
Using the bfpwr package

Samuel Pawel

https://orcid.org/0000-0003-2779-320X

Package version 0.1.3

October 25, 2024

The bfpwr package provides functions to compute commonly used Bayes factors and perform corre-

sponding power and sample size calculations. The theoretical background of the package is described

in Pawel and Held (2024). Calculations in bfpwr are performed analytically or with numerical (non-

simulation based) methods. This differs from most other packages that use simulation methods for

the same purposes (e.g., the BFDA package from Schönbrodt and Stefan, 2019). This typically leads

to faster computations without simulation error, but at the cost of being restricted to certain data

distributions and analysis methods. This vignette illustrates how the package can be used in some

typical situations. Table 1 summarizes the main functions of the package. It is recommended to look

at the function documentation (?functionname) before using them for the first time as this vignette

provides only a broad overview of the package.

Table 1: Main functions for Bayes factor analysis and design in the bfpwr package.

Bayes factor type Analysis function Design function

z -test Bayes factor (Section 1) bf01 powerbf01

t-test Bayes factor (Section 2) tbf01 powertbf01

Normal moment Bayes factor (Section 3) nmbf01 powernmbf01

The bfpwr package can be installed from CRAN by running

install.packages("bfpwr")

followed by loading it with

library("bfpwr")

Development of bfpwr is being done on GitHub. Anyone with ideas for new features, bug reports, or

other contributions to the package is invited to get in touch there (https://github.com/SamCH93/

bfpwr).
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1 z -test Bayes factor

The z -test Bayes factor is a fairly general analysis method that is applicable to data summarized by

an estimate θ̂ of an unknown parameter θ, along with a standard error of the estimate. The estimate

is assumed to be approximately normally distributed around the true parameter with a standard

deviation equal to the standard error. The z -test Bayes factor then quantifies the evidence for the null

hypothesis that the parameter takes a certain null value H0: θ = θ0 against the alternative hypothesis

that it takes another value H1: θ ̸= θ0, in light of the observed data and assuming a normal ‘analysis

prior’ for the parameter θ under the alternative H1. In all functions related to the z -test Bayes factor,

the normal analysis prior is specified by the prior mean (argument pm) and the prior standard deviation

(argument psd). Setting the prior standard deviation to zero corresponds to a point prior and reduces

the Bayes factor to a likelihood ratio. As such, the bfpwr package can also be used for ‘likelihoodist’

(sometimes also known as ‘evidential’) analysis and design (see e.g., Royall, 1997, for an overview of

the likelihoodist/evidential paradigm).

1.1 Analysis with the z -test Bayes factor

The z -test Bayes factor can be calculated using the function bf01, see ?bf01 for a detailed description

of its arguments. The following code demonstrates application to data in the form of an estimated

regression coefficient from a logistic regression model and its standard error

## glm to quantify association between Virginica species and sepal width

iris$virginica <- as.numeric(iris$Species == "virginica")

irisglm <- glm(virginica ~ Petal.Width, data = iris, family = "binomial")

estimate <- summary(irisglm)$coefficients[2,1] # logOR estimate

se <- summary(irisglm)$coefficients[2,2] # standard error

## Bayes factor parameters

null <- 0 # null value

pm <- 0 # analysis prior mean

psd <- 2 # analysis prior sd

## compute z-test Bayes factor

bf01(estimate = estimate, se = se, null = null, pm = pm, psd = psd)

## [1] 0.03945687

We can see that the data provide strong evidence (BF01 = 1/25.3) for the alternative hypothesis of

a log odds ratio unequal to zero (i.e., an association between the species Virginica and sepal width),

over the null hypothesis of a log odds ratio equal to zero (i.e., no association). Note that the Bayes

factor calculated using the bf01 function and all other functions in bfpwr are oriented in favor of the

null hypothesis over the alternative, so BF01 > 1 indicates evidence for the null hypothesis, whereas

BF01 < 1 indicates evidence for the alternative hypothesis. If a Bayes factor orientation in favor of

the alternative over the null is desired instead, one can invert the Bayes factor by BF10 = 1/BF01.
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1.2 Design with the z -test Bayes factor

Another reason we would want to use bfpwr is that we have no observed data yet, and we want to

either (i) compute a sample size that will produce a compelling Bayes factor with a given probability,

or (ii) compute the probability of obtaining a compelling Bayes factor for a given sample size (the

‘power’).

The function powerbf01 can be used to compute power and sample size, assuming that the data

are normally distributed and that the parameter of interest is either a mean or a (standardized) mean

difference. It is inspired by the power.t.test function from the stats package, with which many

users will be familiar. One can either compute the power for a given sample size (by specifying the

n argument) or compute the sample size for a given power (by specifying the power argument). The

code below demonstrates usage of powerbf01 for a two-sample test of a standardized mean difference

parameter

## Bayes factor and sample size parameters

null <- 0 # null value

pm <- 0.3 # analysis prior mean

psd <- 1 # analysis prior sd

k <- 1/10 # desired Bayes factor threshold (BF01 < k)

type <- "two.sample" # two-sample z-test

sd <- 1 # sd of one observation, set to 1 for standardized mean difference scale

## compute sample size to achieve desired power

pow <- 0.9

(res1 <- powerbf01(k = k, power = pow, sd = sd, null = null, pm = pm, psd = psd,

type = type))

##

## Two-sample z-test Bayes factor power calculation

##

## n = 1292.6

## power = 0.9

## sd = 1

## null = 0

## analysis prior mean = 0.3

## analysis prior sd = 1

## design prior mean = 0.3

## design prior sd = 1

## BF threshold k = 1/10

##

## NOTE: BF oriented in favor of H0 (BF < 1 indicates evidence for H1 over H0)

## n is number of *observations per group*

## sd is standard deviation of one observation (assumed equal in both groups)

## compute power for a given sample size

n <- 500

(res2 <- powerbf01(k = k, n = n, sd = sd, null = null, pm = pm, psd = psd,

type = type))

##
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## Two-sample z-test Bayes factor power calculation

##

## n = 500

## power = 0.8467494

## sd = 1

## null = 0

## analysis prior mean = 0.3

## analysis prior sd = 1

## design prior mean = 0.3

## design prior sd = 1

## BF threshold k = 1/10

##

## NOTE: BF oriented in favor of H0 (BF < 1 indicates evidence for H1 over H0)

## n is number of *observations per group*

## sd is standard deviation of one observation (assumed equal in both groups)

Defining a Bayes factor below the threshold k = 1/10 as target for compelling evidence, we see that

n = 1293 observations per group (obtained from rounding the resulting sample size n = 1292.6 to the

next larger integer) are required to obtain a power of 90%, or that a power of 84.7% is obtained for a

sample size of n = 500. Both function calls assume that the underlying parameter is sampled from the

normal analysis prior under the alternative hypothesis, as specified with the arguments pm and psd.

By additionally specifying the arguments dpm and dpsd, it is also possible to specify a normal ‘design

prior‘ that differs from the analysis prior. For example, we may want to specify a design prior that

encodes more optimistic assumptions about the parameter than the analysis prior, or we may want

to set the design prior to the null hypothesis (dpm = null and dpsd = 0) to compute the probability

of misleading evidence in favor of the alternative when the null is actually true. The latter is done

automatically when plotting the resulting power.bftest object with the corresponding plot method,

as shown below

## plot power curves (also tweaking the limits and resolution of the x-axis)

plot(res1, nlim = c(1, 3000), ngrid = 1000)
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The first plot highlights the sample size required to achieve the specified power, along with power

values for other sample sizes. The second plot shows a power curve for obtaining a Bayes factor in

favor of the null hypothesis (using the reciprocal of the specified threshold k), it can be turned off with

the argument nullplot = FALSE. Finally, the argument plot = FALSE can be specified to return only

the data underlying the plot, for example, if one wants to use an alternative plotting package.

To conduct such sample size and power calculations for other parameters than a (standardized)

mean (difference), additional assumptions regarding the standard error and sample size are needed.

The functions pbf01 and nbf01 can perform power and sample size calculations in more general cases

than powerbf01. Both assume that the standard error is of the form σθ̂/
√
n, where σθ̂ is the standard

deviation of one effective observation and n is the ‘effective sample size’. In both functions, users have

to specify the unit standard deviation σθ̂ that determines the scale of the calculation. Table 2 lists

how some typically used parameters can be cast into this framework. The documentation of both

functions (?pbf01 and ?nbf01) provides more information and examples.
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Table 2: Different types of parameter estimates θ̂ with approximate standard error σθ̂/
√
n and corre-

sponding interpretation of sample size n and unit standard deviation σθ̂ (adapted from Chapter 2.4 in
Spiegelhalter et al., 2004 and Chapter 1 in Grieve, 2022). The standard deviation of one continuous
outcome observation is denoted by σ. Parameter estimates based on two groups assume an equal
number of observations per group.

Outcome Parameter estimate θ̂ Interpretation of n Unit standard deviation σθ̂

Continuous Mean Sample size σ

Continuous Mean difference Sample size per group σ
√
2

Continuous Standardized mean difference Sample size per group
√
2

Continuous z-transformed correlation Sample size minus 3 1

Binary Log odds ratio Total number of events 2

Binary Arcsine square root difference Sample size per group 1/
√
2

Survival Log hazard ratio Total number of events 2

Count Log rate ratio Total count 2

2 t-test Bayes factor

The t-test Bayes factor is an analysis method specifically tailored to testing a (standardized) mean

(difference) parameter θ based on normally distributed data with unknown variance (assumed equal

across both groups if more than one). This Bayes factor quantifies the evidence that the data (in

the form of a t-statistic and sample sizes) provide for the null hypothesis that the parameter equals

zero against the alternative hypothesis that it is not equal zero. Following Gronau et al. (2020), the

t-test Bayes factor implemented in bfpwr assumes that a scale-location t prior distribution (poten-

tially truncated to only positive or only negative parameters) is assigned to the standardized mean

(difference) under the alternative hypothesis. When centering the prior on zero and setting its degrees

of freedom to one, the Bayes factor reduces to the ‘Jeffreys-Zellner-Siow’ (JZS) Bayes factor (Jeffreys,

1961; Zellner and Siow, 1980), which is often used as a ‘default’ Bayes factor in the social sciences

(Rouder et al., 2009). Setting other values for these parameters allows data analysts to incorporate

directionality or prior knowledge about the parameter, potentially making the test more informative.

Figure 1 shows examples of different prior distributions along with the arguments to specify them.

2.1 Analysis with the t-test Bayes factor

The t-test Bayes factor can be calculated with the function tbf01, see the documentation ?tbf01 for

details on its arguments. The following code chunk illustrates usage of the function with two examples

from the literature

## paired t-test JZS Bayes factor analyses from Rouder et al. (2009, p.232)

tbf01(t = 2.03, n = 80, plocation = 0, pscale = 1, pdf = 1, type = "paired")

## [1] 1.557447

## informed prior analysis from Gronau et al. (2020, Figure 1)

tbf01(t = -0.90, n1 = 53, n2 = 57, plocation = 0.350, pscale = 0.102, pdf = 3,

alternative = "greater", type = "two.sample")
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Figure 1: Illustration of different (truncated) scale-location t prior distributions for the t-test Bayes
factor along with the arguments to specify them. The yellow and blue priors represent ‘default’ priors
that are undirectional and directional, respectively, the green prior represents an informed prior.

## [1] 11.55065

The first example reproduces a Bayes factor calculation reported in Rouder et al. (2009, p. 232):

A t-statistic of t = 2.03 obtained from n = 80 paired observations part of a psychological experiment,

together with a standard Cauchy distribution assigned to the standardized mean difference parameter

(a t distribution centered around zero with one degree of freedom and a scale of one), yields a Bayes

factor of BF01 = 1.56, which provides anecdotal evidence in favor of the null hypothesis of no effect

over the alternative hypothesis of an effect. The second example, from Gronau et al. (2020, p. 140-141),

analyzes a t-statistic of t = −0.90 from a psychological experiment based on a mean comparison of

two groups with size n1 = 53 and n2 = 57, respectively. Here, a more informed prior was elicited from

an expert, and is also truncated to positive effects (with the argument alternative = "greater").

This yields a Bayes factor of BF01 = 11.55, which provides strong evidence for the null hypothesis of

no effect over the alternative of an effect.

2.2 Design with the t-test Bayes factor

The powertbf01 function can be used for both power and sample size calculations assuming that the

future data are analyzed with the t-test Bayes factor, but still assuming known variances and a normal

design prior for the design. As such, the function has a similar specification as powerbf01, differing

only in the arguments of the analysis prior. The following code illustrates its usage

## determine sample size for a given power

(tres <- powertbf01(k = 1/6, # Bayes factor threshold

power = 0.95, # target power
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type = "two.sample", # two-sample test

## normal design prior

dpm = 0.5, # design prior mean at d = 0.5

dpsd = 0, # point design prior (standard deviation is zero)

## directional JSZ analysis prior

plocation = 0,

pscale = 1/sqrt(2),

pdf = 1,

alternative = "greater"))

##

## Two-sample t-test Bayes factor power calculation

##

## n = 142.7228

## power = 0.95

## sd = 1

## null = 0

## alternative = greater

## analysis prior location = 0

## analysis prior scale = 0.7071068

## analysis prior df = 1

## design prior mean = 0.5

## design prior sd = 0

## BF threshold k = 1/6

##

## NOTE: BF oriented in favor of H0 (BF < 1 indicates evidence for H1 over H0)

## n is number of *observations per group*

## sd is standard deviation of one observation (assumed equal in both groups)

In this example, taken from Schönbrodt and Wagenmakers (2018), it is assumed that the future data

will be analyzed with a two-sample t-test Bayes factor using a directional JSZ analysis prior with

a scale of 1/
√
2, and that a Bayes factor below k = 1/6 is interpreted as compelling evidence. In

addition, a standardized mean difference of 0.5 was assumed for the underlying effect size, which

corresponds to setting the design prior mean to dpm = 0.5 and its standard deviation to zero (dpsd

= 0). If parameter uncertainty is to be accounted for, one could alternatively set a positive value

for the design prior standard deviation. Taken together, the calculation results in a sample size of

n = 142.72, which means that at least 143 observations per group are required to obtain compelling

evidence with a power of 95%. As with the z -test Bayes factor, the power curves corresponding to

these design calculations can be plotted with

plot(tres)
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3 Normal moment prior Bayes factor

The normal moment prior Bayes factor is another analysis method that is applicable to data in the

form of a parameter estimate with standard error, similar to the z -test Bayes factor. The difference

between the two approaches is that the former uses a so-called ‘normal moment’ prior distribution for

the parameter under the alternative hypothesis while the z -test Bayes factor uses just a normal prior

distribution. Normal moment priors are a type of ‘non-local’ prior distribution which allow evidence

for a point null hypothesis to accumulate more quickly if it is indeed true (Johnson and Rossell,

2010). This is because normal moment priors have zero density at the null value, see Figure 2 for an

illustration. In all functions related to the normal moment prior Bayes factor, the prior is specified by

the point null hypothesis (argument null) and the prior spread (argument psd). The latter controls

how much the prior is spread out, and determines the modes of the distribution which are located at

±psd
√
2. As such, the prior could be specified by setting the spread parameter so that the modes

equal two parameter values deemed plausible or relevant under the alternative.

Analysis and design with the normal moment prior Bayes factor is very similar to analysis with the
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Figure 2: Illustration of different normal moment prior distributions along with the arguments to
specify them.

z -test Bayes factor. There is again one analysis function (nmbf01), a design function for (standardized)

mean (difference) parameters (powernmbf01), and two more general design functions that can also

accommodate other parameter types (pnmbf01 and nnmbf01). The documentation of these functions

provides more information and examples.
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Computational details

cat(paste(Sys.time(), Sys.timezone(), "\n"))

## 2024-10-25 11:04:36.644635 Europe/Zurich

sessionInfo()

## R version 4.4.1 (2024-06-14)

## Platform: x86_64-pc-linux-gnu

## Running under: Ubuntu 22.04.5 LTS

##

## Matrix products: default

## BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.10.0

## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0

##

## locale:

## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

## [3] LC_TIME=de_CH.UTF-8 LC_COLLATE=C

## [5] LC_MONETARY=de_CH.UTF-8 LC_MESSAGES=en_US.UTF-8

## [7] LC_PAPER=de_CH.UTF-8 LC_NAME=C

## [9] LC_ADDRESS=C LC_TELEPHONE=C

## [11] LC_MEASUREMENT=de_CH.UTF-8 LC_IDENTIFICATION=C

##

## time zone: Europe/Zurich

## tzcode source: system (glibc)

##

## attached base packages:

## [1] stats graphics grDevices utils datasets methods base

##

## other attached packages:

## [1] bfpwr_0.1.3 knitr_1.48

##

## loaded via a namespace (and not attached):

## [1] compiler_4.4.1 tools_4.4.1 highr_0.11 xfun_0.46.8

## [5] evaluate_0.24.0
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