TSLA: Tree-Guided Rare Feature Selection and Logic Aggregation

Implementation of the tree-guided feature selection and logic aggregation approach introduced in Chen et al. (2024) <doi:10.1080/01621459.2024.2326621>. The method enables the selection and aggregation of large-scale rare binary features with a known hierarchical structure using a convex, linearly-constrained regularized regression framework. The package facilitates the application of this method to both linear regression and binary classification problems by solving the optimization problem via the smoothing proximal gradient descent algorithm (Chen et al. (2012) <doi:10.1214/11-AOAS514>).

Version: 0.1.1
Depends: R (≥ 4.1.0)
Imports: stats, Matrix, Rcpp, pROC, PRROC, ape, phytools, data.tree
LinkingTo: Rcpp, RcppArmadillo
Published: 2025-02-10
DOI: 10.32614/CRAN.package.TSLA
Author: Jianmin Chen [aut, cre], Kun Chen [aut]
Maintainer: Jianmin Chen <jianminc000 at gmail.com>
License: GPL-3
NeedsCompilation: yes
CRAN checks: TSLA results

Documentation:

Reference manual: TSLA.pdf

Downloads:

Package source: TSLA_0.1.1.tar.gz
Windows binaries: r-devel: not available, r-release: TSLA_0.1.1.zip, r-oldrel: not available
macOS binaries: r-release (arm64): TSLA_0.1.1.tgz, r-oldrel (arm64): not available, r-release (x86_64): TSLA_0.1.1.tgz, r-oldrel (x86_64): not available

Linking:

Please use the canonical form https://CRAN.R-project.org/package=TSLA to link to this page.