Package ‘async’

May 26, 2023

Title Coroutines: Generators / Yield, Async / Await, and Streams
Version 0.3.2
Date 2023-05-24

URL https://crowding.github.io/async/,
https://github.com/crowding/async/

BugReports https://github.com/crowding/async/issues

Description Write sequential-looking code that pauses and resumes.
gen() creates a generator, an iterator that returns a
value and pauses each time it reaches a yield() call.
async() creates a promise, which runs until it reaches
a call to await(), then resumes when information is available.
These work similarly to generator and async constructs
from 'Python' or 'JavaScript'. Objects produced are
compatible with the 'iterators' and 'promises' packages.
Version 0.3 supports on.exit, single-step debugging,
stream() for making asynchronous iterators, and
delimited goto() in switch() calls.

License GPL-2
Encoding UTF-8
Depends R (>=4.1)

Imports iterors, nseval (>= 0.4.3), later, promises, testthat (>=
3.0.0), stringr, methods

Suggests rmarkdown, knitr, dplyr, curl, audio, profvis, ggplot2, XML

Collate 'async-package.R' 'util.R' 'cps.R' 'signals.R' 'syntax.R'
'coroutine.R' 'pump.R’ Tun.R' 'gen.R' 'async.R' 'channel.R’
'stream.R' 'collect.R' 'all_names.R' 'walk.R' 'all_indices.R'
'graph.R' 'trans.R' 'munge.R' 'inline.R’

RoxygenNote 7.2.3
VignetteBuilder knitr
Config/testthat/edition 3

https://crowding.github.io/async/
https://github.com/crowding/async/
https://github.com/crowding/async/issues

2 async

Config/testthat/parallel true

NeedsCompilation no

Author Peter Meilstrup [aut, cre]

Maintainer Peter Meilstrup <peter.meilstrup@gmail.com>

Repository CRAN

Date/Publication 2023-05-25 23:30:02 UTC

R topics documented:
ASYNIC o v v v e e e e e e e e e e e e e e e e e e e 2
awaitNeXt e e e 4
channel e e e 5
COMDINEG v e e e e e e e e e e e e e e 6
debugAsSync e 7
delay o 8
format.coroutine L. e 8
gather L e 9
GOIL. © o v e e e e e e e e e e e 11
GO0 . . . e e 13
graphASYNC e e e 13
nextThen e 15
pausables e e 16
TUIN . . v e 17
SITCAM .+ . v v v vt i e 18

Index 21

async Create an asynchronous task from sequential code.
Description

async({...}), with an expression written in its argument, allows that expression to be evalu-
ated in an asynchronous, or non-blocking manner. async returns an object with class c("async”,
"promise”) which implements the promise interface.

Usage

async(

expr,

)

split_pipes = TRUE,

compileLevel = getOption("async.compilelLevel”),
debugR = FALSE,

debugInternal = FALSE,

trace = getOption("async.verbose"”)

async 3

await(prom, error)

Arguments
expr An expression, to be executed asynchronously.
Undocumented.
split_pipes Rewrite chained calls that use await (see below)

compileLevel Compilation level; same options as for gen.
debugR Set TRUE to enter the browser immediately on executing the first R expression.

debugInternal Set TRUE to single-step at implementation level, immediately upon execution.

trace Enable verbose logging by passing a function to trace, like trace=cat. This
function should take a character argument.

prom A promise, or something that can be converted to such by promises: :as.promise().

error This argument will be forced if the promise rejects. If it is a function, it will be

called with the error condition.

Details

An example Shiny app using async/await is on Github: https://github.com/crowding/cranwhales-await

When an async object is activated, it will evaluate its expression until it reaches the keyword await.
The async object will return to its caller and preserve the partial state of its evaluation. When the
awaited promise is resolved, evaluation continues from where the async left off.

When an async block finishes (either by reaching the end, or using return()), the promise resolves
with the resulting value. If the async block stops with an error, the promise is rejected with that
error.

Async blocks and generators are conceptually related and share much of the same underlying mech-
anism. You can think of one as "output" and the other as "input". A generator pauses until a value
is requested, runs until it has a value to output, then pauses again. An async runs until it requires an
external value, pauses until it receives the value, then continues.

The syntax rules for an async are analogous to those for gen(); await must appear only within the
arguments of functions for which there is a pausable implementation (See [pausables()]). For
async the default split_pipes=TRUE is enabled; this will rearrange some expressions to satisfy
this requirement.

When split_pipes=FALSE, await() can only appear in the arguments of pausables and not or-
dinary R functions. This is an inconvenience as it prevents using await() in a pipeline. With
split_pipes=TRUE applies some syntactic sugar: if an await() appears in the leftmost, unnamed,
argument of an R function, the pipe will be "split" at that call using a temporary variable. For
instance, either

async(makeRequest() |> await() |> sort())

or, equivalently,

https://github.com/crowding/cranwhales-await

4 awaitNext

async(sort(await(makeRequest())))
will be effectively rewritten to something like
async({.tmp <- await(makeRequest()); sort(.tmp)})

This works only so long as await appears in calls that evaluate their leftmost arguments normally.
split_pipes can backfire if the outer call has other side effects; for instance suppressWarnings(await(x))
will be rewritten as {.tmp <- await(x); suppressWarnings(x)}, which would defeat the pur-

pose.

If async is given a function expression, like async(function(...) ...), it will return an "async
function" i.e. a function that constructs an async.

Value

async() returns an object with class "promise," as defined by the promises package (i.e., rather
than the kind of promise used in R’s lazy evaluation.)

In the context of an async or stream, await(x) returns the resolved value of a promise x, or stops
with an error.

Examples

myAsync <- async(for (i in 1:4) {
await(delay(5))
cat(i, "\n")

»

awaitNext Wait for the next value from a channel or stream.

Description
awaitNext can be used within an async or stream coroutine. When reached, awaitNext will regis-
ter to receive the next element from an async or a coroutine object.

Usage

awaitNext(strm, or, err)

Arguments
strm A channel or stream object.
or This argument will be evaluated and returned in the case the channel closes.
If not specified, awaiting on a closed stream will raise an error with message
"Stoplteration".

err A function to be called if the channel throws an error condition.

channel 5

Value

In the context of an async or stream, awaitNext(x) returns the resolved value of a promise x, or
stops with an error.

channel An object representing a sequence of future values.

Description

A channel is an object that represents a sequence of values yet to be determined. It is something
like a combination of a promise and an iteror.

Usage

channel(obj, ...)

S3 method for class '‘function*'
channel(

obj,

max_queue = 500L,

max_awaiting = 500L,

wakeup = function(...) NULL
)

is.channel(x)

Arguments
obj A user-provided function; it will receive three callback functions as arguments,
in order, emit(val), reject(err) and close()
Specialized channel methods may take other arguments.
max_gueue The maximum number of outgoing values to store if there are no listeners. Be-

yond this, calling emit will return an error.

max_awaiting The maximum number of pending requests. If there are this many outstanding

requests, for values, calling nextThen(ch, ...) or nextElem(ch) will raise an
error.
wakeup You may optionally provide a callback function here. It will be called when the

queue is empty and there is at least one listener/outstanding promise.

X an object.

6 combine

Details

The channel interface is intended to represent and work with asynchronous, live data sources, for
instance event logs, non-blocking connections, paginated query results, reactive values, and other
processes that yield a sequence of values over time.

channel is an S3 method and will attempt to convert the argument obj into a channel object ac-
cording to its class.

The friendly way to obtain values from a channel is to use awaitNext or for loops within an async
or stream coroutine.

The low-level interface to obtain values from a channel is to call nextThen(ch, onNext=, onError=, onClose=, ...)],
providing callback functions for at least onNext (val). Those callbacks will be appended to an in-
ternal queue, and will be called as soon as data is available, in the order that requests were received.

You can also treat a channel as an iteror over promises, calling nextOr (pri) to return a promise
representing the next available value. Each promise created this way will be resolved in the order
that data come in. Note that this way there is no special signal for end of iteration; a promise will
reject with a condition message "StopIteration” to signal end of iteration.

Be careful with the iterator-over-promises interface though: if you call as.list.iteror(pr) you
may get stuck in an infinite loop, as as.list keeps calling nextElem and receives more promises
to represent values that exist only hypothetically. This is one reason for the max_listeners limit.

The friendly way to create a channel with custom behavior is to use a stream coroutine. Inside
of stream() call await to wait on promises, awaitNext to wait on other streams and yield to yield
values. To signal end of iteration use return() (which will discard its value) and to signal an error
use stop().

The low-level interface to create a channel with custom behavior is to call channel (function(emit,
reject, cancel) {...}), providing your own function definition; your function will receive those

three callback methods as arguments. Then use whatever means to arrange to call emit(val) some

time in the future as data comes in. When you are done emitting values, call the close() callback.

To report an error call reject(err); the next requestor will receive the error. If there is more than

one listener, other queued listeners will get a close signal.

Value

a channel object, supporting methods "nextThen" and "nextOr"

is.channel(x) returns TRUE if its argument is a channel object.

Author(s)

Peter Meilstrup

combine Combine several channels into one.

Description

combine(...) takes any number of promise or channel objects. It awaits each one, and returns a
channel object which re-emits every value from its targets, in whatever order they are received.

debugAsync

Usage

combine(...

Arguments

Value

a channel object.

Author(s)

Peter Meilstrup

Each argument should be a promise or a channel.

debugAsync

Toggle single-step debugging for a coroutine.

Description

Toggle single-step debugging for a coroutine.

Usage

debugAsync(x, R, internal, trace)

Arguments

X
R
internal

trace

Value

A coroutine object as constructed by (async, gen or stream).
Set TRUE to step through expressions at user level
Set TRUE to step through at coroutine implementation level.

Set TRUE or provide a print function to print each R expression evaluated in
turn.

alist(R=, internal=, trace=) with the current debug state.

8 format.coroutine

delay Asynchronous pause.

Description

"delay" returns a promise which resolves only after the specified number of seconds. This uses the
R event loop via later. In an [async] construct you can use await(delay(secs)) to yield control,
for example if you need to poll in a loop.

Usage

delay(secs, expr = NULL)

Arguments
secs The promise will resolve after at least this many seconds.
expr The value to resolve with; will be forced after the delay.
Value

An object with class "promise".

Examples

print a message after a few seconds
async({await(delay(10)); cat("Time's up!\n")3})

format.coroutine Query / display coroutine properties and state.

Description

The coroutine format method displays its source code, its effective environment, whether it is
running or finished, and a label indicating its last known state. The summary method returns the
same information in a list.

summary (obj) returns a list with information on a coroutine’s state, including:

* code: the expression used to create the coroutine;
¢ state: the current state (see below);

* node: is a character string that identifies a location in the coroutine source code; for example, a
typical state string might be ".{.<-2.await__then", which can be read like "in the first argument
of \{, in the second argument of <-, in a call to await(), at internal node then.";

* envir: the environment where the coroutine is evaluating R expressions;

* err: the error object, if the coroutine caught an error.

gather 9

summary (g) $state for a generator g might be "yielded", "running" (if nextElem is currently being
called,) "stopped" (for generators that have stopped with an error,) or "finished" (for generators that
have finished normally.)

non

summary (a) $state of an async might be "pending", "resolved" or "rejected".

non non

summary(s)$state on a stream might be "resolved", "rejected", "running", "woken", "yielding",
or "yielded".

Usage

S3 method for class 'coroutine'
format(x, ...)

S3 method for class 'coroutine'
summary (object, ...)

S3 method for class 'generator'
summary (object, ...)

S3 method for class 'async'
summary (object, ...)

S3 method for class 'stream'

summary (object, ...)
Arguments
X A coroutine.
. Undocumented.
object a coroutine (async, generator, or stream) object.
gather Collect iterator / channel items into a vector.
Description

gather takes a channel as argument and returns a promise. All values emitted by the channel will be
collected into a vector matching the prototype mode. After the source channel closes, the promise
will resolve with the collected vector.

Method as.promise.channel is a synonym for gather.

collect and collector are used in the implementation of the above functions. collect calls the
function fn in its argument, supplying a callback of the form function (val, name=NULL). I like
to call it emit. While fn is running, it can call emit(x) any number of times. After fn returns, all
the values passed to emit are returned in a vector, with optional names.

collector() works similarly to collect() but does not gather values when your inner function
returns. Instead, it provides your inner function with two callbacks, one to add a value and the
second to extract the value; so you can use that callback to extract values at a later time. For an
example of collector usage see the definition of gather.

10 gather
Usage
gather(ch, type = list())

S3 method for class 'channel'
as.promise(x)

collect(fn, type = list())

collector(fn, type = list())

Arguments
ch a channel object.
type A prototype output vector (similar to the FUN.VALUE argument of vapply) De-
faults to 1list ().
X a channel.
fn A function, which should accept a single argument, here called emit.
Value

gather(ch, list()) returns a [promise] that eventually resolves with a list. If the channel emits
an error, the promise will reject with that error. The partial results will be attached to the error’s
attr(err, "partialResults”).

collect returns a vector of the same mode as type.

Author(s)

Peter Meilstrup

Examples

ch <- stream(for (i in 1:10) {await(delay(@.1)); if (i %% 3 == @) yield(i)})
Not run: ch [> gather(numeric(@)) |> then(\(x)cat(x, "\n"))

#cumulative sum with collect
cumsum <- function(vec) {
total <- @
collect(type=0, function(emit) {
for (i in vec) total <- emit(total+i)
b))
3

“as.list.iteror® is implemented simply with ‘collect‘:
as.list.iteror <- function(it) {

collect(\(yield) repeat yield(nextOr(it, break)))
}

gen 11

gen Create an iterator using sequential code.

Description

gen({...}) with an expression written in its argument, creates a generator, an object which com-
putes an indefinite sequence.

When written inside a generator expression, yield(expr) causes the generator to return the given
value, then pause until the next value is requested.

When running in a generator expression, yieldFrom(it)), given a list or iteror in its argument,
will yield successive values from that iteror until it is exhausted, then continue.

Usage

gen(
expr,

split_pipes = FALSE,

compileLevel = getOption("async.compilelLevel”)
)
yield(expr)

yieldFrom(it, err)

Arguments
expr An expression, to be turned into an iterator.
Undocumented.
split_pipes Silently rewrite expressions where "yield" appears in chained calls. See async.

compilelLevel Current levels are 0 (no compilation) or -1 (name munging only).

it A list, iteror or compatible object.
err An error handler
Details

On the "inside", that is the point of view of code you write in {. ..}, is ordinary sequential code
using conditionals, branches, loops and such, outputting one value after another with yield(). For
example, this code creates a generator that computes a random walk:

rwalk <- gen({
X <- 0;
repeat {
X <= x + rnorm(1)
yield(x)

12 gen

b
D

On the "outside," that is, the object returned by gen(), a generator behaves like an iterator over an
indefinite collection. So we can collect the first 100 values from the above generator and compute
their mean:

rwalk |> itertools2::take(100) |> as.numeric() |> mean()

When nextOr(rwalk, ...) is called, the generator executes its "inside" expression, in a local
environment, until it reaches a call to yield(). THe generator ’pauses’, preserving its execution
state, and nextElem then returns what was passed to yield. The next time nextElem(rwalk) is
called, the generator resumes executing its inside expression starting after the yield().

If you call gen with a function expression, as in:
gseq <- gen(function(x) for (i in 1:x) yield(i))

then instead of returning a single generator it will return a generator function (i.e. a function that
constructs and returns a generator.) The above is morally equivalent to:

gseq <- function(x) {force(x); gen(for (i in 1:x) yield(i))}

so the generator function syntax just saves you writing the force call.

A generator expression can use any R functions, but a call to yield may only appear in the argu-
ments of a "pausable" function. The async package has several built-in pausable functions corre-
sponding to base R’s control flow functions, such as if, while, tryCatch, <-, {3}, || and so on
(see pausables for more details.) A call to yield may only appear in an argument of one of these
pausable functions. So this random walk generator:

rwalk <- gen({x <- 0; repeat {x <- yield(x + rnorm(1))3}})

is legal, because yield appears within arguments to { }, repeat, and <-, for which this package has
pausable definitions. However, this:

rwalk <- gen({x <- rnorm(1); repeat {x <- rnorm(1) + yield(x)}3})

is not legal, because yield appears in an argument to +, which does not have a pausable definition.

Value

‘gen(...) returns an iteror.
yield(x) returns the same value x.

yieldFrom returns NULL, invisibly.

Examples

i_chain <- function(...) {

iterators <- list(...)

gen(for (it in iterators) yieldFrom(it))
3

goto 13

goto Coroutine switch with delimited goto.

Description

The switch function implemented for coroutines in the async package is more strict than the one in
base R. In a coroutine, switch will always either take one of the given branches or throw an error,
whereas base R switch will silently return NULL if no branch matches switch argument. Other-
wise, the same conventions apply as base: :switch() (e.g. empty switch branches fall through; a
character switch may have one unnamed argument as a default.)

Usage

goto(branch = NULL)

Arguments
branch A character string naming the new branch. If missing or NULL, jumps back to
re-evaluate the switch argument.
Details

Coroutine switch also supports a delimited form of goto. Within a branch, goto("other_branch”)
will stop executing the present branch and jump to the named branch. Calling goto() without ar-
guments will jump back to re-evaluate the switch expression.

If a goto appears in a try-finally call, as in:

switch("branch”,
branch=tryCatch({...; goto("otherBranch"”)},
finally={cleanup()}),
otherBranch={...}

the finally clause will be executed before switching to the new branch.

graphAsync Draw a graph representation of a coroutine.

Description

graphAsync will traverse the objects representing a generator or async and render a graph of its
structure using Graphviz (if it is installed.)

14

Usage

graphAsync

graphAsync(

obj,

basename = if (is.name(substitute(obj))) as.character(substitute(obj)) else
stop("Please specify basename”),

type = "pdf”,
envs = TRUE,
vars = FALSE,
handlers = FALSE,
orphans = FALSE,
dot = find_dot(),
filename = paste@(basename, ".", type),
dotfile = if (type == "dot") filename else paste@(basename, ".dot")
)
Arguments
obj A generator, async or stream object.
basename The base file name. If basename="X" and type="pdf" you will end up with two
files, "X.dot" and "X.pdf".
type the output format. If "dot", we will just write a Graphviz dot file. If another
extension like "pdf" or "svg", will write a DOT file and then attempt to invoke
Graphviz dot (if it is available according to Sys.which) to produce the image. If
type="" graphAsync will return graphviz DOT language as a character vector
Unused.
envs If TRUE, multiple nodes that share the same environment will be grouped to-
gether in clusters.
vars If TRUE, context variables used in each state node will be included on the graph,
with edges indicating reads/stores.
handlers If TRUE, state nodes will have thin edges connecting to trampoline handlers they
call, in addition to the dashed edges connecting to the next transition.
orphans If TRUE, nodes will be included even if there are no connections to them (this
mostly being interface methods and unused handlers).
dot Optional path to the dot executable.
filename Optionally specify the output picture file name.
dotfile Optionally specify the output DOT file name.
Details

graphAsync will write a Graphviz DOT format file describing the given generator or async/await
block. The graph shows the generator as a state machine with nodes that connect to each other.

If type is something other than dot graphAsync will then try to invoke Graphviz dot‘to
turn the graph description into an image file.

nextThen 15

The green octagonal node is where the program starts, while red "stop" and blue "return" are where it
ends. Nodes in green type on dark background show code that runs in the host language unmodified;
gray nodes implement control flow. Dark arrows carry a value; gray edges carry no value. A
"semicolon" node receives a value and discards it.

Some nodes share a context with other nodes, shown by an enclosing box. Contexts can have state
variables, shown as a rectangular record; orange edges from functions to variables represent writes;
blue edges represent reads.

Dashed edges represent a state transition that goes through a trampoline handler. Dashed edges
have a Unicode symbol representing the type of trampoline; (DOUBLE VERTICAL BAR) for
await/yield; (TOP ARC ANTICLOCKWISE ARROW WITH PLUS) or (TOP ARC CLOCKWISE
ARROW WITH MINUS) to wind on or off an exception handler; (ANTICLOCKWISE TRIANGLE-
HEADED BOTTOM U-SHAPED ARROW) for a plain trampoline with no side effects (done once
per loop, to avoid overflowing the stack.) Meanwhile, a thin edge connects to the trampoline han-
dler. (So the user-facing "yield" function registers a continuation to the next step but actually calls
the generator’s yield handler.)

Value

nn

If type="", a character vector of DOT source. Else The name of the file that was created.

Examples

randomWalk <- gen({x <- @; repeat {yield(x); x <- x + rnorm(1)}})
Not run:

graphAsync(randomWalk, "pdf")

writes "randomWalk.dot” and invokes dot to make "randomWalk.pdf"”

#or, display it in an R window with the Rgraphviz package:
g <- Rgraphviz::agread("randomWalk.dot")
Rgraphviz: :plot(g)

End(Not run)

#0r render an HTML sidget using DiagrammeR:

Not run:

dot <- graphAsync(randomWalk, type="")

DiagrammeR: :DiagrammeR(paste@(dot, collapse="\n"), type="grViz")

End(Not run)

nextThen Receive values from channels by callback.

Description

nextThen is the callback-oriented interface to work with channel objects. Provide the channel
callback functions to receive the next element, error, and closing signals; your callbacks will be
stored in a queue and called when values are available.

16 pausables

Usage
nextThen(x, onNext, onError, onClose, ...)
subscribe(x, ...)
Arguments
X A channel object
onNext For nextThen, a function to be called with the next emitted value. For subscribe,
a function to be called with each emitted value until the stream finishes.
onError Function to be called if channel stops with an error. Note that if you call next-
Then multiple times to register multile callbacks, only the first will receive on-
Error; the rest will be called with onClose.
onClose Function to be called if the channel finishes normally.
Undocumented.
Details

subscribe is similar to nextThen except that your onNext will be called for each value the channel
emits. It is just implemented in terms of nextThen, with a callback that re-registers itself.

pausables Pausable functions.

Description

Coroutines rely on "pausable" workalikes for control flow functions like if, while, and so on.
pausables() scans for and returns a list of all pausable functions visible from the present environ-
ment.

Usage
pausables(envir = caller(), packages = NULL)

Arguments
envir The environment to search (defaulting to the calling environment).
packages By default, will only look for pausable functions visible from the caller’s en-
vironment. packages argument additionally specifies aditional packages to
search. packages=base: :.packages() will search all currently loaded pack-
ages. [.packages(all.available=TRUE)] will search all installped package.
Details

A pausable function is a public function that has a corresponding private function with a name endng
with _cps. Most of these private functions are defined in async source file cps.r. For instance,
async: : : for_cps contains the pausable implementation of for.

run 17

Value

A list of expressions (either names or : : : calls)

run Execute a generator expression immediately, collecting yielded values.

Description

run(expr) with an expression directly writen, will parse that expression as a coroutine, but then
run it without pausing.

Usage

run(
expr,
type = list(),
split_pipes = FALSE,
debugR = FALSE,
debugInternal = FALSE,
trace = getOption("async.verbose"”)

)
Arguments
expr A generator expression, same as you would write in gen.
type A value whose mode will determine the output vector mode (as in vapply.)

. Undocumented.
split_pipes See async; defaults to FALSE.

debugR Will open a browser at the first and subsequent R evaluations allowing single-
stepping through user code.

debugInternal Will set a breakpoint at the implementation level, allowing single-stepping through
async package code.

trace a tracing function.

Details

If the expression contains any calls to yield(), run() will collect all the values passed to yield()
and return a list. If the expression contains a yield() but it is never called, run() returns an empty
list. If the expression does not contain a yield at all, run returns the expression’s final return value.

run(expr) is similar to as.list(gen(expr)), except run(expr) evaluates its expression directly
in the calling environment, while gen creates a new enclosed environment to run in.

run is useful if you want to take advantage of coroutine language extensions, such as using for
loops over iterators, or using goto() in switch statements, in otherwise synchronous code. If you
want to collect a variable-length sequence of values but don’t need those features, using collect
directly will have better performance.

18 stream

Value

If expr contains any yield calls, a vector of the same mode as type; otherwise the return value of
expr.

Examples

run(type=0, {
for (i in iterors::iseq(2, Inf, by=5)) {
if (i %% 37 == @) break
else yield(i)
}
»

stream Create an asynchronous iterator by writing sequential code.

Description

(Experimental as of async 0.3) stream(...) constructs a channel object, i.e. an asynchronous
iterator, which will compute and return values according to sequential code written in expr. A
streamis a coroutine wearing a channel interface in the same way that async is a coroutine wearing
a promise interface, and a gen is a coroutine sitting behind an iteror interface.

Usage

stream(
expr,
split_pipes = TRUE,
lazy = TRUE,
compileLevel = getOption("async.compilelLevel”),
debugR = FALSE,
debugInternal = FALSE,
trace = getOption("async.verbose"”)

)
Arguments
expr A coroutine expression, using some combination of yield, await, awaitNext,
yieldFrom, standard control flow operators and other calls.
Undocumented.
split_pipes See description under async; defaults to TRUE.
lazy If TRUE, start paused, and pause after yield() (see above.)

compileLevel Compilation level.

stream 19

debugR Set TRUE to single-step debug at R level. Use debugAsync() to enable or
disable debugging on a stream after it has been created.

debugInternal Set TRUE to single-step debug at coroutine implementation level.

trace An optional tracing function.

Details

In a stream expression, you can call yield() to emit a value, and await() to wait for a value from
a promise. To have your stream wait for values from another stream or channel, call awaitNext();
you can also use awaitNext when you are writing an async. You can also use a simple for loop to
consume all future values from a stream or channel.

The lower-level interface to consume values from a stream is by using nextThen from the channel
interface.

Streams come in both "lazy" and "eager" varieties. If 1lazy=TRUE, a stream starts idle, and does
not process anything until it is woken up by a call to its channel’s nextThen. It will pause after
reaching yield if there are no more outstanding requests. If lazy=FALSE, a stream will begin
executing immediately, not pausing on yield, possibly queuing up emitted values until it needs to
await something.

(For comparison, in this package, gen are lazy in that they do not start executing until a call to
nextOr and pause immediately after yield, while async blocks are eager, starting at construction
and running until they hit an await.)

Like its coroutine counterparts, if streamis given a function expression, like stream(function(...)
...), it will return a "stream function" i.e. a function that constructs a stream object.

Value

"non "non: "non:

An object with (at least) classes "stream", "channel", "coroutine", "iteror", "iter".

Author(s)

Peter Meilstrup

Examples

emit values _no more than_ once per second
count_to <- stream(function(n, interval=1) {
for (i in 1:n) {
await(delay(interval))
yield(i)
3
»

accumulate <- stream(function(st, sum=0) {
for (i in st) {sum <- sum + i; yield(sum)}

b

print_each <- async(function(st) for (i in st) print(i))

20

count_to(10) |> accumulate() |> print_each()

stream

Index

as.promise.channel (gather), 9
async, 2,4,6,7,9,11, 13, 14, 17-19
await, 6

await (async), 2

awaitNext, 4, 6

base::switch(), 13

channel, 4,5,6,7,9, 10, 15, 16, 18, 19
collect, 17

collect (gather), 9

collector (gather), 9

combine, 6

debugAsync, 7
debugAsync(), 19
delay, 8

force, 12
format.coroutine, 8

gather, 9,9

gen, 3,7,11,17-19
gen(), 3
generator, 9, 13, 14
goto, 13

goto(), 17
graphAsync, 13

is.channel (channel), 5
iteror, 5, 6,11, 12,18

later, 8
nextThen, 6, 15, 16, 19

pausables, 3, 12, 16
promise, 2,5-7,9, 10, 18, 19
promises, 4
promises::as.promise(), 3

run, 17

21

stream, 4,6, 7,9, 14, 18

subscribe, 16

subscribe (nextThen), 15

summary.async (format.coroutine), 8
summary.coroutine (format.coroutine), 8
summary.generator (format.coroutine), 8
summary.stream (format.coroutine), 8
Sys.which, 14

vapply, 10, 17
yield, 6

yield (gen), 11
yieldFrom(gen), 11

	async
	awaitNext
	channel
	combine
	debugAsync
	delay
	format.coroutine
	gather
	gen
	goto
	graphAsync
	nextThen
	pausables
	run
	stream
	Index

