will be returned.

Value

list_DB returns character vector of names of database tables.

read_from_DB returns a data frame with the content of SQL.ite table.

Functions

e list_DB: Lists all tables from SQLite database

e write_to_DB: Writes data frame into SQLite database table

¢ index_DB: Creates SQLite indexes in database table

¢ read_from_DB: Reads table from SQLite database and writes it into data frame.
e delete_from_DB: Deletes table from SQLite database.

summarize_blast_result 41

Author(s)

Elena N. Filatova

Examples

mydata <- as.data.frame (matrix(1:10, 2, 5))

database <- tempfile()

write_to_DB (database, data = mydata, table = "tablel”, overwrite = FALSE)
list_DB (database)

mydata2 <- as.data.frame (matrix(11:20, 2, 5))

write_to_DB (database, data = mydata2, table = "tablel"”, overwrite = TRUE)
mydata3 <- read_from_DB (database, table = "tablel")

delete_from_DB (database, table = "tablel")

file.remove (database)

example with reading table with restricted columns and rows.

mydata <- data.frame(ids = c(1:6), titles = c("A", "B", "C", "D", "E", "E"),
other = rep("other”, 6))

database <- tempfile()

write_to_DB (database, data = mydata, table = "tablel”, overwrite = FALSE)

read_from_DB(database, "tablel1"”, choose.columns = TRUE, column.names = c("ids"”, "titles"”, "other"),

select = TRUE, select.column.name = "ids"”, select.val = 3:6, unique = TRUE)
read_from_DB(database, "tablel”, choose.columns = TRUE, column.names = c("titles”, "other"),
select = TRUE, select.column.name = "ids", select.val = 3:6, unique = TRUE)

file.remove (database)

summarize_blast_result
Summarize BLAST result

Description

Summarize aligned, not aligned and undesirably aligned sequences

Usage

summarize_blast_result(
sum.aligned = "sp"”,
blast.probe.id.var,
blast.res.id.var,
blast.res.title.var,
reference.id.var,
reference.title.var,
titles = FALSE,
add.blast.info = FALSE,
data.blast.info,
check.blast.for.source = FALSE,

42

summarize_blast _result

source = NULL,

switch.ids = FALSE,

switch.table,

mc.cores = 1,

digits = 2,

sep = ";",

temp.db = NULL,

delete.temp.db = TRUE,

return = "summary”,
write.alignment = "DB",
alignment.db = NULL,
alignment.table.sp.aligned = NULL,
alignment.table.sp.not.aligned = NULL,
alignment.table.nonsp = NULL,
change.colnames.dots = TRUE,
file.sp.aligned = NULL,
file.sp.not.aligned = NULL,
file.nonsp = NULL,

verbose = TRUE

Arguments

sum.aligned character; summarize specific or not specific alignments; possible values are
"sp” (aligned and not aligned specific subjects) and "nonsp” (aligned non spe-
cific subjects)
blast.probe.id.var
vector of query identification numbers from BLAST result data
blast.res.id.var, blast.res.title.var
vector of subject identification numbers and titles from BLAST result data
reference.id.var, reference.title.var
vector of identification numbers and titles of specific sequences that should be
or might be aligned
titles logical; include titles in alignment reports

add.blast.info logical; add other BLAST results
data.blast.info

data frame; additional BLAST result from BLAST result data
check.blast.for.source

logical; delete queries that are not aligned with one obligatory sequence

source identification number of obligatory sequence for alignment

switch.ids logical; use different identification numbers for BLAST result’s subjects

switch.table data frame; table of old and new identification numbers (and new titles) linked
by row

mc.cores integer; number of processors for parallel computation (not supported on Win-
dows)

digits integer; number of decimal places to round the result

summarize_blast_result 43

sep character; the field separator character
temp.db character; temporal SQLite database name and path
delete.temp.db logical; delete temporal SQLite database afterwards

return character; returned object; possible values are "1ist” (list of data frames with
alignment summary and report for each probe) and "summary” (data frame with
summary for all probes is returned and alignment reports are written into files
or SQLite database tables)

write.alignment
character; write alignment reports into files ("file") or SQLite database tables
("DB"; used if (return = "summary"))

alignment.db, alignment.table.sp.aligned, alignment.table.sp.not.aligned, alignment.table.nonsp
character; SQLite database name and path, tables names (used if write.alignment
= "DB")

change.colnames.dots
logical; change dots to underscore in data frame column names (used if write.alignment
= "DB")

file.sp.aligned, file.sp.not.aligned, file.nonsp
character; file names and path (used if write.alignment = "file")

verbose logical; show messages

Details

This function works with data frame created by blast_local function. It takes BLAST results, divides
aligned subjects on specific (that should be aligned) and non specific (that should not be aligned)
according to reference) values. Function summarizes amount of aligned and not aligned specific
subjects and amount of aligned non specific subjects.

When sum.aligned = "sp" aligned and not aligned specific subjects are summarized and reference. id.var
and reference.title.var should contain sequences that it is necessary to align with. When
sum.aligned = "nonsp” aligned non specific subjects are summarized and reference.id.var

should contain sequences that may be aligned (that are not considered as non specific), no titles

needed.

When return = "summary”, function returns summary (amount of aligned and not aligned subjects)
and writes sorted alignments (alignment report) in file (write.alignment = "file"”) or SQLite
database (write.alignment = "DB"). Usually only subjects’ ids and (optionally) titles are returned,
but you may add as many BLAST results as you like with add.blast.info and data.blast.info
parameters. If you add some BLAST results, all alignments will present in alignment report, if not
- duplicated subjects will be deleted.

By default result tables in database (if write.alignment = "DB") are "sp_aligned", "sp_not_aligned"
and "nonsp", Results are written by appending, so if files or tables already exist, data will be added
into them.

If subjects identification numbers in BLAST result data differ from those in reference.id.var
you may use switch.ids = TRUE to change BLAST ids into new according to switch.table.
switch. table must be a data frame with column one - old ids, column two - new ids and (op-
tionally) column three - new titles. Do not use dots in column names.

When check.blast. for.source = TRUE probes that are non blasted for one special subject (usu-
ally the sequence that was cut for probes) are deleted. No check.blast. for.source is performed

44

summarize_blast_result

if sum.aligned = "nonsp"”. Check for source is performed after the possible id. switch, so source
should be identification number of same type as reference.

Probe identification number must be character variable.

If alignment report is written into database, probe identification variable is indexed in all tables.
Also it is highly recommended to set change.colnames.dots = TRUE to change possible dots to
underscore within result data frame’s column names and avoid further mistakes.

While working function saves data in temporal SQLite database. Function will stop if same database
already exists, so deleting temporal database is highly recommended.

Value

List of data frames with alignment summary and report for each probe or data frame with summary
for all probes (alignment reports are written into files or SQLite database tables).

Author(s)

Elena N. Filatova

Examples

path <- tempdir()
dir.create (path)
load blast results with subject accession numbers
data(blast.fill)
#load metadata of all Chlamydia pneumoniae sequences - they are subjects that
do not count as nonspecific and may be aligned
data(meta.all)
load metadata with target Chlamydia pneumoniae sequences - they are specific subjects
that must be aligned
make new accession numbers to count all WGS sequences as one (see unite_NCBI_ac.nums ())
meta.target.new.ids <- unite_NCBI_ac.nums (data = meta.target,
ac.num.var = meta.target$GB_AcNum,
title.var = meta.target$title,
db.var = meta.target$source_db,
type = "shotgun”, order = TRUE,
new.titles = TRUE)
summarize blast results, count aligned specific subjects with "switch ids"” option
(WGS sequences are counted as one). Add query cover information.
blast.sum.sp <- summarize_blast_result (sum.aligned = "sp”,
blast.probe.id.var = blast.fill$Qid,
blast.res.id.var = blast.fill$Racc,
blast.res.title.var = blast.fill$Rtitle,
reference.id.var = meta.target.new.ids$new.id,
reference.title.var = meta.target.new.ids$new.title,
titles = TRUE,
add.blast.info = TRUE,
data.blast.info = data.frame(Qcover = blast.fill$Qcover),
switch.ids = TRUE, switch.table = meta.target.new.ids,
temp.db = paste@ (path, "/temp.db"”), delete.temp.db = TRUE,
return = "summary”, write.alignment = "DB",
alignment.db = paste@ (path, "/alig.db"))

trim_DF 45

summarize nonspecific alignments (that are not in meta.all dataframe)
blast.sum.nonsp <- summarize_blast_result (sum.aligned = "nonsp”,
blast.probe.id.var = blast.fill$Qid,
blast.res.id.var = blast.fill$Racc,
blast.res.title.var = blast.fill$Rtitle,
reference.id.var = meta.all$GB_AcNum,
reference.title.var = meta.all$title,
titles = TRUE, switch.ids = FALSE,
add.blast.info = TRUE,
data.blast.info = data.frame(Qcover = blast.fill$Qcover),
temp.db = paste@ (path, "/temp.db"),
delete.temp.db = TRUE,
return = "summary”, write.alignment = "DB",
alignment.db = paste@ (path, "/alig.db"))
all specific targets are aligned
sp.aligned <- read_from_DB(database = paste@ (path, "/alig.db"), table = "sp_aligned”)
no targets that are not aligned

sp.not.aligned <- read_from_DB(database = paste@ (path, "/alig.db"), table = "sp_not_aligned")

No nonspecific alignments
nonsp <- read_from_DB(database = paste@ (path, "/alig.db"), table = "nonsp")
file.remove (paste@ (path, "/alig.db"))

trim_DF Trim data frame

Description
If the numeric value of the data frame variable does not meet the specified conditions, the function
deletes the entire row.

Usage

trim_DF (data, trim.var.name, trim.action, trim.thresh)

Arguments

data data frame

trim.var.name character; vector of data frame column names with numeric variables that should
be tested for conditions

trim.action character; vector of test conditions; possible values are: "more"”, "egmore”
(more or equal), "less”, "eqless” (less or equal).
trim.thresh numeric; vector of condition threshold values
Details

This function takes the vector of data frame variables and for each of them test if they satisfy the
specified conditions. Not satisfying values are deleted with the entire data frame row. You may set
as many conditions for as many variables as you like.

trim.values must be exact column names as in data frame.

46

Value

unite. NCBI_ac.nums

data frame without rows with values that do not satisfy the specified conditions.

Author(s)

Elena N. Filatova

Examples

data <- data.frame ("a" = 1:10, "b" = 101:110)
trim_DF (data, trim.var.name = c("a", "b"), trim.action = c("less"”, "egmore"),
trim.thresh = c(6, 104))

unite_NCBI_ac.nums Assigns master record’s id to all project records

Description

The function assigns the project master record’s NCBI access number to all records that belong to

the project.

Usage

unite_NCBI_ac.nums(

data,

ac.num.var,
title.var,
db.var,

type = "shotgun”,

order =

new.titles

Arguments

data

ac.num.var

FALSE

data frame; contains information about sequence records.

character; data frame variable that contains sequence accession numbers.

title.var character; data frame variable that contains sequence titles.

db.var character; data frame variable that contains source data base names.

type character; type of the project which records should be united with one accession
number. At the moment "shotgun” is the only possible value which corre-
sponds to the whole genome shotgun sequencing project with shotgun technol-
ogy.

order logical; rearrange a data frame in alphabetical order of accession numbers (highly
recommended).

new.titles logical; add new titles according to new access numbers.

unite_two_DF 47

Details

The function looks through all records in a data frame. If the record belongs to the project (for
example, WGS-project), the function assigns the project master record’s NCBI access number to
this record. If the record is not related to any project, it retains its own accession number.

It is highly recommended to arrange the data in alphabetical order of accession numbers, since the
first record among similar ones is determined as master record.

Value

If new. titles = FALSE data frame with old and new access numbers is returned.

If new. titles = TRUE data frame with old and new access numbers and new titles is returned.

Author(s)

Elena N. Filatova

Examples

Example with sequences from WGS-project of Chlamydia pneumoniae genome
data (meta.target) #load metadata of target sequences with GenBank identificators
meta.target.new.ids <- unite_NCBI_ac.nums (data = meta.target,
ac.num.var = meta.target$GB_AcNum,
title.var = meta.target$title,
db.var = meta.target$source_db,
type = "shotgun”, order = TRUE,
new.titles = TRUE)

unite_two_DF Combine two data frames

Description

Combine two data frames according to shared variable

Usage

unite_two_DF(
datal,
datal.shared.var,
datal.shared.column.num
data2,
data2.shared.var,
data2.shared.column.num
delete.not.shared = FALSE,
not.shared = "all”,
verbose = TRUE

T,

1,

48 unite_two_DF

Arguments

datal, data2 data frames
datal.shared.var, data2.shared.var
same variables in data frames
datal.shared.column.num, data2.shared.column.num
integer; column numbers of same variables in data frames
delete.not.shared
logical; delete rows that present in one data frame but do not present in other
data frame

not.shared character; which rows to delete; possible values are "data1” (delete rows that
present in data1l but do not present in data2), "data2” (delete rows that present
in data2 but do not present in datal), "all” (both variants)

verbose logical; show messages

Details

This function combines columns of two data frames according to shared. var which acts like rows’
identification number. If shared. var value from one data frame do not present in other data frame,
NAs are produced. Those absent rows are deleted when delete.not.shared = TRUE.

datal.shared.var and data2.shared.var must contain unique values within its own data frame.

Order of rows in resulting data frame is according to datal. data2.shared.var is removed from
resulting data frame.

Value

Combined data frame.

Author(s)

Elena N. Filatova

Examples

#same values in shared variables

datal <- data.frame (N = 1:5, letter = rep("A", 5))

data2 <- data.frame (N = 1:5, letter = rep("B", 5), cs = rep(”cs",5))

unite_two_DF (datal = datal, datal.shared.var = datal1$N, data2 = data2, data2.shared.var = data2$N,
delete.not.shared = TRUE, not.shared = "all")

#different values in shared variables

datal <- data.frame (N = 1:5, letter = rep("A", 5))

data2 <- data.frame (N = 3:8, letter = rep("B", 6), cs = rep("cs",6))

unite_two_DF (datal = datal, datal.shared.var = datal1$N, data2 = data2, data2.shared.var = data2$N)

unite_two_DF (datal = datal, datal.shared.var = datal1$N, data2 = data2, data2.shared.var = data2$N,
delete.not.shared = TRUE, not.shared = "datal")

unite_two_DF (datal = datal, datal.shared.var = datal1$N, data2 = data2, data2.shared.var = data2$N,
delete.not.shared = TRUE, not.shared = "data2")

unite_two_DF (datal = datal, datal.shared.var = datal1$N, data2 = data2, data2.shared.var = data2$N,
delete.not.shared = TRUE, not.shared = "all")

Index

+ datasets
ann.data, 4
blast.fill,?7
blast.raw, 8
meta.all, 32
meta.target, 33

add_adapters, 2
ann.data, 4
annotate_probes, 5

blast.fill, 7
blast.raw, 8
blast_local, 9, 43

count_GC (count_PhCh), 11
count_MFE, 3

count_MFE (count_PhCh), 11
count_PhCh, 11

count_REP (count_PhCh), 11
count_TM (count_PhCh), 11
cut_probes, 16
cut_string, 17,18

delete_AcNum_version
(fill_blast_result), 20

delete_duplicates_DF, 17, 18

delete_from_DB (store_in_DB), 39

entrez_dbs, 16, 24, 26, 28

fill_blast_result, 20
fill_blast_results (fill_blast_result),
20

get_GA_files, 22

get_GIs, 23

get_GIs_fix (get_GIs), 23
get_seq_for_DB, 23, 26
get_seq_for_DB_fix (get_seq_for_DB), 26
get_seq_info, 23, 27

49

get_seq_info_fix (get_seq_info), 27
getGFF, 5, 6

index_DB (store_in_DB), 39
info_listtodata (get_seq_info), 27

list_DB (store_in_DB), 39

make_blast_DB, 30
make_ids, 17, 31
meta.all, 32
meta.target, 33

normalize, 34
normalize_DF, 34

rate_DF, 35
read_and_unite_files, 36
read_from_DB (store_in_DB), 39
read_from_table_file, 37

store_in_DB, 39
summarize_blast_result, 41

Tm_NN, 13, 14
trim_DF, 45

unite_NCBI_ac.nums, 46
unite_two_DF, 47

write_to_DB (store_in_DB), 39

	add_adapters
	ann.data
	annotate_probes
	blast.fill
	blast.raw
	blast_local
	count_PhCh
	cut_probes
	cut_string
	delete_duplicates_DF
	fill_blast_result
	get_GA_files
	get_GIs
	get_seq_for_DB
	get_seq_info
	make_blast_DB
	make_ids
	meta.all
	meta.target
	normalize_DF
	rate_DF
	read_and_unite_files
	read_from_table_file
	store_in_DB
	summarize_blast_result
	trim_DF
	unite_NCBI_ac.nums
	unite_two_DF
	Index

