Package 'dexterMST'

December 5, 2023

```
Type Package
Title CML and Bayesian Calibration of Multistage Tests
Version 0.9.6
Date 2023-11-21
Maintainer Timo Bechger <tmbechger@gmail.com>
Description Conditional Maximum Likelihood Calibration and data management of multistage tests.
     Supports polytomous items and incomplete designs with linear as well as multistage tests.
     Extended Nominal Response and Interaction models, DIF and profile analysis.
     See Robert J. Zwitser and Gunter Maris (2015)<a href="doi:10.1007/s11336-013-9369-6">doi:10.1007/s11336-013-9369-6</a>.
License LGPL-3
URL https://dexter-psychometrics.github.io/dexter/
BugReports https://github.com/dexter-psychometrics/dexter/issues
Encoding UTF-8
Depends R (>= 3.4)
Imports Rcpp, RcppArmadillo, dexter (>= 1.2.2), dplyr, RSQLite, rlang,
     igraph (>= 1.2.1), tidyr, DBI, crayon, graphics, methods,
     stats, utils
LinkingTo Rcpp, RcppArmadillo (>= 0.12.6.6.0)
RoxygenNote 7.2.3
Suggests knitr, rmarkdown, testthat, mirt, ggplot2, Cairo
VignetteBuilder knitr
NeedsCompilation yes
Author Timo Bechger [aut, cre],
     Jesse Koops [aut],
     Ivailo Partchev [aut],
     Gunter Maris [aut],
     Robert Zwitser [ctb]
Repository CRAN
Date/Publication 2023-12-05 15:20:17 UTC
```

2 dexterMST-package

R topics documented:

dexterMST-package		DexterMST: CML calibration and data management for multi stage tests											age	?					
Index																			19
	om_mot			• •	• • •	•		٠.	•				•	 	•	 •		•	10
	sim_mst																		
	profile_tables_mst .																		
	plot.im_mst																		
	plot.DIF_stats_mst																		
	open_mst_project .																		
	mst_rules																		
	import_from_dexter																		
	get_responses_mst																		
	get_booklets_mst																		
	fit_inter_mst																		
	fit_enorm_mst																		
	DIF_mst																		
	create_mst_test design_plot																		
	create_mst_project																		
	close_mst_project .																		
	alter_scoring_rules_																		
	add_scoring_rules_n																		
	add_response_data_i																		
	add_person_properti																		
	add_item_properties																		
	dexterMST-package																		

Description

DexterMST is a generalization of the most important functionality in dexter to multi stage tests. Function names are typically the same as in dexter with '_mst' added. CML calibration of real life mst tests is tricky, especially if one considers the need to condition on the design in combination with data selections and corrections of key errors. DexterMST aims to handle these things automatically and protect the user from making mistakes by working from a local database which enforces some restrictions.

Details

The main features are:

- project databases providing a structure for storing data about persons, items, responses and booklets.
- CML calibration of the extended nominal response model and interaction model.

To learn more about dexterMST, start with the vignette: 'vignette('dexterMST',package='dexterMST')'

Author(s)

Maintainer: Timo Bechger <tmbechger@gmail.com>

Authors:

- Jesse Koops
- · Ivailo Partchev
- Gunter Maris

Other contributors:

• Robert Zwitser [contributor]

See Also

Useful links:

- https://dexter-psychometrics.github.io/dexter/
- Report bugs at https://github.com/dexter-psychometrics/dexter/issues

```
add_item_properties_mst
```

Add item properties to an dextermst project

Description

Add item properties to an dextermst project

Usage

```
add_item_properties_mst(db, item_properties)
```

Arguments

```
db dexterMST project database item_properties
```

data.frame with a column item_id and other columns containing the item properties

```
{\tt add\_person\_properties\_mst}
```

Add person properties to a mst project

Description

Add person properties to a mst project

Usage

```
add_person_properties_mst(db, person_properties)
```

Arguments

```
db dextermst project database

person_properties

data.frame with a column person_id and other columns containing the person
properties
```

Description

Multistage response data can be entered in long format for one or multiple booklets simultaneously or in wide format one booklet at a time.

```
add_response_data_mst(db, rsp_data, auto_add_unknown_rules = FALSE)
add_booklet_mst(
   db,
   booklet_data,
   test_id,
   booklet_id,
   auto_add_unknown_rules = FALSE
)
```

add_scoring_rules_mst 5

Arguments

db a dextermst db handle

rsp_data data.frame with columns (person_id, test_id, booklet_id, item_id, response)

auto_add_unknown_rules

if FALSE, unknown responses (i.e. not defined in the scoring rules) will generate an error and the function will abort. If TRUE unknown responses will be

automatically added to the scoring rules with a score of 0

booklet_data data.frame with a column person_id and other columns which names correspond

to item_id's

test_id id of a test known in the database booklet_id id of a booklet known in the database

Details

Users familiar with dexter might expect to be able to enter new booklets here. Because mst tests have a more complicated design that cannot be (easily) derived from the data, in dexterMST the test designs have to be entered beforehand.

See Also

```
create_mst_test
```

add_scoring_rules_mst add scoring rules to an mst project

Description

add scoring rules to an mst project

Usage

```
add_scoring_rules_mst(db, rules)
```

Arguments

db a dextermst db connection

rules dataframe (item_id, response, item_score), listing all permissible responses to

an item and their scores

6 close_mst_project

```
alter_scoring_rules_mst
```

alter scoring rules in an mst project

Description

It is only possible to change item_scores for existing items and responses through this function. Scoring rules can only be changed for items that are in the last module of a (mst) test.

Usage

```
alter_scoring_rules_mst(db, rules)
```

Arguments

db a dextermst db connection

rules data.frame (item_id, response, item_score), see dexter

close_mst_project

Close an mst project

Description

Close an mst project

Usage

```
close_mst_project(db)
```

Arguments

db

dextermst project db connection

create_mst_project 7

Description

```
create a new (empty) mst project
```

Usage

```
create_mst_project(pth)
```

Arguments

pth path and filename to save project file

Value

handle to project database

create_mst_test

Define a new multi stage test

Description

Before you can enter data, dexterMST needs to know the design of your test.

Usage

```
create_mst_test(
  db,
  test_design,
  routing_rules,
  test_id,
  routing = c("all", "last")
)
```

Arguments

```
db output of open_mst_project or create_mst_project
test_design data.frame with columns item_id, module_id, item_position
routing_rules output of mst_rules
test_id id of the mst test
routing all or last routing (see details)
```

8 create_mst_test

Details

In dexterMST we use the following terminology:

test collection of modules and rules to go from one module to the other. A test must have one starting module

booklet a specific path through a mst test.

module a block of items that is always administered together. Each item has a specific position in a module.

routing rules rules to go from one module to another based on score on the current and possibly previous modules

Additionally, there are two possible types of routing:

all the routing rules are based on the sum of the current and previous modules

last the routing rules are based only on the current module

The type of routing must be defined for a test as a whole so it is not possible to mix routing types. In CML (as opposed to MML) the routing rules are actually used in the calibration so it is important they are correctly specified. DexterMST includes multiple checks, both when defining the test and when entering data, to make sure your routing rules are valid and your data conform to them.

Examples

```
# extended example
# we:
# 1) define an mst design
# 2) simulate mst data
# 3) create a project, enter scoring rules and define the MST test
# 4) do an analysis
library(dplyr)
items = data.frame(item_id=sprintf("item%02i",1:70), item_score=1, delta=sort(runif(70,-1,1)))
design = data.frame(item_id=sprintf("item%02i",1:70),
                    module_id=rep(c('M4','M2','M5','M1','M6','M3', 'M7'),each=10))
routing_rules = routing_rules = mst_rules(
 124 = M1[0:5] --+ M2[0:10] --+ M4,
 `125` = M1[0:5] --+ M2[11:15] --+ M5,
 `136` = M1[6:10] --+ M3[6:15] --+ M6,
 137 = M1[6:10] --+ M3[16:20] --+ M7)
theta = rnorm(3000)
dat = sim_mst(items, theta, design, routing_rules, 'all')
dat$test_id='sim_test'
dat$response=dat$item_score
```

design_plot 9

```
scoring_rules = data.frame(
  item_id = rep(items$item_id,2),
  item_score= rep(0:1,each=nrow(items)),
  response= rep(0:1,each=nrow(items))) # dummy respons
db = create_mst_project(":memory:")
add_scoring_rules_mst(db, scoring_rules)
create_mst_test(db,
                test_design = design,
                routing_rules = routing_rules,
                test_id = 'sim_test',
                routing = "all")
add_response_data_mst(db, dat)
design_plot(db)
f = fit_enorm_mst(db)
head(coef(f))
abl = ability(get_responses_mst(db), f) %>%
   inner_join(tibble(person_id=as.character(1:3000), theta.sim=theta), by='person_id')
plot(abl$theta, abl$theta.sim)
abl = filter(abl, is.finite(theta))
cor(abl$theta, abl$theta.sim)
```

design_plot

Plot the routing design of mst tests

Description

Plot the routing design of mst tests

```
design_plot(db, predicate = NULL, by_booklet = FALSE, ...)
```

DIF_mst

Arguments

db dexterMST project database connection

predicate logical predicate to select data (tests, booklets,responses) to include in the design plot

by_booklet plot and color the paths in a test per booklet

... further arguments to plot.igraph

Details

You can use this function to plot routing designs for tests before or after they are administered. There are some slight differences.

If you have entered response data already, the thickness of the line will indicate the numbers of respondents that took the respective paths through the test. Paths not taken will not be drawn. You can use the predicate (see examples) to include or exclude items, tests and respondents.

If you have not entered response data, all lines will have equal thickness. Variables you can use in the predicate are limited to test_id and booklet_id in this case.

Examples

```
## Not run:
# plot test designs for all tests in the project
design_plot(db)

# plot design for a test with id 'math'
design_plot(db, test_id == 'math')

# plot design for test math with item 'circumference' turned off
# (this plot will only work if you have response data)
design_plot(db, test_id == 'math' & item_id != 'circumference')

## End(Not run)
```

DIF_mst

Exploratory test for Differential Item Functioning

Description

Compares two parameter objects and produces a test for DIF based on equality of relative item difficulties category locations

```
DIF_mst(db, person_property, predicate = NULL)
```

fit_enorm_mst 11

Arguments

```
db an dexterMST db handle
person_property

name of a person property defined in your dexterMST project
predicate logical predicate to select data to include in the analysis
```

References

Bechger, T. M. and Maris, G (2015); A Statistical Test for Differential Item Pair Functioning. Psychometrika. Vol. 80, no. 2, 317-340.

Examples

```
## Not run:
dif = DIF_mst(db, person_property = 'test_mode')
print(dif)
plot(dif)
## End(Not run)
```

fit_enorm_mst

Fit the extended nominal response model on MST data

Description

Fits an Extended NOminal Response Model (ENORM) using conditional maximum likelihood (CML) or a Gibbs sampler for Bayesian estimation; both adapted for MST data

Usage

```
fit_enorm_mst(
  db,
  predicate = NULL,
  fixed_parameters = NULL,
  method = c("CML", "Bayes"),
  nDraws = 1000
)
```

Arguments

db an dextermst db handle

predicate logical predicate to select data to include in the analysis, see details

fixed_parameters

data.frame with columns 'item_id', 'item_score' and 'beta'

method If CML, the estimation method will be Conditional Maximum Likelihood. If

Bayes, a Gibbs sampler will be used to produce a sample from the posterior.

nDraws Number of Gibbs samples when estimation method is Bayes.

fit_inter_mst

Details

You can use the predicate to include or omit responses from the analysis, e.g. 'p = fit_enorm_mst(db, item_id != 'some_item' & student_birthdate > '2005-01-01')'

DexterMST will automatically correct the routing rules for the purpose of the current analysis. There are some caveats though. Predicates that lead to many different designs, e.g. a predicate like response != 'NA' (which is perfectly valid but can potentially create almost as many tests as there are students) might take very long to compute.

Predicates that remove complete modules from a test, e.g. module_nbr !=2 or module_id != 'RU4' will cause an error and should be avoided.

Value

object of type 'mst_enorm'. Can be cast to a data.frame of item parameters using function 'coef' or used in dexter's ability functions

References

Zwitser, R. J. and Maris, G (2015). Conditional statistical inference with multistage testing designs. Psychometrika. Vol. 80, no. 1, 65-84.

Koops, J. and Bechger, T. and Maris, G. (in press); Bayesian inference for multistage and other incomplete designs. In Research for Practical Issues and Solutions in Computerized Multistage Testing. Routledge, London.

fit_inter_mst

Fit the interaction model on a single multi-stage booklet

Description

Fit the interaction model on a single multi-stage booklet

Usage

```
fit_inter_mst(db, test_id, booklet_id)
```

Arguments

db a db handle

test_id id of the test as defined in create_mst_test
booklet_id id of the booklet as defined in create_mst_test

get_booklets_mst 13

get_booklets_mst

retrieve information from a mst database

Description

retrieve information from a mst database

Usage

```
get_booklets_mst(db)
get_design_mst(db)
get_routing_rules_mst(db)
get_scoring_rules_mst(db)
get_items_mst(db)
get_persons_mst(db)
```

Arguments

db

dexterMST project database connection

get_responses_mst

Extract response data from a dexterMST database

Description

Extract response data from a dexterMST database

Usage

```
get_responses_mst(
  db,
  predicate = NULL,
  columns = c("person_id", "test_id", "booklet_id", "item_id", "item_score")
)
```

Arguments

db a dexterMST project database connection

predicate an expression to select data on

columns the columns you wish to select, can include any column in the project

14 import_from_dexter

Value

a data.frame of responses

Description

This function will import items, scoring rules, persons, test designs and responses from a dexter database into the dexterMST database.

Usage

```
import_from_dexter(db, dexter_db, dx_response_prefix = "")
```

Arguments

db dextermst project db connection

dexter_db path to a dexter database file or open dexter db connection

dx_response_prefix

string to prefix responses from dexter with (usually not necessary, see details)

Details

DexterMST has no problem calibrating data from linear tests. However, dexter and dexterMST have differently structured project databases. If you already have response data from linear tests in a dexter database, you can easily import it into your dexterMST database from there.

The dexterMST variables test_id, module_id and booklet_id will all be set to the dexter variable booklet_id (i.e. a linear test becomes a multistage test with one booklet and one module only).

It is assumed that items with equal id's in your dexter and dexterMST project refer to the same items. If an item in dexter has different score categories compared to an existing item with the same item_id in dexterMST an error will be generated. If the same response to the same item has a different score, this will also generate an error. However, it is possible for an item in dexter to have scoring rules for responses not defined in dexterMST and vice versa.

In the unusual and unfortunate situation that the same response to the same item should have a different score in dexter than in dexterMST, you can use the parameter dx_response_prefix to prefix the responses in dexter with some unique combination of characters, e.g. "dexter". In practice this sometimes happens when old archived data is only available in scored form (i.e. response 0 has score 0, response 1 has score 1) and new data is available in raw form but the actual response can also be 0 or 1, etc. causing a conflict.

mst_rules 15

Examples

```
## Not run:
library(dexter)
dbDex = start_new_project(verbAggrRules, "verbAggression.db",
    person_properties=list(gender="unknown"))
add_booklet(dbDex, verbAggrData, "agg")
add_item_properties(dbDex, verbAggrProperties)
db = create_mst_project(':memory:')
import_from_dexter(db, dbDex)
f_mst = fit_enorm_mst(db)
f_dexter = fit_enorm(dbDex)
close_mst_project(db)
close_project(dbDex)

## End(Not run)
```

mst_rules

Define routing rules

Description

Define routing rules for use in create_mst_test

Usage

```
mst_rules(...)
```

Arguments

routing rules defined using a a dot-like syntax, read —+ as an arrow and [:] as a range of score to move to the next stage

Details

Each scoring rule in '...' defines one or more routing rules together making up a booklet. For example, 'route1 = a[0:5] -+ d[9:15] -+ f' means a start at module 'a', continue to module 'd' when the score on 'a' is between 0 and 5 (inclusive) and continue to 'g' when the score on modules 'a + b' is between 0 and 8 (for 'All' routing) or the score on just module 'b' is between 0 and 8 (for 'Last' routing). 'route1' becomes the id of the specific path or booklet, which must be supplied with the data later.

A routing design for a linear (non-multistage) booklet can simply be entered as mst_rules(my_booklet = my_single_module).

Value

data.frame with columns...

16 plot.DIF_stats_mst

See Also

create_mst_test for a description of all and last routing and add_response_data_mst to see how
to enter data

Examples

```
# a (complicated) three stage (1-3-3) routing design with 9 booklets and 7 modules routing_rules = mst_rules(bk1 = M1[0:61] --+ M2[0:136] --+ M5, bk2 = M1[0:61] --+ M2[137:183] --+ M6, bk3 = M1[0:61] --+ M2[184:Inf] --+ M7,

bk4 = M1[62:86] --+ M3[0:98] --+ M5, bk5 = M1[62:86] --+ M3[99:149] --+ M6, bk6 = M1[62:86] --+ M3[150:Inf] --+ M7,

bk7 = M1[87:Inf] --+ M4[0:98] --+ M5, bk8 = M1[87:Inf] --+ M4[0:98] --+ M6, bk9 = M1[87:Inf] --+ M4[131:Inf] --+ M7)
```

open_mst_project

open an existing mst project

Description

open an existing mst project

Usage

```
open_mst_project(pth)
```

Arguments

pth

path to project file

```
plot.DIF_stats_mst
```

plot method for DIF_mst

Description

```
plot method for DIF_mst
```

```
## S3 method for class 'DIF_stats_mst'
plot(x, items = NULL, itemsX = items, itemsY = items, ...)
```

plot.im_mst 17

Arguments

X	object produced by DIF_mst
items	character vector of item id's for a subset of the plot. Useful if you have many items. If NULL all items are plotted.
itemsX	character vector of item id's for the X axis
itemsY	character vector of item id's for the Y axis
	further arguments to plot

plot.im_mst

plots for the interaction model

Description

plots for the interaction model

Usage

```
## S3 method for class 'im_mst'
plot(x, item_id = NULL, show.observed = TRUE, curtains = 10, zoom = FALSE, ...)
```

Arguments

x output of fit_inter_mst
item_id id of the item to plot

show.observed plot the observed mean item scores for each test score

curtains percentage of most extreme values to cover with curtains, 0 to omit curtains zoom if TRUE, limits the plot area to the test score range allowed by the routing rules

... further arguments to plot

Description

Expected and observed domain scores per booklet and test score

```
profile_tables_mst(parms, domains, item_property)
```

sim_mst

Arguments

parms An object returned by fit_enorm_mst

domains data.frame with column item_id and a column whose name matches 'item_property'

item_property the name of the item property used to define the domains.

Value

a data.frame with expected score per domain, booklet and booklet_score

sim_mst Simulate multistage testing data

Description

Simulates data from an extended nominal response model according to an mst design

Usage

```
sim_mst(pars, theta, test_design, routing_rules, routing = c("last", "all"))
```

Arguments

pars item parameters, can be either: a data.frame with columns item_id, item_score,

beta or a dexter or dexterMST parameters object

theta vector of person abilities

test_design data.frame with columns item_id, module_id

routing_rules output of mst_rules
routing 'all' or 'last' routing

Index

```
ability, 12
add_booklet_mst
        (add_response_data_mst), 4
add_item_properties_mst, 3
add_person_properties_mst, 4
add_response_data_mst, 4, 16
add_scoring_rules_mst, 5
{\tt alter\_scoring\_rules\_mst}, {\tt 6}
close_mst_project, 6
create_mst_project, 7, 7
create_mst_test, 5, 7, 12, 15, 16
design_plot, 9
dexterMST (dexterMST-package), 2
dexterMST-package, 2
DIF_mst, 10
fit_enorm_mst, 11, 18
fit_inter_mst, 12, 17
get_booklets_mst, 13
get_design_mst (get_booklets_mst), 13
get_items_mst (get_booklets_mst), 13
get_persons_mst (get_booklets_mst), 13
get_responses_mst, 13
get_routing_rules_mst
        (get_booklets_mst), 13
get_scoring_rules_mst
        (get_booklets_mst), 13
import_from_dexter, 14
mst_rules, 7, 15, 18
open_mst_project, 7, 16
\verb|plot.DIF_stats_mst|, 16
plot.igraph, 10
plot.im_mst, 17
profile_tables_mst, 17
sim_mst, 18
```