| Type: | Package | 
| Title: | 'Burgle': Stealing the Necessary Parts of Model Objects | 
| Version: | 0.1.2 | 
| Maintainer: | Paul R. Gunsalus <gunsalp@ccf.org> | 
| Description: | Provides a way to reduce model objects to necessary parts, making them easier to work with, store, share and simulate multiple values for new responses while allowing for parameter uncertainty. | 
| License: | MIT + file LICENSE | 
| Encoding: | UTF-8 | 
| RoxygenNote: | 7.2.3 | 
| Imports: | stats, MASS, survival, riskRegression | 
| Suggests: | flexsurv, nnet | 
| Depends: | R (≥ 4.0.0) | 
| NeedsCompilation: | no | 
| Packaged: | 2024-10-01 01:11:33 UTC; gunsalp | 
| Author: | Paul R. Gunsalus  | 
| Repository: | CRAN | 
| Date/Publication: | 2024-10-01 08:40:07 UTC | 
Burgle
Description
Burgling what is necessary from different objects
Usage
burgle(object, ...)
## S3 method for class 'lm'
burgle(object, ...)
## S3 method for class 'glm'
burgle(object, ...)
## S3 method for class 'CauseSpecificCox'
burgle(object, ...)
## S3 method for class 'cph'
burgle(object, ...)
## S3 method for class 'flexsurvreg'
burgle(object, ...)
## S3 method for class 'multinom'
burgle(object, ...)
## S3 method for class 'coxph'
burgle(object, ...)
Arguments
object | 
 the model object to burgle  | 
... | 
 must be left empty for now  | 
Value
a burgle_ object
Examples
fit <- lm(Sepal.Length ~ Sepal.Width + Petal.Length, data = iris)
bfit <- burgle(fit)
object.size(fit)
object.size(bfit)
Predict for burgle methods
Description
Predict for burgle methods
Usage
## S3 method for class 'burgle_CauseSpecificCox'
predict(
  object,
  newdata = NULL,
  type = "lp",
  cause = 1,
  original = TRUE,
  draws = 1,
  sims = 1,
  times = NULL,
  ...
)
## S3 method for class 'burgle_cph'
predict(object, ...)
## S3 method for class 'burgle_flexsurvreg'
predict(
  object,
  newdata = NA,
  original = TRUE,
  draws = 1,
  sims = 1,
  type = "lp",
  times = NULL,
  ...
)
## S3 method for class 'burgle_multinom'
predict(
  object,
  newdata = NA,
  original = TRUE,
  draws = 1,
  sims = 1,
  type = "lp",
  floor = FALSE,
  seed = NULL,
  ...
)
## S3 method for class 'burgle_coxph'
predict(
  object,
  newdata = NA,
  original = TRUE,
  draws = 1,
  sims = 1,
  type = "lp",
  times = NULL,
  ...
)
## S3 method for class 'burgle_lm'
predict(
  object,
  newdata,
  original = TRUE,
  draws = 1,
  sims = 1,
  type = "lp",
  se = FALSE,
  limits = NULL,
  ...
)
## S3 method for class 'burgle_glm'
predict(
  object,
  newdata,
  original = TRUE,
  draws = 1,
  sims = 1,
  type = "lp",
  se = FALSE,
  ...
)
Arguments
object | 
 the results of burgle_* object  | 
newdata | 
 new data of class data.frame  | 
type | 
 either 'lp', 'response', 'link' for glm or 'risk' if time dependent  | 
cause | 
 which cause do you want to predict  | 
original | 
 whether or not to predict using the original model  | 
draws | 
 how many different models to simulate  | 
sims | 
 how many simulated response to draw  | 
times | 
 if type = "risk" time for which to predict risk, if times and sims is multiple the return will be lists within lists  | 
... | 
 for future methods  | 
floor | 
 will set the minimum odds to 0, if negative odds exists  | 
seed | 
 a seed to specificy for simulating responses (multinomial only)  | 
se | 
 whether or not to include the standard error in the simulations  | 
limits | 
 limits (minimum and maximum) for simulated response values.  | 
Value
either a matrix or list of new model predictions