Package ‘constructive’

March 5, 2024
Title Display Idiomatic Code to Construct Most R Objects
Version 0.3.0

Description Prints code that can be used to recreate R objects. In a
sense it is similar to 'base::dput()’ or 'base::deparse()' but
'constructive' strives to use idiomatic constructors.

License MIT + file LICENSE

URL https://github.com/cynkra/constructive,
https://cynkra.github.io/constructive/

BugReports https://github.com/cynkra/constructive/issues
Imports cli, diffobj, methods, rlang (>= 1.0.0), waldo

Suggests clipr, data.table, DiagrammeR, DiagrammeRsvg, dm, dplyr,
forcats, ggplot2, knitr, lubridate, pixarfilms, prettycode,
reprex, rmarkdown, roxygen2, rstudioapi, scales, sf, testthat
(>=3.0.0), tibble, tidyselect, vctrs, withr

VignetteBuilder knitr
Config/testthat/edition 3
Encoding UTF-8
RoxygenNote 7.3.1
NeedsCompilation yes

Author Antoine Fabri [aut, cre],
Kirill Miiller [ctb] (<https://orcid.org/0000-0002-1416-3412>)

Maintainer Antoine Fabri <antoine.fabri@gmail.com>
Repository CRAN
Date/Publication 2024-03-05 17:40:08 UTC

R topics documented:

CSI_APPLY « o o o e e e e e e
CSIE_COMDINE_EITOIS . . . v v v v o e e e e e e e e e e e e s

https://github.com/cynkra/constructive
https://cynkra.github.io/constructive/
https://github.com/cynkra/constructive/issues
https://orcid.org/0000-0002-1416-3412

R topics documented:

CSIE_CONSITUCE . . o v v o o o o o o e e e e e e e e e 6
costr_fetch_opts oL 6
.CStr_match constructor e e e e e e 7
CSIE_OPLIONS & . v v v o ot e e e e e e e e e e e e 7
CSU_PIPE . v o o e e e e e e e e e 8
LCSUI_TEZISter_CONSIIUCLOTS v v v v vt et e e et e e e e e 8
.cstr_repair_attributes oL 9
CSH_WIAD « v o v v o i e e e e e e e e e e e e e e e e e e 10
BNV L e e e e e e e 10
XPIE o oo e e e e 11
COMPATE_OPHONS . . . v ¢ v v v v it e e e ettt e e e e 11
CONSITUCE o o e e e e e e e e e e e e e e e e e e 12
constructive-global_options 15
CONSIIUCIONS o v i i e i e e e e e e e e e e e e e e e e e 15
construct_diff e 16
construct_dump e e e e 17
CONSIIUCE_ISSUES v v v e e e e e e e e e e e e e 18
CONSITUCT_TEPIEX © v v v v v v e 18
CONSIIUCE_SIGNALUTE v v v v v e it et e e e e e e e e e e e 19
CUStOM-CONSIIUCLOLS v v i i e et e e e e e e e e e e e e e e 20
deparse_call e 20
OPES_AITAY « o v v v v e 21
Opts_ASIS . . . e e 22
OPES_AtOMIC .« « « . v v v e e et e e e e e e e e e e e 23
opts_classGeneratorFunction 24
opts_classPrototypeDef L 25
opts_classRepresentation 25
OPtS_CONSIIUCtIVE_OPtIONS v v v v v e ittt e e e e e e e 26
opts_data.frame L. e 26
opts_data.table L e 27
opts_Date 28
opts_dm e e e 29
opts_dotso e 30
OPES_ENVIFONMENtt vttt ittt e e e e e 30
opts_externalptr 32
opts_factor e 33
opts_formula 34
opts_function 35
opts_grouped_df L e 36
opts_language 36
opts_Layer e 37
OPtS_LISt .« o v e e e e e e 38
OPES_MATIX v v vt e et e e e e e e e e e e e e e e e e 39
OPES_IMES .« . o v v e e e e e e e e e e e e e e e e 40
OPES_NUMETIC_VEISION . . . « . . vt v v ettt e e e e e e e e e e e e 40
opts_ordered L. e e e e 41
opts_package_Versiono e e 42

opts_pairlist e 42

.cstr_apply 3

opts_POSIXct e e 43
opts_POSIXIt e 44
OPES_QUOSUTE .« . v v v vt e e e e e e e e e e e e e e e e e e 44
OPES_QUOSUIES . « . v v v v v e v e e e e e e e e e e e e e e e 45
opts_rowwise_df 46
opts_R_system_version e e 46
OPtS_S4 . . e 47
opts_tbl_df 47
OPES_ES . o v o e e e e e e e e e 48
opts_vetrs_list_of 49
opts_weakref 49

Index 51

.cstr_apply .cstr_apply
Description

Exported for custom constructor design. If recurse is TRUE (default), we recurse to construct args

and i

nsert their construction code in a fun(. . .) call returned as a character vector. If args already

contains code rather than object to construct one should set recurse to FALSE.

Usage
.cstr_apply(
args,
fun = "list",
trailing_comma = FALSE,
recurse = TRUE,
implicit_names = FALSE,
new_line = TRUE,
one_liner = FALSE
)
Arguments
args A list of arguments to construct recursively, or code if recurse = FALSE. If ele-
ments are named, the arguments will be named in the generated code.
fun The function name to use to build code of the form "fun(...)"
options passed recursively to the further methods
trailing_comma leave a trailing comma after the last argument if the code is multiline, some
constructors allow it (e.g. tibble::tibble()) and it makes for nicer diffs in
version control.
recurse Whether to recursively generate the code to construct args. If FALSE arguments

are expected to contain code.

4 .cstr_combine_errors

implicit_names When data is provided, compress calls of the form f(a = a) to f(a)

new_line passed to wrap to remove add a line after "fun(" and before ")", forced to FALSE
if one_liner is TRUE
one_liner Whether to return a one line call.
Value

A character vector of code

Examples

a<-1

.cstr_apply(list(a=a), "foo")

.cstr_apply(list(a=a), "foo", data = list(a=1))

.cstr_apply(list(a=a), "foo"”, data = list(a=1), implicit_names = TRUE)
.cstr_apply(list(b=a), "foo", data = list(a=1), implicit_names = TRUE)
.cstr_apply(list(a="c(1,2)"), "foo")

.cstr_apply(list(a="c(1,2)"), "foo", recurse = FALSE)

.cstr_combine_errors Combine errors

Description

Exported for custom constructor design. This function allows combining independent checks so
information is given about all failing checks rather than the first one. All parameters except . . . are
forwarded to rlang: :abort()

Usage

.cstr_combine_errors(

L

class = NULL,

call,

header = NULL,
body = NULL,
footer = NULL,
trace = NULL,

parent = NULL,
use_cli_format = NULL,
.internal = FALSE,

.file = NULL,

.frame = parent.frame(),
.trace_bottom = NULL

.cstr_combine_errors 5

Arguments

check expressions
class Subclass of the condition.

call The execution environment of a currently running function, e.g. call = caller_env().
The corresponding function call is retrieved and mentioned in error messages as
the source of the error.

You only need to supply call when throwing a condition from a helper function
which wouldn’t be relevant to mention in the message.

Can also be NULL or a defused function call to respectively not display any call
or hard-code a code to display.

For more information about error calls, see Including function calls in error
messages.

header An optional header to precede the errors
body, footer Additional bullets.
trace A trace object created by trace_back().

parent Supply parent when you rethrow an error from a condition handler (e.g. with
try_fetch()).

* If parent is a condition object, a chained error is created, which is useful
when you want to enhance an error with more details, while still retaining
the original information.

* If parent is NA, it indicates an unchained rethrow, which is useful when you
want to take ownership over an error and rethrow it with a custom message
that better fits the surrounding context.

Technically, supplying NA lets abort () know it is called from a condition
handler. This helps it create simpler backtraces where the condition han-
dling context is hidden by default.

For more information about error calls, see Including contextual information
with error chains.

use_cli_format Whether to format message lazily using cli if available. This results in prettier
and more accurate formatting of messages. See local_use_cli() to set this
condition field by default in your package namespace.

If set to TRUE, message should be a character vector of individual and unformat-
ted lines. Any newline character "\\n" already present in message is reformat-
ted by cli’s paragraph formatter. See Formatting messages with cli.

.internal If TRUE, a footer bullet is added to message to let the user know that the error is
internal and that they should report it to the package authors. This argument is
incompatible with footer.

.file A connection or a string specifying where to print the message. The default
depends on the context, see the stdout vs stderr section.

.frame The throwing context. Used as default for . trace_bottom, and to determine the
internal package to mention in internal errors when . internal is TRUE.

.trace_bottom Used in the display of simplified backtraces as the last relevant call frame to
show. This way, the irrelevant parts of backtraces corresponding to condition

https://cli.r-lib.org/

6 .cstr_fetch_opts

handling (tryCatch(), try_fetch(), abort(), etc.) are hidden by default.
Defaults to call if it is an environment, or . frame otherwise. Without effect if
trace is supplied.

Value

Returns NULL invisibly, called for side effects.

.cstr_construct Generic for object code generation

Description

Exported for custom constructor design. .cstr_construct() is basically a naked construct(),
without the checks, the style, the object post processing etc...

Usage
.cstr_construct(x, ..., data = NULL)
Arguments
X An object, for construct_multi() a named list or an environment.
Constructive options built with the opts_x () family of functions. See the "Con-
structive options" section below.
data Named list or environment of objects we want to detect and mention by name
(as opposed to deparsing them further). Can also contain unnamed nested lists,
environments, or package names, in the latter case package exports and datasets
will be considered. In case of conflict, the last provided name is considered.
Value

A character vector

.cstr_fetch_opts Fetch constructive options

Description

Exported for custom constructor design.

Usage

.cstr_fetch_opts(class, ..., template = NULL)

.cstr_match_constructor 7

Arguments

class A string. An S3 class.
..., template Parameters generally forwarded through the dots of the caller function

Value

n

An object of class c(paste@("constructive_options_", class), "constructive_options")

.cstr_match_constructor
Validate a constructor

Description

Fails if the chosen constructor doesn’t exist.

Usage

.cstr_match_constructor(constructor, class)

Arguments
constructor a String (or character vector but only the first item will be considered)
class A string

Value

A string, the first value of constructor if it is the name of a n existing constructor or "next".

.cstr_options Create constructive options

Description

Exported for custom constructor design.

Usage
.cstr_options(class, ...)
Arguments
class A string. An S3 class.
Options to set
Value

n

An object of class c(paste@("constructive_options_", class), "constructive_options")

8 .CS tr_regjs ter_constructors

.cstr_pipe Insert a pipe between two calls

Description

Exported for custom constructor design.

Usage

.cstr_pipe(x, y, pipe, one_liner, indent = TRUE)

Arguments
X A character vector. The code for the left hand side call.
y A character vector. The code for the right hand side call.
pipe A string. The pipe to use, "plus” is useful for ggplot code.
one_liner A boolean. Whether to paste x, the pipe and y together
indent A boolean. Whether to indent y on a same line (provided that x and y are strings
and one liners themselves)
Value

A character vector

Examples

.cstr_pipe("iris”, "head(2)", pipe = "magrittr"”, one_liner = FALSE)
.cstr_pipe("iris”, "head(2)", pipe = "magrittr”, one_liner = TRUE)

.cstr_register_constructors
Register constructors

Description

Use this function to register a custom constructor. See vignette for more information.

Usage

.cstr_register_constructors(class, ...)
Arguments

class A string

named constructors

.cstr_repair_attributes 9

Value

Returns NULL invisibly, called for side effects.

.cstr_repair_attributes
Repair attributes after idiomatic construction

Description

Exported for custom constructor design. In the general case an object might have more attributes
than given by the idiomatic construction. .cstr_repair_attributes() sets some of those at-
tributes and ignores others.

Usage
.cstr_repair_attributes(
X)
code,
pipe = NULL,

ignore = NULL,
idiomatic_class = NULL,
remove = NULL,
one_liner = FALSE

)
Arguments

X The object to construct

code The code constructing the object before attribute reparation
Forwarded to .construct_apply() when relevant

pipe Which pipe to use, either "base” or "magrittr”. Defaults to "base” for R >=
4.2, otherwise to "magrittr"”.

ignore The attributes that shouldn’t be repaired, i.e. we expect them to be set by the

constructor already in code
idiomatic_class

The class of the objects that the constructor produces, if x is of class idiomatic_class
there is no need to repair the class.

remove Attributes that should be removed, should rarely be useful.
one_liner Boolean. Whether to collapse the output to a single line of code.
Value

A character vector

10 .env

.cstr_wrap Wrap argument code in function call

Description

Exported for custom constructor design. Generally called through .cstr_apply().

Usage

.cstr_wrap(args, fun, new_line = FALSE)

Arguments
args A character vector containing the code of arguments.
fun A string. The name of the function to use in the function call. Use fun="" to
wrap in parentheses.
new_line Boolean. Whether to insert a new line between "fun(" and the closing ")".
Value

A character vector.

.env Fetch environment from memory address

Description

This is designed to be used in constructed output. The parents and . . . arguments are not processed
and only used to display additional information. If used on an improper memory address the output
might be erratic or the session might crash.

Usage
.env(address, parents = NULL, ...)

Arguments
address Memory address of the environment
parents, ... ignored

Value

The environment that the memory address points to.

.Xptr 11

.xptr Build a pointer from a memory address

Description

Base R doesn’t provide utilities to build or manipulate external pointers (objects of type "exter-
nalptr"), so we provide our own. Be warned that objects defined with . xptr() are not stable across
sessions, however this is the best we can

Usage

.xptr(address)

Arguments

address Memory address

Value

The external pointer (type "externalptr") that the memory address points to.

compare_options Options for waldo::compare

Description

Builds options that will be passed to waldo: : compare() down the line.

Usage

compare_options(
ignore_srcref = TRUE,
ignore_attr = FALSE,
ignore_function_env = FALSE,
ignore_formula_env = FALSE

Arguments

ignore_srcref Ignore differences in function srcrefs? TRUE by default since the srcref does
not change the behaviour of a function, only its printed representation.

12

construct

ignore_attr Ignore differences in specified attributes? Supply a character vector to ignore
differences in named attributes. By default the "waldo_opts" attribute is listed
in ignore_attr so that changes to it are not reported; if you customize ignore_attr,
you will probably want to do this yourself.
For backward compatibility with all.equal(), you can also use TRUE, to all
ignore differences in all attributes. This is not generally recommended as it is a
blunt tool that will ignore many important functional differences.
ignore_function_env, ignore_formula_env
Ignore the environments of functions and formulas, respectively? These are
provided primarily for backward compatibility with all.equal () which always
ignores these environments.

Value

A list

construct Build code to recreate an object

Description

construct() builds the code to reproduce one object, construct_multi() builds the code to
reproduce objects stored in a named list or environment.

Usage
construct(
X’
data = NULL,
pipe = NULL,
check = NULL,

compare = compare_options(),
one_liner = FALSE,
template = getOption(”constructive_opts_template”)

)
construct_multi(
X’
data = NULL,
pipe = NULL,
check = NULL,

compare = compare_options(),
one_liner = FALSE,
template = getOption(”constructive_opts_template”)

construct

Arguments

X

data

pipe
check

compare
one_liner

template

Details

construct_multi() recognizes promises, this means that for instance construct_multi(environment())

13

An object, for construct_multi() a named list or an environment.

Constructive options built with the opts_* () family of functions. See the "Con-
structive options" section below.

Named list or environment of objects we want to detect and mention by name
(as opposed to deparsing them further). Can also contain unnamed nested lists,
environments, or package names, in the latter case package exports and datasets
will be considered. In case of conflict, the last provided name is considered.

Which pipe to use, either "base” or "magrittr”. Defaults to "base” for R >=
4.2, otherwise to "magrittr”.

Boolean. Whether to check if the created code reproduces the object using
waldo: : compare().

Parameters passed to waldo: : compare(), built with compare_options().
Boolean. Whether to collapse the output to a single line of code.

A list of constructive options built with opts_x() functions, they will be over-
riden by Use it to set a default behavior for {constructive}.

can be called in a function and will construct unevaluated arguments using delayedAssign(). Note
however that construct_multi(environment()) is equivalent to construct_reprex() called
without argument and the latter is preferred.

Value

An object of class ’constructive’.

Constructive options

Constructive options provide a way to customize the output of ‘construct()‘. We can provide calls
to ‘opts_*()* functions to the °...° argument. Each of these functions targets a specific type or class
and is documented on its own page.

e opts_array(constructor =c("array”, "next"), ...)

e opts_AsIs(constructor =c("I", "next"”, "atomic"), ...)

e opts_atomic(..., trim=NULL, fill = c("default”, "rlang”, "+", "...", "none"), compress
=TRUE, unicode_representation =c("ascii”, "latin"”, "character”, "unicode”), escape
= FALSE)

e opts_classGeneratorFunction(constructor = c("setClass"), ...)

e opts_classPrototypeDef (constructor = c("prototype”), ...)

e opts_classRepresentation(constructor = c("getClassDef"), ...)

e opts_constructive_options(constructor =c("opts”, "next"), ...)

* opts_data.frame(constructor = c("data.frame"”, "read. table”, "next”, "list"), ...

14

construct
opts_data.table(constructor = c("data.table”, "next"”, "list"), ..., selfref = FALSE)
opts_Date(constructor = c("as.Date", "as_date"”, "date”, "new_date"”, "as.Date.numeric",
"as_date.numeric”, "next"”, "atomic"), ..., origin="1970-01-01")
opts_dm(constructor =c("dm"”, "next"”, "list"), ...)
opts_dots(constructor = c("default”), ...)
opts_environment(constructor =c(”.env”, "list2env”, "as.environment”, "new.env”,
"topenv”, "new_environment"”), ..., recurse = FALSE, predefine = FALSE)
opts_externalptr(constructor = c("default”), ...)

opts_factor(constructor = c("factor"”, "as_factor”, "new_factor”, "next"”, "atomic"),
)

opts_formula(constructor =c("~", "formula”, "as.formula”, "new_formula”, "next"”),
., environment = TRUE)

opts_function(constructor = c("function”, "as.function”, "new_function"), ...,
environment = TRUE, srcref = FALSE, trim=NULL)

opts_grouped_df (constructor = c("default”, "next"”, "list"), ...)
opts_language(constructor = c("default”), ...)

opts_Layer(constructor = c("default”, "layer”, "environment”), ...)
opts_list(constructor =c("list”, "list2"), ..., trim=NULL, fill =c("vector”,
"new_list", "+", "...", "none"))

opts_matrix(constructor =c("matrix"”, "array"”, "next”, "atomic"), ...)
opts_mts(constructor =c("ts", "next"”, "atomic"), ...)
opts_numeric_version(constructor = c("numeric_version”, "next"”, "atomic"), ...)

opts_ordered(constructor = c("ordered”, "factor”, "new_ordered”, "next"”, "atomic"),
)

opts_package_version(constructor = c("package_version”, "next"”, "atomic"), ...)

opts_pairlist(constructor = c("pairlist”, "pairlist2"”), ...)

opts_POSIXct(constructor =c("as.POSIXct"”, ".POSIXct", "as_datetime”, "as.POSIXct.numeric",
"as_datetime.numeric”, "next”, "atomic”), ..., origin="1970-01-01")

opts_POSIX1t(constructor =c("as.POSIX1t", "next"”, "list"), ...)

opts_quosure(constructor = c("new_quosure”, "next"”, "language”), ...)
opts_quosures(constructor = c("new_quosures”, "next”, "list"), ...)
opts_R_system_version(constructor = c("R_system_version”, "next"”, "atomic"), ...)
opts_rowwise_df (constructor = c("default”, "next"”, "list"), ...)

opts_S4(constructor =c("new"), ...)

opts_tbl_df(constructor =c("tibble"”, "tribble”, "next", "list"), ..., trailing_comma
=TRUE)

opts_ts(constructor =c("ts", "next”, "atomic”), ...)

opts_vctrs_list_of (constructor =c("list_of", "list"), ...)

opts_weakref(constructor = c("new_weakref"), ...)

constructive-global_options 15

Examples

construct(head(cars))

construct(head(cars), opts_data.frame("read.table"))

construct(head(cars), opts_data.frame("next"))

construct(iris$Species)

construct(iris$Species, opts_atomic(compress = FALSE), opts_factor(”"new_factor”))

constructive-global_options
Global Options

Description

Set these options to tweak {constructive}’s global behavior, to set them permanently you can edit
your .RProfile (usethis::edit_r_profile() might help).

Details

* Set options(constructive_print_mode = <character>) to change the default value of
the print_mode arument, of print.constructive, where <character> is a vector of strings
among the following :

— "console” : The default behavior, the code is printed in the console

— "script” : The code is copied to a new R script

— "reprex” : The code is shown in the viewer as a reprex, the reprex (not only the code!)
is also copied to the clipboard. Note that if the construction fails the reprex will too, and
it might happen often when constructing environments since reprex opens a new session.

— "clipboard"” : The constructed code is copied to the clipboard, if combined with "reprex”
this takes precedence

» Setoptions(constructive_opts_template = <list>) to set default constructive options,
see documentation of the template arg in ?construct

» Set options(constructive_pretty = FALSE) to disable pretty printinh using {prettycode}

constructors constructors

Description

A nested environment containing constructor functions for the package constructive

Usage

constructors

Format

An object of class environment of length 36.

16

construct_diff

construct_diff

Display diff of object definitions

Description

Display diff of object definitions

Usage
construct_diff(
target,
current,
data = NULL,
pipe = NULL,
check = TRUE,

compare = compare_options(),

one_liner = FALSE,

template = getOption(”constructive_opts_template”),
mode = c("sidebyside”, "auto”, "unified”, "context"),
interactive = TRUE

Arguments

target the reference object

current the object being compared to target
Constructive options built with the opts_* () family of functions. See the "Con-
structive options" section below.

data Named list or environment of objects we want to detect and mention by name
(as opposed to deparsing them further). Can also contain unnamed nested lists,
environments, or package names, in the latter case package exports and datasets
will be considered. In case of conflict, the last provided name is considered.

pipe Which pipe to use, either "base” or "magrittr"”. Defaults to "base"” for R >=
4.2, otherwise to "magrittr”.

check Boolean. Whether to check if the created code reproduces the object using
waldo: : compare().

compare Parameters passed to waldo: : compare(), built with compare_options().

one_liner Boolean. Whether to collapse the output to a single line of code.

template A list of constructive options built with opts_x() functions, they will be over-

riden by Use it to set a default behavior for {constructive}.

mode, interactive

passed to diffobj: :diffChr()

construct_dump 17

Value

Returns NULL invisibly, called for side effects

Examples

Not run:

some object print the same though they're different

“construct_diff ()" shows how they differ :

df1 <- data.frame(a=1, b = "x")

df2 <- data.frame(a=1L, b = "x", stringsAsFactors = TRUE)
attr(df2, "some_attribute”) <- "a value”

df1

df2

construct_diff(df1, df2)

Those are made easy to compare
construct_diff(substr, substring)
construct_diff(month.abb, month.name)

more examples borrowed from {waldo} package
construct_diff(c("a", "b", "c"), c("a", "B", "c"))
construct_diff(c("X", letters), c(letters, "X"))
construct_diff(list(factor(”x")), list(1L))
construct_diff(df1, df2)

x <- list(a = list(b = list(c = list(structure(l, e = 1)))))

y <- list(a = list(b = list(c = list(structure(l, e = "a")))))
construct_diff(x, y)

End(Not run)

construct_dump Dump Constructed Code to a File

Description

An alternative to base: :dump () using code built with constructive.

Usage
construct_dump(x, path, append = FALSE, ...)
Arguments
X A named list or an environment.
path File or connection to write to.
append If FALSE, will overwrite existing file. If TRUE, will append to existing file. In

both cases, if the file does not exist a new file is created.

Forwarded to construct_multi()

18 construct_reprex

Value

Returns NULL invisibly, called for side effects.

construct_issues Show constructive issues

Description

Show constructive issues

Usage

construct_issues(x = NULL)

Arguments
X An object built by construct(), if NULL the latest encountered issues will be
displayed
Value

A character vector with class "waldo_compare"

construct_reprex construct_reprex

Description

construct_reprex() constructs all objects of the local environment, or a caller environment n
steps above. If n > @ the function call is also included in a comment.

Usage
construct_reprex(n = 0, ...)
Arguments
n The number of steps to go up on the call stack

Forwarded to construct_multi()

construct_signature 19

Details

construct_reprex() doesn’t call the {reprex} package but it shares the purpose of making it easier
to reproduce an output, hence the name. If you want to it to look more like a reprex: :reprex
consider options(constructive_print_mode = "reprex"). See ?constructive_print_mode
for more.

construct_reprex() wraps construct_multi() and is thus able to construct unevaluated argu-
ments using delayedAssign(). This means we can construct reprexes for functions that use Non
Standard Evaluation.

A useful trick is to use construct_reprex() with options(error = recover) to be able to re-
produce an error.

construct_reprex() might fail to reproduce the output of functions that refer to environments
other than their caller environment. We believe these are very rare and that the simplicity is worth
the rounded corners, but if you encounter these limitations please do open a ticket on our issue
tracker at https://github.com/cynkra/constructive/ and we might expand the feature.

Value

Returns return NULL invisibly, called for side-effects.

construct_signature Construct a function’s signature

Description

Construct a function’s signature

Usage

construct_signature(x, name = NULL, one_liner = FALSE, style = TRUE)

Arguments
X A function
name The name of the function, by default we use the symbol provided to x
one_liner Boolean. Whether to collapse multi-line expressions on a single line using semi-
colons
style Boolean. Whether to give a class "constructive_code" on the output for pretty
printing.
Value

a string or a character vector, with a class "constructive_code" for pretty printing if style is TRUE

Examples

construct_signature(lm)

20 deparse_call

custom-constructors Custom constructors

Description

We export a collection of functions that can be used to design custom methods for . cstr_construct()
or custom constructors for a given method.

Details

e .cstr_construct : Low level generic for object construction code generation
* .cstr_repair_attributes : Helper to repair attributes of objects

* .cstr_options : Define and check options to pass to custom constructors

e .cstr_fetch_opts

e .cstr_apply

e .cstr_wrap

e .cstr_pipe

e .cstr_combine_errors

deparse_call Deparse a language object

Description

This is an alternative to base: :deparse() and rlang: :expr_deparse() that handles additional
corner cases and fails when encountering tokens other than symbols and syntactic literals where
cited alternatives would produce non syntactic code.

Usage

deparse_call(
call,
one_liner = FALSE,
pipe = FALSE,
style = TRUE,
collapse = !style,
unicode_representation = c("ascii”, "latin”, "character”, "unicode"),
escape = FALSE

opts_array

Arguments

call

one_liner

pipe

style

collapse

21

A call

Boolean. Whether to collapse multi-line expressions on a single line using semi-
colons

Boolean. Whether to use the base pipe to disentangle nested calls. This works
best on simple calls.

Boolean. Whether to give a class "constructive_code" on the output for pretty
printing.

Boolean. Whether to collapse the output to a single string, won’t be directly
visible if style is TRUE

unicode_representation

escape

Value

By default "ascii", which means only ASCII characters (code point < 128) will
be used to construct a string. This makes sure that homoglyphs (different spaces
and other identically displayed unicode characters) are printed differently, and
avoid possible unfortunate copy and paste auto conversion issues. "latin" is
more lax and uses all latin characters (code point < 256). "character" shows all
characters, but not emojis. Finally "unicode" displays all characters and emojis,
which is what dput () does.

Whether to escape double quotes and backslashes. If FALSE we use single quotes
to suround strings containing double quotes, and raw strings for strings that con-
tain backslashes and/or a combination of single and double quotes. Depending
on unicode_representation escape = FALSE cannot be applied on all strings.

a string or a character vector, with a class "constructive_code" for pretty printing if style is TRUE

Examples

expr <- quote(foo(bar({this; that}, 1)))
deparse_call(expr)

deparse_call(expr, one_liner = TRUE)

deparse_call(expr, pipe = TRUE)

deparse_call(expr, style = FALSE)

some corner cases are handled better than in base R
deparse(call(”$”, 1, 1)) # returns non syntactic output
deparse_call(call("s$", 1, 1))

opts_array

Constructive options for arrays

Description

These options will be used on arrays. Note that arrays can be built on top of vectors, lists or
expressions. Canonical arrays have an implicit class "array" shown by class() but "array" is not
part of the class attribute.

22 opts_Asls

Usage
opts_array(constructor = c("array”, "next"), ...)
Arguments
constructor String. Name of the function used to construct the environment, see Details
section.
Should not be used. Forces passing arguments by name.
Details

Depending on constructor, we construct the object as follows:

e "array"” (default): Use the array() function

* "next"” : Use the constructor for the next supported class. Call .class2() on the object to
see in which order the methods will be tried.

Value

An object of class <constructive_options/constructive_options_array>

opts_AsIs Constructive options for the class AsIs

Description

These options will be used on objects of class AsIs. AsIs objects are created with I() which only
prepends "AsIs” to the class attribute.

Usage
opts_AsIs(constructor = c("I", "next"”, "atomic"), ...)
Arguments
constructor String. Name of the function used to construct the environment, see Details
section.
Should not be used. Forces passing arguments by name.
Details

Depending on constructor, we construct the object as follows:

e "I" (default): Use the I() function

* "next"” : Use the constructor for the next supported class. Call .class2() on the object to
see in which order the methods will be tried.

* "atomic” : We define as an atomic vector and repair attributes

opts_atomic 23

Value

An object of class <constructive_options/constructive_options_array>

opts_atomic Constructive options for atomic types

Description

non non "non

These options will be used on atomic types ("logical”, "integer", "numeric", "complex", "character"
and "raw")
Usage

opts_atomic(

L

trim = NULL,
fill = c("default”, "rlang”, "+", "...", "none"),
compress = TRUE,
unicode_representation = c("ascii”, "latin", "character"”, "unicode"),
escape = FALSE
)
Arguments
Should not be used. Forces passing arguments by name.
trim NULL or integerish. Maximum of elements showed before it’s trimmed. Note
that it will necessarily produce code that doesn’t reproduce the input. This code
will parse without failure but its evaluation might fail.
fill String. Method to use to represent the trimmed elements.
compress Boolean. It TRUE instead of c() Use seq(), rep(), or atomic constructors
logical(), integer(), numeric(), complex(), raw() when relevant to sim-
plify the output.

unicode_representation

By default "ascii", which means only ASCII characters (code point < 128) will
be used to construct a string. This makes sure that homoglyphs (different spaces
and other identically displayed unicode characters) are printed differently, and
avoid possible unfortunate copy and paste auto conversion issues. "latin" is
more lax and uses all latin characters (code point < 256). "character" shows all
characters, but not emojis. Finally "unicode" displays all characters and emojis,
which is what dput () does.

escape Whether to escape double quotes and backslashes. If FALSE we use single quotes
to suround strings containing double quotes, and raw strings for strings that con-
tain backslashes and/or a combination of single and double quotes. Depending
on unicode_representation escape = FALSE cannot be applied on all strings.

24

Details

opts_classGeneratorFunction

If trimis provided, depending on fill we will present trimmed elements as followed:

» "default” : Use default atomic constructors, so for instance c("a", "b", "c") might be-

come c("a”, character(2)).

e "rlang” : Use rlang atomic constructors, so for instance c("a", "b", "c") might become
c("a", rlang: :new_character(2)), these rlang constructors create vectors of NAs, so it’s
different from the default option.

e "+": Use unary +, so for instance c("a",

n

e " ..":Use...,soforinstance c("a",

"b", "c") might become c("a", +2).

* "none”: Don’t represent trimmed elements.

"b", "c") might become c("a", ...)

Depending on the case some or all of the choices above might generate code that cannot be executed.
The 2 former options above are the most likely to suceed and produce an output of the same type
and dimensions recursively. This would at least be the case for data frame.

Value

An object of class <constructive_options/constructive_options_atomic>

Examples

construct(iris, opts_atomic(trim
construct(iris, opts_atomic(trim

construct(iris, opts_atomic(trim =

construct(iris, opts_atomic(trim =

construct(iris, opts_atomic(trim
construct(iris, opts_atomic(trim

2), check
2, fill =
2, fill =
2, fill =
2, fill =
2, fill =

x <= c("a a", "a\UooooooAoa", "a\U00002002a"
construct(x, opts_atomic(unicode_representation =
construct(x, opts_atomic(unicode_representation =
construct(x, opts_atomic(unicode_representation =
construct(x, opts_atomic(unicode_representation =

= FALSE) # fill = "default”
"rlang”), check = FALSE)

n n
+

, check = FALSE)

"..."), check = FALSE)
"none"), check = FALSE)
"none"), check = FALSE)
, "\U430 \U430")

"unicode"))
"character”))
"latin"))
"ascii"))

opts_classGeneratorFunction

Constructive options for class 'classGeneratorFunction’

Description

These options will be used on objects of class ’classGeneratorFunction’.

Usage

opts_classGeneratorFunction(constructor = c("setClass"), ...)

opts_classPrototypeDef 25

Arguments
constructor String. Name of the function used to construct the object.
Should not be used. Forces passing arguments by name.
Value

An object of class <constructive_options/constructive_options_classGeneratorFunction>

opts_classPrototypeDef
Constructive options for class ’classPrototypeDef’

Description

These options will be used on objects of class ’classPrototypeDef’.

Usage
opts_classPrototypeDef (constructor = c("prototype”), ...)
Arguments
constructor String. Name of the function used to construct the object, see Details section.
Should not be used. Forces passing arguments by name.
Value

An object of class <constructive_options/constructive_options_classPrototypeDef>

opts_classRepresentation
Constructive options for class 'classRepresentation’

Description

These options will be used on objects of class ’classRepresentation’.

Usage

opts_classRepresentation(constructor = c("getClassDef"), ...)
Arguments

constructor String. Name of the function used to construct the object.

Should not be used. Forces passing arguments by name.

26 opts_data.frame

Value

An object of class <constructive_options/constructive_options_classRepresentation>

opts_constructive_options
Constructive options for the class constructive_options

Description

These options will be used on objects of class constructive_options.

Usage
opts_constructive_options(constructor = c("opts”, "next"), ...)
Arguments
constructor String. Name of the function used to construct the environment, see Details
section.
Should not be used. Forces passing arguments by name.
Details

Depending on constructor, we construct the object as follows:

e "opts” : Use the relevant constructive: :opts_?() function.

* "next"” : Use the constructor for the next supported class. Call .class2() on the object to
see in which order the methods will be tried.

Value

An object of class <constructive_options/constructive_options_array>

opts_data.frame Constructive options for class ’data.frame’

Description

These options will be used on objects of class ’data.frame’.

Usage

opts_data. frame(
constructor = c("data.frame”, "read.table”, "next”, "list"),

opts_data.table 27

Arguments
constructor String. Name of the function used to construct the environment, see Details
section.
Should not be used. Forces passing arguments by name.
Details

Depending on constructor, we construct the object as follows:

* "data.frame"” (default): Wrap the column definitions in a data.frame() call. If some
columns are lists or data frames, we wrap the column definitions in tibble:: tibble(). then
use as.data.frame().

* "read.table” : We build the object using read. table() if possible, or fall back to data. frame().

* "next"” : Use the constructor for the next supported class. Call .class2() on the object to
see in which order the methods will be tried.

e "list": Use list() and treat the class as a regular attribute.

Value

An object of class <constructive_options/constructive_options_data.frame>

opts_data.table Constructive options for class 'data.table’

Description

These options will be used on objects of class ’data.table’.

Usage

opts_data.table(
constructor = c("data.table”, "next", "list"),

selfref = FALSE

)
Arguments
constructor String. Name of the function used to construct the environment, see Details
section.
Should not be used. Forces passing arguments by name.
selfref Boolean. Whether to include the .internal.selfref attribute. It’s probably

not useful, hence the default, waldo: : compare() is used to assess the output
fidelity and doesn’t check it, but if you really need to generate code that builds
an object identical() to the input you’ll need to set this to TRUE.

28 opts_Date

Details
Depending on constructor, we construct the object as follows:

* "data.table"” (default): Wrap the column definitions in a data. table() call.

* "next"” : Use the constructor for the next supported class. Call .class2() on the object to
see in which order the methods will be tried.

e "list"”: Use list() and treat the class as a regular attribute.

Value

An object of class <constructive_options/constructive_options_data.table>

opts_Date Constructive options class ’Date’

Description

These options will be used on objects of class *date’.

Usage

opts_Date(
constructor = c("as.Date”, "as_date”, "date"”, "new_date”, "as.Date.numeric”,
"as_date.numeric”, "next”, "atomic"),

D

origin = "1970-01-01"

)
Arguments
constructor String. Name of the function used to construct the environment.
Should not be used. Forces passing arguments by name.
origin Origin to be used, ignored when irrelevant.
Details

Depending on constructor, we construct the environment as follows:
* "as.Date"” (default): We wrap a character vector with as.Date(), if the date is infinite it can-
not be converted to character and we wrap a numeric vector and provide an origin argument.

* "as_date"” : Similar as above but using lubridate: :as_date(), the only difference is that
we never need to supply origin.

* "date"” : Similar as above but using lubridate: :date(), it doesn’t support infinite dates so
we fall back on lubridate::as_date() when we encounter them.

* "new_date” : We wrap a numeric vector with vctrs: :new_date()

opts_dm 29

J

e "as.Date.numeric’
origin

: We wrap a numeric vector with as.Date() and use the provided

n

e "as_date.numeric
vided origin

: Same as above but using lubridate::as_date() and use the pro-

* "next"” : Use the constructor for the next supported class. Call .class2() on the object to
see in which order the methods will be tried.

* "atomic” : We define as an atomic vector and repair attributes

Value

An object of class <constructive_options/constructive_options_environment>

opts_dm Constructive options class 'dm’

Description

These options will be used on objects of class ’dm’.

Usage
opts_dm(constructor = c("dm", "next"”, "list"), ...)
Arguments
constructor String. Name of the function used to construct the environment.
Should not be used. Forces passing arguments by name.
Details

Depending on constructor, we construct the environment as follows:

e "dm" (default): We use dm: :dm() and other functions from dm to adjust the content.

* "next"” : Use the constructor for the next supported class. Call .class2() on the object to
see in which order the methods will be tried.

e "list"”: Use list() and treat the class as a regular attribute.

Value

An object of class <constructive_options/constructive_options_environment>

30 opts_environment

opts_dots Constructive options for type ...
Description
These options will be used on objects of type ... These are rarely encountered in practice. By

default this function is useless as nothing can be set, this is provided in case users want to extend
the method with other constructors.

Usage
opts_dots(constructor = c("default”), ...)
Arguments
constructor String. Name of the function used to construct the environment.
Should not be used. Forces passing arguments by name.
Details

Depending on constructor, we construct the environment as follows:

e "default” : We use the construct (function(...) environment()$...)(a=x, y) which
we evaluate in the correct environment.

Value

An object of class <constructive_options/constructive_options_environment>

opts_environment Constructive options for type ’environment’

Description

Environments use reference semantics, they cannot be copied. An attempt to copy an environment
would indeed yield a different environment and identical (env, copy) would be FALSE.
Moreover most environments have a parent (exceptions are emptyenv () and some rare cases where
the parent is NULL) and thus to copy the environment we’d have to have a way to point to the parent,
or copy it too.

For this reason environments are constructive’s cryptonite. They make some objects impossible to
reproduce exactly. And since every function or formula has one they’re hard to avoid.

opts_environment 31

Usage
opts_environment(
constructor = c(".env", "list2env”, "as.environment”, "new.env"”, "topenv",
"new_environment"),
recurse = FALSE,
predefine = FALSE
)
Arguments
constructor String. Name of the function used to construct the environment, see Construc-
tors section.
Should not be used. Forces passing arguments by name.
recurse Boolean. Only considered if constructoris "list2env” or "new_environment”.
Whether to attempt to recreate all parent environments until a known environ-
ment is found, if FALSE (the default) we will use topenv() to find a known
ancestor to set as the parent.
predefine Boolean. Whether to define environments first. If TRUE constructor and
recurse are ignored. It circumvents the circularity, recursivity and redundancy
issues of other constructors. The caveat is that the created code won’t be a single
call and will create objects in the workspace.
Details

In some case we can build code that points to a specific environment, namely:

¢ .GlobalEnv, .BaseNamespaceEnv, baseenv() and emptyenv() are used to construct the
global environment, the base namespace, the base package environment and the empty envi-
ronment

* Namespaces are constructed using asNamespace ("pkg")

» Package environments are constructed using as.environment ("package:pkg")

By default For other environments we use constructive’s function constructive::.env(), it
fetches the environment from its memory address and provides as additional information the se-
quence of parents until we reach a special environment (those enumerated above). The advantage
of this approach is that it’s readable and that the object is accurately reproduced. The inconvenient
is that it’s not stable between sessions. If an environment has a NULL parent it’s always constructed
with constructive::.env(), whatever the choice of the constructor.

Often however we wish to be able to reproduce from scratch a similar environment, so that we might
run the constructed code later in a new session. We offer different different options to do this, with
different trade-offs regarding accuracy and verbosity.

{constructive} will not signal any difference if it can reproduce an equivalent environment, defined
as containing the same values and having a same or equivalent parent.

See also the ignore_function_env argument in ?compare_options, which disables the check of
environments of function.

32 opts_externalptr

Value

An object of class <constructive_options/constructive_options_environment>

Constructors

We might set the constructor argument to:

e ".env"” (default): use constructive::.env() to construct the environment from its memory
address.

e "list2env": We construct the environment as a list then use base: :1list2env() to convert
it to an environment and assign it a parent. By default we will use base: : topenv() to con-
struct a parent. If recurse is TRUE the parent will be built recursively so all ancestors will
be created until we meet a known environment, this might be verbose and will fail if environ-
ments are nested too deep or have a circular relationship. If the environment is empty we use
new.env(parent=) for a more economic syntax.

* "new_environment” : Similar to the above, but using rlang: :new_environment().

e "new.env" : All environments will be recreated with the code "base: :new.env()", without
argument, effectively creating an empty environment child of the local (often global) environ-
ment. This is enough in cases where the environment doesn’t matter (or matters as long as it
inherits from the local environment), as is often the case with formulas. recurse is ignored.

* "as.environment"” : we attempt to construct the environment as a list and use base: :as.environment ()
on top of it, as in as.environment(list(a=1, b=2)), it will contain the same variables as
the original environment but the parent will be the emptyenv (). recurse is ignored.

* "topenv"” : we construct base: : topenv(x), see ?topenv. recurse is ignored. This is the
most accurate we can be when constructing only special environments.

Predefine

Building environments from scratch using the above methods can be verbose and sometimes redun-
dant if and environment is used several times. One last option is to define the environments and
their content above the object returning call, using placeholder names . .env.1.., ..env.2.. etc.
This is done by setting predefine to TRUE. constructor and recurse are ignored in that case.

opts_externalptr Constructive options for type ’externalptr’

Description

These options will be used on objects of type ’externalptr’. By default this function is useless as
nothing can be set, this is provided in case users wan to extend the method with other constructors.

Usage

opts_externalptr(constructor = c("default”), ...)

opts_factor 33

Arguments
constructor String. Name of the function used to construct the environment.
Should not be used. Forces passing arguments by name.
Details

Depending on constructor, we construct the environment as follows:

» "default"” : We use a special function from the constructive

Value

An object of class <constructive_options/constructive_options_environment>

opts_factor Constructive options for class ’factor’

Description

These options will be used on objects of class ’factor’.

Usage
opts_factor(
constructor = c("factor”, "as_factor”, "new_factor”, "next", "atomic"),
)
Arguments
constructor String. Name of the function used to construct the environment, see Details
section.
Should not be used. Forces passing arguments by name.
Details

Depending on constructor, we construct the environment as follows:

* "factor"” (default): Build the object using factor(), levels won’t be defined explicitly if
they are in alphabetical order (locale dependent!)

* "as_factor” : Build the object using forcats: :as_factor() whenever possible, i.e. when
levels are defined in order of appearance in the vector. Otherwise falls back to "factor”
constructor.

* "new_factor” : Build the object using vctrs: :new_factor(). Levels are always defined
explicitly.

* "next"” : Use the constructor for the next supported class. Call .class2() on the object to
see in which order the methods will be tried.

* "atomic” : We define as an atomic vector and repair attributes.

34 opts_formula

Value

An object of class <constructive_options/constructive_options_factor>

opts_formula Constructive options for formulas

Description

These options will be used on formulas, defined as calls to ~, regardless of their "class” attribute.

Usage

opts_formula(
constructor = c("~", "formula”, "as.formula”, "new_formula”, "next"),

L

environment = TRUE

)
Arguments

constructor String. Name of the function used to construct the environment, see Details
section.
Should not be used. Forces passing arguments by name.

environment Boolean. Whether to attempt to construct the environment, if it makes a differ-
ence to construct it.
Depending on constructor, we construct the formula as follows:

e "~" (default): We construct the formula in the most common way using the
~ operator.

e "formula” : deparse the formula as a string and use base: : formula() on
top of it.

* "as.formula” : Same as above, but using base: :as.formula().

* "new_formula” : extract both sides of the formula as separate language
objects and feed them to rlang::new_formula(), along with the recon-
structed environment if relevant.

Value

An object of class <constructive_options/constructive_options_environment>

opts_function 35

opts_function Constructive options for functions

Description

non

These options will be used on functions, i.e. objects of type "closure", "special" and "builtin".

Usage

opts_function(
constructor = c("function”, "as.function”, "new_function"),
environment = TRUE,
srcref = FALSE,

trim = NULL
)
Arguments
constructor String. Name of the function used to construct the environment, see Details
section.
Should not be used. Forces passing arguments by name.
environment Boolean. Whether to reconstruct the function’s environment.
srcref Boolean. Whether to attempt to reconstruct the function’s srcref.
trim NULL or integerish. Maximum of lines showed in the body before it’s trimmed,
replacing code with Note that it will necessarily produce code that doesn’t
reproduce the input, but it will parse and evaluate without failure.
Details

Depending on constructor, we construct the environment as follows:

e "function” (default): Build the object using a standard function() {3} definition. This won’t
set the environment by default, unless environment is set to TRUE. If a srcref is available, if
this srcref matches the function’s definition, and if trimis left NULL, the code is returned from
using the srcref, so comments will be shown in the output of construct(). In the rare case
where the ast body of the function contains non syntactic nodes this constructor cannot be
used and falls back to the "as. function” constructor.

e "as.function” : Build the object using a as. function() call. back to data.frame().

* "new_function” : Build the object using a rlang: :new_function() call.

Value

An object of class <constructive_options/constructive_options_function>

36 opts_language

opts_grouped_df Constructive options for class 'grouped_df’

Description

These options will be used on objects of class ’grouped_df’.

Usage
opts_grouped_df (constructor = c("default”, "next”, "list"), ...)
Arguments
constructor String. Name of the function used to construct the environment, see Details
section.
Should not be used. Forces passing arguments by name.
Details

Depending on constructor, we construct the environment as follows:

* "next" : Use the constructor for the next supported class. Call .class2() on the object to
see in which order the methods will be tried.

e "list"” : We define as an list object and repair attributes.

Value

An object of class <constructive_options/constructive_options_factor>

opts_language Constructive options for type ’language’

Description

These options will be used on objects of type ’language’. By default this function is useless as
nothing can be set, this is provided in case users want to extend the method with other constructors.

Usage
opts_language(constructor = c("default”), ...)
Arguments
constructor String. Name of the function used to construct the environment.

Should not be used. Forces passing arguments by name.

opts_Layer 37

Details

Depending on constructor, we construct the environment as follows:

» "default”: We use constructive’s deparsing algorithm on attributeless calls, and use as.call()
on other language elements when attributes need to be constructed.

Value

An object of class <constructive_options/constructive_options_environment>

opts_Layer Constructive options for class 'Layer’ (ggplot2)

Description

These options will be used on objects of class "Layer’.

Usage
opts_Layer(constructor = c("default”, "layer"”, "environment”), ...)
Arguments
constructor String. Name of the function used to construct the environment, see Details
section.
Should not be used. Forces passing arguments by name.
Details

Depending on constructor, we construct the object as follows:

* "default” : We attempt to use the function originally used to create the plot.
e "layer” : We use the ggplot2::1layer() function

* "environment” : Reconstruct the object using the general environment method (which can
be itself tweaked using opts_environment())

The latter constructor is the only one that reproduces the object exactly since Layers are environ-
ments and environments can’t be exactly copied (see ?opts_environment)

Value

An object of class <constructive_options/constructive_options_Layer>

38 opts_list

opts_list Constructive options for type ’list’

Description

These options will be used on objects of type ’list’.

Usage
opts_list(
constructor = c("list”, "list2"),
trim = NULL,
fill = c("vector”, "new_list", "+", "...", "none")
)
Arguments
constructor String. Name of the function used to construct the environment, see Details
section.
Should not be used. Forces passing arguments by name.
trim NULL or integerish. Maximum of elements showed before it’s trimmed. Note
that it will necessarily produce code that doesn’t reproduce the input. This code
will parse without failure but its evaluation might fail.
fill String. Method to use to represent the trimmed elements.
Details

Depending on constructor, we construct the environment as follows:

e "list"” (default): Build the object by calling 1ist().
e "list2": Build the object by calling rlang: :1ist2(), the only difference with the above is
that we keep a trailing comma when the list is not trimmed and the call spans several lines.
If trimis provided, depending on fill we will present trimmed elements as followed:
e "vector” (default): Use vector(), so for instance list("a"”, "b"”, "c") might become
c(list("a"), vector("list"”, 2)).

e "new_list": Use rlang::new_list(), so for instance list("a", "b", "c") might become
c(list("a"), rlang::new_list(2)).

e "+": Use unary +, so for instance list("a", "b", "c") might become list("a", +2).
e ", ..":Use...,soforinstance list("a", "b", "c") might become list("a", ...)

* "none”: Don’t represent trimmed elements.

When trimis used the output is parsable but might not be possible to evaluate, especially with fill

—n

="...". In that case you might want to set check = FALSE

opts_matrix 39

Value

An object of class <constructive_options/constructive_options_list>

opts_matrix Constructive options for matrices

Description

Matrices are atomic vectors, lists, or objects of type "expression” with a "dim" attributes of length
2.

Usage
opts_matrix(constructor = c("matrix”, "array”, "next", "atomic"), ...)
Arguments
constructor String. Name of the function used to construct the environment.
Should not be used. Forces passing arguments by name.
Details

Depending on constructor, we construct the environment as follows:

e "matrix” : Weuse matrix()
e "array” : Weuse array()

* "next"” : Use the constructor for the next supported class. Call .class2() on the object to
see in which order the methods will be tried. This will usually be equivalent to "array”

* "atomic” : We define as an atomic vector and repair attributes

Value

An object of class <constructive_options/constructive_options_environment>

40 opts_numeric_version

opts_mts Constructive options for time-series objets

Description
Depending on constructor, we construct the environment as follows:

e "ts" : Weuse ts()

* "next"” : Use the constructor for the next supported class. Call .class2() on the object to
see in which order the methods will be tried. This will usually be equivalent to "atomic”

* "atomic” : We define as an atomic vector and repair attributes

Usage
opts_mts(constructor = c("ts", "next"”, "atomic"), ...)
Arguments
constructor String. Name of the function used to construct the environment.
Should not be used. Forces passing arguments by name.
Value

An object of class <constructive_options/constructive_options_environment>

opts_numeric_version Constructive options for numeric_version

Description
Depending on constructor, we construct the environment as follows:

* "numeric_version” : We use numeric_version()

* "next"” : Use the constructor for the next supported class. Call .class2() on the object to
see in which order the methods will be tried. This will usually be equivalent to "array”

* "atomic” : We define as an atomic vector and repair attributes

Usage

opts_numeric_version(constructor = c("numeric_version”, "next", "atomic"), ...)
Arguments

constructor String. Name of the function used to construct the environment.

Should not be used. Forces passing arguments by name.

opts_ordered 41

Value

An object of class <constructive_options/constructive_options_environment>

opts_ordered Constructive options for class ’ordered’

Description

These options will be used on objects of class *ordered’.

Usage
opts_ordered(
constructor = c("ordered”, "factor”, "new_ordered”, "next", "atomic"),
)
Arguments
constructor String. Name of the function used to construct the environment, see Details
section.
Should not be used. Forces passing arguments by name.
Details

Depending on constructor, we construct the environment as follows:
* "ordered” (default): Build the object using ordered(), levels won’t be defined explicitly if
they are in alphabetical order (locale dependent!)
» "factor” : Same as above but build the object using factor () and ordered = TRUE.

* "new_ordered” : Build the object using vctrs: :new_ordered(). Levels are always defined
explicitly.

* "next"” : Use the constructor for the next supported class. Call .class2() on the object to
see in which order the methods will be tried.

* "atomic” : We define as an atomic vector and repair attributes

Value

An object of class <constructive_options/constructive_options_factor>

42 opts_pairlist

opts_package_version Constructive options for package_version

Description
Depending on constructor, we construct the environment as follows:

* "package_version” : We use package_version()

* "next"” : Use the constructor for the next supported class. Call .class2() on the object to
see in which order the methods will be tried. This will usually be equivalent to "array”

* "atomic” : We define as an atomic vector and repair attributes

Usage
opts_package_version(constructor = c("package_version”, "next", "atomic"), ...)
Arguments
constructor String. Name of the function used to construct the environment.
Should not be used. Forces passing arguments by name.
Value

An object of class <constructive_options/constructive_options_environment>

opts_pairlist Constructive options for pairlists

Description
Depending on constructor, we construct the environment as follows:

* "pairlist” (default): Build the object using a pairlist() call.
e "pairlist2” : Build the object using a rlang: :pairlist2() call.

Usage
opts_pairlist(constructor = c("pairlist”, "pairlist2"), ...)
Arguments
constructor String. Name of the function used to construct the environment, see Details
section.
Should not be used. Forces passing arguments by name.
Value

An object of class <constructive_options/constructive_options_factor>

opts_POSIXct 43

opts_POSIXct Constructive options for class ’POSIXct’

Description

These options will be used on objects of class ’POSIXct’.

Usage
opts_POSIXct(
constructor = c("as.POSIXct"”, ".POSIXct”, "as_datetime”, "as.POSIXct.numeric”,
"as_datetime.numeric”, "next", "atomic"),

origin = "1970-01-01"

)
Arguments
constructor String. Name of the function used to construct the environment, see Details
section.
Should not be used. Forces passing arguments by name.
origin Origin to be used, ignored when irrelevant.
Details

Depending on constructor, we construct the environment as follows:

* "as.POSIXct" (default): Build the object using a as.POSIXct() call on a character vector.
e "_POSIXct" : Build the object using a .POSIXct() call on a numeric vector.

* "as_datetime” : Build the object using a lubridate: :as_datetime() call on a character
vector.

* "next"” : Use the constructor for the next supported class. Call .class2() on the object to
see in which order the methods will be tried.

* "atomic” : We define as an atomic vector and repair attributes.

Value

An object of class <constructive_options/constructive_options_factor>

44 opts_quosure

opts_POSIX1t Constructive options for class 'POSIXIt’

Description

These options will be used on objects of class "POSIXIt’.

Usage
opts_POSIX1t(constructor = c("as.POSIX1t", "next", "list"”), ...)
Arguments
constructor String. Name of the function used to construct the environment, see Details
section.
Should not be used. Forces passing arguments by name.
Details

Depending on constructor, we construct the environment as follows:

* "as.POSIX1t" (default): Build the object using a as.POSIX1t () call on a character vector.

* "next"” : Use the constructor for the next supported class. Call .class2() on the object to
see in which order the methods will be tried.

e "list"”: We define as a list and repair attributes.

Value

An object of class <constructive_options/constructive_options_factor>

opts_quosure Constructive options for class quosure’

Description

These options will be used on objects of class ’quosure’.

Usage

opts_quosure(constructor = c("new_quosure”, "next"”, "language"), ...)
Arguments

constructor String. Name of the function used to construct the environment, see Details

section.

Should not be used. Forces passing arguments by name.

opts_quosures 45

Details
Depending on constructor, we construct the environment as follows:

* "new_quosure” (default): Build the object using a new_quosure() call on a character vector.

* "next"” : Use the constructor for the next supported class. Call .class2() on the object to
see in which order the methods will be tried.

* "language” : We define as an language object and repair attributes.

Value

An object of class <constructive_options/constructive_options_factor>

opts_quosures Constructive options for class 'quosures’

Description

These options will be used on objects of class *quosures’.

Usage
opts_quosures(constructor = c(”"new_quosures”, "next"”, "list"), ...)
Arguments
constructor String. Name of the function used to construct the environment, see Details
section.
Should not be used. Forces passing arguments by name.
Details

Depending on constructor, we construct the environment as follows:

* "as_quosures” (default): Build the object using a as_quosures() call on a character vector.

* "next"” : Use the constructor for the next supported class. Call .class2() on the object to
see in which order the methods will be tried.

e "list"” : We define as an list object and repair attributes.

Value

An object of class <constructive_options/constructive_options_factor>

46 opts_R_system_version

opts_rowwise_df Constructive options for class 'rowwise_df’

Description

These options will be used on objects of class 'rowwise_df’.

Usage
opts_rowwise_df (constructor = c("default”, "next"”, "list"), ...)
Arguments
constructor String. Name of the function used to construct the environment, see Details
section.
Should not be used. Forces passing arguments by name.
Details

Depending on constructor, we construct the environment as follows:

* "next"” : Use the constructor for the next supported class. Call .class2() on the object to
see in which order the methods will be tried.

* "list"” : We define as an list object and repair attributes.

Value

An object of class <constructive_options/constructive_options_factor>

opts_R_system_version Constructive options for R_system_version

Description
Depending on constructor, we construct the environment as follows:

* "R_system_version" : We use R_system_version()

e "next" : Use the constructor for the next supported class. Call .class2() on the object to
see in which order the methods will be tried. This will usually be equivalent to "array”

* "atomic” : We define as an atomic vector and repair attributes

Usage

opts_R_system_version(
constructor = c("R_system_version”, "next", "atomic"),

opts_S4 47

Arguments
constructor String. Name of the function used to construct the environment.
Should not be used. Forces passing arguments by name.
Value

An object of class <constructive_options/constructive_options_environment>

opts_S4 Constructive options for class 'S4’

Description

These options will be used on objects of class ’S4’. Note that the support for S4 is very experimental
so might easily beak. Please report issues if it does.

Usage
opts_S4(constructor = c("new"), ...)
Arguments
constructor String. Name of the function used to construct the environment, see Details
section.
Should not be used. Forces passing arguments by name.
Value

An object of class <constructive_options/constructive_options_S4>

opts_tbl_df Constructive options for tibbles

Description

These options will be used on objects of class ’tbl_df’, also known as tibbles.

Usage

opts_tbl_df(
constructor = c("tibble”, "tribble"”, "next", "list"),
trailing_comma = TRUE

)

48 opts_ts

Arguments
constructor String. Name of the function used to construct the environment, see Details
section.
Should not be used. Forces passing arguments by name.

trailing_comma Boolean, whether to leave a trailing comma at the end of the constructor call
calls

Details
Depending on constructor, we construct the object as follows:

e "tibble" (default): Wrap the column definitions in a tibble::tibble() call.

e "tribble"” : We build the object using tibble::tribble() if possible, and fall back to
tibble::tibble().

* "next"” : Use the constructor for the next supported class. Call .class2() on the object to
see in which order the methods will be tried.

e "list"”: Use list() and treat the class as a regular attribute.

Value

An object of class <constructive_options/constructive_options_tbl_df>

opts_ts Constructive options for time-series objets

Description
Depending on constructor, we construct the environment as follows:

e "ts" : Weuse ts()

* "next"” : Use the constructor for the next supported class. Call .class2() on the object to
see in which order the methods will be tried. This will usually be equivalent to "atomic”

e "atomic” : We define as an atomic vector and repair attributes

Usage
opts_ts(constructor = c("ts”, "next"”, "atomic"), ...)
Arguments
constructor String. Name of the function used to construct the environment.
Should not be used. Forces passing arguments by name.
Value

An object of class <constructive_options/constructive_options_environment>

opts_vetrs_list_of 49

opts_vctrs_list_of Constructive options for class 'data.table’

Description

These options will be used on objects of class ’data.table’.

Usage
opts_vctrs_list_of(constructor = c("list_of”, "list"), ...)
Arguments
constructor String. Name of the function used to construct the environment, see Details
section.
Should not be used. Forces passing arguments by name.
Details

Depending on constructor, we construct the object as follows:

e "list_of" (default): Wrap the column definitions in a 1ist_of () call.

e "list": Use list() and treat the class as a regular attribute.

Value

An object of class <constructive_options/constructive_options_data.table>

opts_weakref Constructive options for the class weakref

Description

These options will be used on objects of type weakref. weakref objects are rarely encountered and
there is no base R function to create them. However rlang has a new_weakref function that we can

use.
Usage

opts_weakref(constructor = c("new_weakref”"), ...)
Arguments

constructor String. Name of the constructor.

Should not be used. Forces passing arguments by name.

50 opts_weakref

Value

An object of class <constructive_options/constructive_options_array>

Index

+ datasets

constructors, 15
.cstr_apply, 3
.cstr_combine_errors, 4
.cstr_construct, 6
.cstr_fetch_opts, 6
.cstr_match_constructor, 7
.cstr_options, 7
.cstr_pipe, 8
.cstr_register_constructors, 8
.cstr_repair_attributes, 9
.cstr_wrap, 10
.env, 10
.xptr, 11

compare_options, 11

construct, 12

construct_diff, 16

construct_dump, 17

construct_issues, 18

construct_multi (construct), 12

construct_reprex, 18

construct_signature, 19

constructive-global_options, 15

constructive_opts_template
(constructive-global_options),
15

constructive_pretty
(constructive-global_options),
15

constructive_print_mode
(constructive-global_options),
15

constructors, 15

custom-constructors, 20

defused function call, 5
deparse_call, 20

Formatting messages with cli, 5

51

Including contextual information with
error chains, 5

Including function calls in error
messages, 5

local_use_cli(), 5

opts_array, 13,21

opts_AsIs, 13,22

opts_atomic, /13,23
opts_classGeneratorFunction, 13, 24
opts_classPrototypeDef, 13, 25
opts_classRepresentation, 13,25
opts_constructive_options, 13,26
opts_data.frame, 13, 26
opts_data.table, /4, 27
opts_Date, 14, 28
opts_dm, /4, 29
opts_dots, 74, 30
opts_environment, /4, 30
opts_externalptr, 14, 32
opts_factor, /4, 33
opts_formula, /4, 34
opts_function, 14, 35
opts_grouped_df, /14, 36
opts_language, 14, 36
opts_Layer, 14,37
opts_list, 14, 38
opts_matrix, 14, 39
opts_mts, 14, 40
opts_numeric_version, /4,40
opts_ordered, 14, 41
opts_package_version, 14,42
opts_pairlist, 14,42
opts_POSIXct, /14,43
opts_POSIX1t, /4, 44
opts_quosure, 14, 44
opts_quosures, 14, 45
opts_R_system_version, 14, 46
opts_rowwise_df, 14, 46

52 INDEX

opts_S4, 14,47
opts_tbl_df, 14, 47
opts_ts, 14,48
opts_vctrs_list_of, 14,49
opts_weakref, 14, 49

trace_back(), 5
try_fetch(), 5, 6
tryCatch(), 6

	.cstr_apply
	.cstr_combine_errors
	.cstr_construct
	.cstr_fetch_opts
	.cstr_match_constructor
	.cstr_options
	.cstr_pipe
	.cstr_register_constructors
	.cstr_repair_attributes
	.cstr_wrap
	.env
	.xptr
	compare_options
	construct
	constructive-global_options
	constructors
	construct_diff
	construct_dump
	construct_issues
	construct_reprex
	construct_signature
	custom-constructors
	deparse_call
	opts_array
	opts_AsIs
	opts_atomic
	opts_classGeneratorFunction
	opts_classPrototypeDef
	opts_classRepresentation
	opts_constructive_options
	opts_data.frame
	opts_data.table
	opts_Date
	opts_dm
	opts_dots
	opts_environment
	opts_externalptr
	opts_factor
	opts_formula
	opts_function
	opts_grouped_df
	opts_language
	opts_Layer
	opts_list
	opts_matrix
	opts_mts
	opts_numeric_version
	opts_ordered
	opts_package_version
	opts_pairlist
	opts_POSIXct
	opts_POSIXlt
	opts_quosure
	opts_quosures
	opts_rowwise_df
	opts_R_system_version
	opts_S4
	opts_tbl_df
	opts_ts
	opts_vctrs_list_of
	opts_weakref
	Index

