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Abstract

Sparse multiple canonical correlation network analysis (SmCCNet) is a machine learning technique
for integrating omics data along with a variable of interest (e.g., phenotype of complex disease), and
reconstructing multiomics networks that are speci昀椀c to this variable. We present the second-generation
SmCCNet (SmCCNet 2.0) that adeptly integrates single or multiple omics data types along with a
quantitative or binary phenotype of interest. In addition, this new package o昀昀ers a streamlined setup
process that can be con昀椀gured manually or automatically, ensuring a 昀氀exible and user-friendly experience.
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1 SmCCNet overview
Note: if you use SmCCNet in published research, please cite:

Liu, W., Vu, T., Konigsberg, I. R., Pratte, K. A., Zhuang, Y., & Kechris, K. J. (2023). SmCCNet
2.0: an Upgraded R package for Multi-omics Network Inference. bioRxiv, 2023-11.

Shi, W. J., Zhuang, Y., Russell, P. H., Hobbs, B. D., Parker, M. M., Castaldi, P. J., … & Kechris,
K. (2019). Unsupervised discovery of phenotype-speci昀椀c multi-omics networks. Bioinformatics,
35(21), 4336-4343.

1.1 Work昀氀ow
SmCCNet is a canonical correlation based integration method that reconstructs phenotype-speci昀椀c multi-
omics networks (Shi et al., 2019). The algorithm is based on sparse multiple canonical analysis (SmCCA) for𝑇 omics data 𝑋1, 𝑋2, ...𝑋𝑇 and a quantitative phenotype 𝑌 measured on the same subjects. SmCCA 昀椀nds
the canonical weights 𝑤1, 𝑤2, ..., 𝑤𝑇 that maximize the (weighted or unweighted) sum of pairwise canonical
correlations between 𝑋1, 𝑋2, ..., 𝑋𝑇 and 𝑌 , under some constraints (Equation 1). In SmCCNet, the sparsity
constraint functions 𝑃𝑡(⋅), 𝑡 = 1, 2, ..., 𝑇 , are the least absolute shrinkage and selection operators (LASSO).
The weighted version corresponds to 𝑎𝑖,𝑗, 𝑏𝑖 (also called scaling factors), are not all equal; the unweighted
version corresponds to 𝑎𝑖,𝑗 = 𝑏𝑖 = 1 for all 𝑖, 𝑗 = 1, 2, ..., 𝑇 .

(𝑤1, 𝑤2, ..., 𝑤𝑇 )=arg max𝑤̃1,𝑤̃2,...,𝑤̃𝑇 ( ∑𝑖<𝑗;𝑖,𝑗=1,2,...,𝑇𝑎𝑖,𝑗𝑤̃𝑇𝑖 𝑋𝑇𝑖 𝑋𝑗𝑤̃𝑗+ 𝑇∑𝑖=1 𝑏𝑖𝑤̃𝑇𝑖 𝑋𝑇𝑖 𝑌) ,
subject to ‖𝑤̃𝑡‖2 = 1, 𝑃𝑡(𝑤̃𝑡) ≤ 𝑐𝑡, 𝑡 = 1, 2, ..., 𝑇 . (1)

The sparsity penalties 𝑐𝑡 in昀氀uence how many features will be included in each subnetwork. With pre-selected
sparsity penalties, the SmCCNet algorithm creates a network similarity matrix based on SmCCA canonical
weights from repeated subsampled omics data and the phenotype, and then 昀椀nds multi-omics modules
that are relevant to the phenotype. The subsampling scheme improves network robustness by analyzing a
subset of omics features multiple times and forms a 昀椀nal similarity matrix by aggregating results from each
subsampling step. The general work昀氀ow (Figure 1) involves three steps:

• Step I: Determine SmCCA sparsity penalties 𝑐𝑡. The user can select the penalties for omics feature
selection based on the study purpose and/or prior knowledge. Alternatively, one can pick sparsity
penalties based on a K-fold cross validation (CV) procedure that minimizes the total prediction er-
ror (Figure 2). The K-fold CV procedure ensures selected penalties to be generalizable to similar
independent data sets and prevents over-昀椀tting.

• Step II: Randomly subsample omics features without replacement, apply SmCCA with chosen penalties,
and compute a feature relationship matrix for each subset. Repeat the process many times and de昀椀ne
the similarity matrix to be the average of all feature relationship matrices.

• Step III: Apply hierarchical tree cutting to the similarity matrix to 昀椀nd the multi-omics networks. This
step simultaneously identi昀椀es multiple subnetworks.

1.2 SmCCNet package
The SmCCNet package has the following dependencies:
library(pbapply)
library(Matrix)
library(igraph)
library(SmCCNet)
library(furrr)
library(future)
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Figure 1: SmCCNet work昀氀ow overview for Quantitative Phenotype. X1, X2, and X3 are three omics data
types for the same set of n subjects. Y indicates a quantitative phenotype measure for those n subjects.
Note that the 昀氀owchart demonstrate work昀氀ow for three omics data, it is also compatible with more than
three omics data or two omics data.
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The older version of the SmCCNet package includes four (external) functions:

• getRobustPseudoWeights(): Compute aggregated (SmCCA) canonical weights.
• getAbar(): Calculate similarity matrix based on canonical weights.
• getMultiOmicsModules(): Perform hierarchical tree cutting on the similarity matrix and extract

clades with multi-omics features.
• plotMultiOmicsNetwork(): Plot (pruned or full) multi-omics subnetworks.

In the updated package, all functions except for getAbar are retired from the package, additional func-
tions have been added to the package to perform single-/multi-omics SmCCNet with quantitative/binary
phenotype, and their use is illustrated in this vignette:

• aggregateCVSingle(): Saving cross-validation result as the cross-validation table into the working
directory and provide recommendation on the penalty term selection.

• classi昀椀erEval(): Evaluate binary classi昀椀er’s performance with respect to user-selected metric (accu-
racy, auc score, precision, recall, f1).

• dataPreprocess(): A simple pipeline to preprocess the data before running SmCCNet (center, scale,
coefficient of variation 昀椀ltering and regressing out covariates).

• fastAutoSmCCNet(): Automated SmCCNet automatically identi昀椀es the project problem (single-
omics vs multi-omics), and type of analysis (CCA for quantitative phenotype vs. PLS for binary
phenotype) based on the input data that is provided. This method automatically preprocess data,
choose scaling factors, subsampling percentage, and optimal penalty terms, then runs through the
complete SmCCNet pipeline without the requirement for users to provide additional information. This
function will store all the subnetwork information to a user-provided directory, as well as return all
the global network and evaluation information. Refer to the automated SmCCNet vignette for more
information.

• getCanWeightsMulti(): Run Sparse Multiple Canonical Correlation Analysis (SmCCA) and return
canonical weight.

• getCanCorMulti(): Get canonical correlation value for SmCCA given canonical weight vectors and
scaling factors.

• getRobustWeightsMulti(): SmCCNet algorithm with multi-omics data and quantitative phenotype.
Calculate the canonical weights for SmCCA.

• getRobustWeightsMultiBinary(): SmCCNet algorithm with multi-omics data and binary pheno-
type. First, SmCCA is used to identify relationship between omics (exlude phenotype). Then, after
highly connected omics features are selected in step 1, SPLSDA is used to identify relationships be-
tween these omics features and phenotype(s). The sparse PLSDA algorithm for binary outcome 昀椀rst
compute PLS by assuming outcome is continuous, and extracts multiple latent factors, then uses latent
factors to 昀椀t the logistic regression, and weights latent factor by regression parameters.

• getRobustWeightsSingle(): Compute aggregated (SmCCA) canonical weights for single omics data
with quantitative phenotype.

• getRobustWeightsSingleBinary(): Compute aggregated (SmCCA) canonical weights for single
omics data with binary phenotype.

• getOmicsModules(): Perform hierarchical tree cutting on the similarity matrix and extract clades
with omics features.

• networkPruning(): Extract summarization scores (the 昀椀rst 3 NetSHy/regular prinicipal components)
for speci昀椀ed network module with given network size. The omics features will be ranked based on
PageRank algorithm, then the top 𝑚 omics features (where 𝑚 is the speci昀椀ed subnetwork size) will
be included into the 昀椀nal subnetwork to generate the summarization score. For the PC score, the
correlation with respect to the phenotype of interest will be calculated and stored. In addition, the
correlation between individual omics features and the detected phenotype (with the Pheno argument)
will also be recorded. The 昀椀nal subnetwork adjacency matrix will be stored into the user-speci昀椀ed
working directory of interest.

• scalingFactorInput(): After inputing the annotation of omics data, it uses prompts to ask the user
to supply the scaling factor intended for the SmCCNet algorithm to prioritize the correlation structure
of interest. All scaling factor values supplied should be numeric and nonnegative.
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• summarizeNetSHy(): Implement NetSHy network summarization via a hybrid approach to sum-
marize network by considering the network topology with the Laplacian matrix.

More details on above functions can be found in the package manual.

2 SmCCNet work昀氀ow with a synthetic dataset
2.1 Synthetic dataset
As an example, we consider a synthetic data set with 500 genes (𝑋1) and 100 miRNAs (𝑋2) expression levels
measured for 358 subjects, along with a quantitative phenotype (𝑌 ).
data(ExampleData)
head(X1[ , 1:6])

## Gene_1 Gene_2 Gene_3 Gene_4 Gene_5 Gene_6
## Samp_1 22.48570 40.35372 31.02575 20.84721 26.69729 30.20545
## Samp_2 37.05885 34.05223 33.48702 23.53146 26.75463 31.73594
## Samp_3 20.53077 31.66962 35.18957 20.95254 25.01883 32.15723
## Samp_4 33.18689 38.48088 18.89710 31.82330 34.04938 38.79989
## Samp_5 28.96198 41.06049 28.49496 18.37449 30.81524 24.00454
## Samp_6 18.05983 29.55471 32.54002 29.68452 26.19996 26.76684
head(X2[ , 1:6])

## Mir_1 Mir_2 Mir_3 Mir_4 Mir_5 Mir_6
## Samp_1 15.22391 17.54583 15.78472 14.89198 10.34821 9.689755
## Samp_2 16.30697 16.67283 13.36153 14.48855 12.66090 11.333613
## Samp_3 16.54512 16.73501 14.61747 17.84527 13.82279 11.329333
## Samp_4 13.98690 16.20743 16.29308 17.72529 12.30056 9.844108
## Samp_5 16.33833 17.39387 16.39792 15.85373 13.38767 10.599414
## Samp_6 14.54110 16.51999 14.73958 15.87504 13.21359 10.922393
head(Y)

## Pheno
## Samp_1 235.0674
## Samp_2 253.5450
## Samp_3 234.2050
## Samp_4 281.0354
## Samp_5 245.4478
## Samp_6 189.6231

Denote the number of features in 𝑋1&𝑋2 as 𝑝1&𝑝2 respectively, and the number of subjects as 𝑛.
p1 <- ncol(X1)
p2 <- ncol(X2)
n <- nrow(X1)
AbarLabel <- c(colnames(cbind(X1, X2)))

Although SmCCNet does not require normality, it calculates the Pearson correlation between linear com-
binations of omics features and the phenotype, which assumes 昀椀nite variances and 昀椀nite covariance. It is
necessary to include a transformation if the data are skewed. The algorithm also requires the data to be
standardizable (i.e. none of the data matrices include a column with zero variance.)
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2.2 Step I. Preprocessing
The 昀椀rst step is to preprocess the single omics data. All canonical correlation analysis (CCA) methods
require data sets to be standardized (centered and scaled) by columns (e.g. features) to ensure the equivalent
contribution of each feature when maximizing covariance. In addition, there are some other optional steps
to preprocess the data. Note that when employing both standardization and covariate adjustment, it is
essential to apply standardization prior to covariate adjustment. This sequencing ensures our best e昀昀orts
to meet the assumptions of linear regression. In our data preprocessing pipeline, the following options are
given:

• CoV Filtering: Filter features based on coefficients of variation (CoV).
• Standardization: Center and/or scale data.
• Adjust for Covariates: Regress out speci昀椀ed covariates and return residuals

Below is an example of data preprocessing with only feature 昀椀ltering and standardization, in this case, there
is no covariate adjustment, the coe昀昀cient of variation 昀椀ltering quantile is 0.2 (meaning that features with
CoV smaller than 20% quantile of CoV will be 昀椀ltered out), and data are centered and scaled:
# define data list
X <- list(X1, X2)
# preprocess data
processed_data <- lapply(X, function(Xmatrix){
as.matrix(dataPreprocess(X = as.data.frame(Xmatrix), covariates = NULL,

is_cv = TRUE, cv_quantile = 0.2, center = TRUE,
scale = TRUE))})

# re-standardize -omics data if regress-out approach is used (covariates != NULL)
processed_data <- lapply(processed_data, scale)
# if preprocess feature is used, X need to be overrided with the following code
X <- processed_data

2.3 Step II: Determine optimal sparsity penalties through cross-validation (op-
tional)

For two omics data, to 昀椀nd the optimal sparsity penalties 𝑐1, 𝑐2, we apply a K-fold CV on the synthetic
data (Figure 2). Note that under LASSO constraints, 1 ≤ 𝑐1 ≤ √𝑝1𝑠1, 1 ≤ 𝑐2 ≤ √𝑝2𝑠2, where 𝑝1, 𝑝2 denote
the number of features in omics data 𝑋1, 𝑋2 respectively, and 𝑠1, 𝑠2 are the proportions of 𝑋1, 𝑋2 features
to be sampled every time. The sparse penalties 𝑐1, 𝑐2 can be re-parametrized as 0 < 𝑙1, 𝑙2 ≤ 1, such that𝑐1 = max{1, 𝑙1√𝑝1𝑠1}, 𝑐2 = max{1, 𝑙2√𝑝2𝑠2}. Large penalty values correspond to more features in each
subnetwork, while small penalties correspond to fewer features. Here is the list of parameters that need to
be speci昀椀ed to perform a grid search for the penalty parameters:

• 𝐾: Number of folds in CV. Typically a 5-fold CV is sufficient. If the training set contains too few
(e.g. < 30) samples, or the test or training set becomes unscalable, then choose a smaller 𝐾.

• 𝐶𝐶𝑐𝑜𝑒𝑓 ∶ Coefficients, (𝑎𝑖,𝑗, 𝑏𝑖) in Equation 1, for the weighted SmCCA. It can be either supplied
manually or interatively (see code below).

• 𝑃𝑒𝑛𝐸𝑥𝑝𝑎𝑛𝑑: A penalty option matrix for 𝑋1, 𝑋2. Each row of 𝑃𝑒𝑛𝐸𝑥𝑝𝑎𝑛𝑑 is a pair of penalty
options 𝑙 = (𝑙1, 𝑙2), where 0 < 𝑙1, 𝑙2 < 1. Larger penalties correspond to more features to be included
in each subnetwork. Typically, it is not necessary to search the entire range (0, 1), and a smaller grid
(e.g. 0 < 𝑙1, 𝑙2 < .5) may be sufficient.

• 𝑋 A list of omics data, where each omics data should contain same set and order of subjects.
• 𝑛𝑢𝑚_𝑜𝑚𝑖𝑐𝑠 The total number of omics data in 𝑋.
• 𝑡𝑢𝑛𝑒𝐿𝑒𝑛𝑔𝑡ℎ The total number of candidate penalty terms for each penalty parameter.
• 𝑚𝑖𝑛𝑇 𝑢𝑛𝑒 The minimumally possible value for penalty parameters.
• 𝑚𝑎𝑥𝑇 𝑢𝑛𝑒 The maximally possible tuning value for penalty parameters.

In all the code chunks below, if a user plans to use more than 2 omics data, please change the code accordingly
where a ∗∗ is marked on the comment line:
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Figure 2: SmCCNet K-fold CV. The best penalty pairs are chosen based on the smallest total prediction
error.
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# number of folds in K-fold CV.
K <- 3
N <- nrow(X1)
# create a list of omics data **
X <- list(X1, X2)
# number of omics dataset **
num_omics <- 2
# tuning parameter candidate length for each omics data
tuneLength <- 5
# tuning parameter candadate range for each omics data
minTune <- 0.1
maxTune <- 0.5
# create empty matrix to store all possible penalty parameters
penSelect <- matrix(0, nrow = tuneLength, ncol = num_omics)
# create sparsity penalty options.
for (Idx in 1:ncol(penSelect))
{

penSelect[,Idx] <- seq(from = minTune,
to = maxTune,
length.out = tuneLength)

}
# expand grid
# convert matrix to list of columns
list_cols <- as.list(as.data.frame(penSelect))
# generate all possible combinations
PenExpand <- do.call(expand.grid, list_cols)

# set a CV directory.
CVDir <- "Example3foldCV/"
dir.create(CVDir)

2.3.1 Create test and training data sets.

First, we need to split the data (𝑋1, 𝑋2, 𝑌 ) into test and training sets (Figure 2, Step I.1). All CCA methods
require data sets to be standardized (centered and scaled) by columns (e.g. features). We have included the
standardization step within the SmCCNet algorithm. However, for the CV procedure, we recommend to
standardize the training and test sets upfront, since this helps to choose the number of CV folds 𝐾. If any
data set can not be standardized, we recommend to reduce 𝐾. In the code below, we show how to create
CV data sets. The standardized training and test data sets will be saved under the “Example3foldCV/”
directory.
set.seed(12345) # set random seed.

# split data into folds
foldIdx <- suppressWarnings(split(1:nrow(X[[1]]), sample(1:nrow(X[[1]]), K)))
folddata <- purrr::map(1:length(foldIdx), function(x){

Y <- as.matrix(Y)
X_train <- list()
X_test <- list()
Y_train <- list()
Y_test <- list()
for (i in 1:length(X))
{

X_train[[i]] <- scale(X[[i]][-foldIdx[[x]],])
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X_test[[i]] <- scale(X[[i]][foldIdx[[x]],])
}
Y_train <- scale(Y[-foldIdx[[x]],])
Y_test <- scale(Y[foldIdx[[x]],])
return(list(X_train = X_train, X_test = X_test,Y_train = Y_train,

Y_test = Y_test))
})
# name each fold of data
names(folddata) <- paste0('Fold_', 1:K)
# saving all preliminary data into local directory for reproducibility purpose
save(folddata, PenExpand,

file = paste0(CVDir, "CVData.RData"))

2.3.2 Set Scaling Factors

It is important to set scaling factors 𝑎𝑖,𝑗’s and 𝑏𝑖’s for each pairwise correlation to prioritize correlation
structure(s) of interest. Below is the function that prompts the user to de昀椀ne the scaling factor intended
for the analysis: default is (1,1,1) for two omics if the 昀椀rst line of code below is run. If the user prefers
to set up scaling factors in di昀昀erent ways such as (1,10,10) where 10 is set for omics-phenotype correlation
to emphasize the omics-phenotype correlation, the user can use the interactive function below. This is
especially e昀昀ective when more than two omics data are used since the order of pairwise combinations can be
extremely complicated. Note that the argument (DataType) for interactive function below should strictly
follow the order of the data list used for SmCCA computation, followed by ‘phenotype’. For instance, in
the example data, 𝑋1 stands for mRNA, 𝑋2 stands for miRNAs, then the order of the argument is set to
(‘mRNA’, ‘miRNA’, ‘phenotype’). In the example below, we use (1, 1, 1) as the scaling factor to demonstrate
the result.
# default
scalingFactor <- rep(1,ncol(combn(num_omics + 1,2)))
# interactive **
scalingFactor <- scalingFactorInput(DataType = c('mRNA', 'miRNA', 'phenotype'))

2.3.3 Run K-fold CV

For each of the K-folds, we compute the prediction error for each penalty pair option (Figure 2, Step I.2).
Since there is no subsampling step for cross-validation, we run through cross-validation with nested for loop.
However, if the omics data are extremely high-dimensional, we recommend using the R package parallel to
parallelize the for loop, or use fastAutoSmCCNet() directly. fastAutoSmCCNet() is the package built-
in function that streamline the pipeline with single line of code, and the cross-validation step is parallelized
with future_map() in the furrr package.
# load cross-validation data
load(paste0(CVDir, "CVData.RData"))
# create an empty list for storing CV result for each fold
CVResult <- list()
for (CVidx in 1:K)
{

# set scaling factor
CCcoef <- scalingFactor
# create empty vector for storing cross-validation result
RhoTrain <- RhoTest <- DeltaCor <- rep(0, nrow(PenExpand))
for(idx in 1:nrow(PenExpand))
{
# consider one pair of sparsity penalties at a time.
l <- PenExpand[idx, ]
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# run SmCCA on the subsamples (Figure 1, Step II)
Ws <- getCanWeightsMulti(folddata[[CVidx]][["X_train"]],

Trait = as.matrix(folddata[[CVidx]][["Y_train"]]),
Lambda = as.numeric(l), NoTrait = FALSE,
CCcoef = CCcoef)

# evaluate the canonical correlation for training and testing data
rho.train <- getCanCorMulti(X = folddata[[CVidx]][["X_train"]],

Y = as.matrix(folddata[[CVidx]][["Y_train"]]),
CCWeight = Ws,
CCcoef = CCcoef)

rho.test <- getCanCorMulti(X = folddata[[CVidx]][["X_test"]],
Y = as.matrix(folddata[[CVidx]][["Y_test"]]),
CCWeight = Ws,
CCcoef = CCcoef)

# store cv result
RhoTrain[idx] <- round(rho.train, digits = 5)
RhoTest[idx] <- round(rho.test, digits = 5)
DeltaCor[idx] <- abs(rho.train - rho.test)

}

# record prediction errors for given CV fold and all sparsity penalty
# options.
CVResult[[CVidx]] <- cbind(RhoTrain, RhoTest, DeltaCor)

}

2.3.4 Extract penalty pair with the smallest total prediction error

Finally, we extract the total prediction errors (Figure 2, Step I.3) and conclude the best penalty pair from
the grid search as the pair with the smallest error (Figure 2, Step I.4). There are di昀昀erent ways to select
the best penalty terms, one of the simplest way is to minimize discrepancy between the training canonical
correlation and the testing canonical correlation. However, this method does not take the magnitude of
testing canonical correlation into account, which means it may end up selecting the penalty term with
smaller canonical correlation (low signal). For instance, if a certain penalty term yields the training canonical
correlation of 0.7, with the testing canonical correlation of 0.4, and another penalty term yield the training
canonical correlation of 0.4, with the testing canonical correlation of 0.2, minimizing training and testing
canonical correlation selects the latter. Therefore, in this step, we want to minimized the scaled prediction
error, which is de昀椀ned as: 𝑠𝑐𝑎𝑙𝑒𝑑𝑃𝑟𝑒𝑑𝐸𝑟𝑟 = |𝑡𝑟𝑎𝑖𝑛𝐶𝐶 − 𝑡𝑒𝑠𝑡𝐶𝐶||𝑡𝑒𝑠𝑡𝐶𝐶| , (2)

where 𝑡𝑟𝑎𝑖𝑛𝐶𝐶 and 𝑡𝑒𝑠𝑡𝐶𝐶 is de昀椀ned as the training canonical correlation and testing canonical correlation
respectively. Below is the aggregated cross-validation evaluation result:
# aggregate CV result and select the best penalty term
AggregatedCVResult <- Reduce("+", CVResult) / length(CVResult)
# calculate the evaluation metric of interest
EvalMetric <- apply(AggregatedCVResult, 1, function(x) {x[3]/abs(x[2])})
# determine the best CV result
optIdx <- which.min(EvalMetric)

We can visualize the scaled prediction errors with a contour plot (Figure 3), note that this method only
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works for two omics data, if more than two omics data are used, please construct contour plot for each pair
of omics data respectively.
library(plotly)
library(reshape2)
f1 <- list(

family = "Arial, sans-serif",
size = 20,
color = "black"

)
f2 <- list(

family = "Old Standard TT, serif",
size = 20,
color = "black"

)
a <- list(

title = "l1",
titlefont = f1,
showticklabels = TRUE,
tickfont = f2

)
b <- list(

title = "l2",
titlefont = f1,
showticklabels = TRUE,
tickfont = f2

)
# create melt data
PenExpandMelt <- cbind(PenExpand[,c(1,2)], EvalMetric)
colnames(PenExpandMelt)[c(1,2)] <- c('l1', 'l2')
hmelt <- melt(PenExpandMelt, id.vars = c("l1", "l2"))
contourPlot <- plot_ly(hmelt, x = ~l1, y = ~l2, z = ~value,

type = "contour") %>%
layout(xaxis = a, yaxis = b, showlegend = TRUE, legend = f1)

# orca preinstalltion is required for next step:
# https://github.com/plotly/orca#installation
contourPlot

For the synthetic data set, the optimal penalty pair that gives the smallest prediction error is (𝑙1, 𝑙2) =(0.1, 0.1).
# combine CV evaluation result with penalty candidates
overallCVInfo <- cbind(PenExpand, AggregatedCVResult, scaledPredError = EvalMetric)
# set column names for penalty terms
colnames(overallCVInfo)[1:num_omics] <- paste0('l',1:num_omics)
# save overall CV result
write.csv(overallCVInfo, file = paste0(CVDir, 'overallCVInfo.csv'),

row.names = FALSE)
# print out the best CV penalty pair and associated result
print(overallCVInfo[optIdx,])

Table ?? shows the total prediction error (scaledPredError) for all penalty options. Note that in this example,
we are only including 25 optional penalty pairs. The fourth column (RhoTest) records the aggregated
canonical correlations for the test data set.
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Figure 3: Total scaled prediction error contour plot for evaluation metric (de昀椀ned as prediction error/test
cc). The x- and y-axes indicate LASSO penalties considered for mRNA and miRNA, respectively. Blue to
yellow scale indicates increasing total scaled prediction error.
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Table 1: Total Prediction Error from a 3-fold CV for the synthetic
dataset

l1 l2 RhoTrain RhoTest DeltaCor scaledPredError
0.1 0.1 2.143180 2.021583 0.3073917 0.1520549
0.2 0.1 2.298900 1.937143 0.3617541 0.1867462
0.3 0.1 2.371103 1.802180 0.5689212 0.3156850
0.4 0.1 2.226837 1.281533 0.9453013 0.7376331
0.5 0.1 2.257677 1.161217 1.0964606 0.9442343
0.1 0.2 2.439183 1.903217 0.5359673 0.2816113
0.2 0.2 2.553920 1.827470 0.7264469 0.3975151
0.3 0.2 2.606787 1.708473 0.8983147 0.5257997
0.4 0.2 2.641467 1.553353 1.0881148 0.7004941
0.5 0.2 2.662887 1.420033 1.2428491 0.8752253
0.1 0.3 2.603863 1.770733 0.8331298 0.4704999
0.2 0.3 2.699880 1.663637 1.0362454 0.6228796
0.3 0.3 2.738233 1.560693 1.1775418 0.7544992
0.4 0.3 2.760453 1.420607 1.3398453 0.9431501
0.5 0.3 2.773497 1.303357 1.4701370 1.1279621
0.1 0.4 2.703797 1.665173 1.0386261 0.6237345
0.2 0.4 2.787583 1.537180 1.2504062 0.8134416
0.3 0.4 2.813273 1.427817 1.3854583 0.9703334
0.4 0.4 2.827043 1.284917 1.5421291 1.2001783
0.5 0.4 2.831297 1.185093 1.6461995 1.3890885
0.1 0.5 2.763300 1.581297 1.1820000 0.7474878
0.2 0.5 2.845553 1.459457 1.3860930 0.9497322
0.3 0.5 2.866427 1.346777 1.5196518 1.1283621
0.4 0.5 2.872273 1.213000 1.6592727 1.3679082
0.5 0.5 2.870893 1.121857 1.7490378 1.5590564

2.4 Step III: Run SmCCA with pre-selected penalty term
With a pre-selected penalty pair, we apply SmCCA to subsampled features of 𝑋1, 𝑋2 and 𝑌 , and repeat
the process to generate a robust similarity matrix (Figure 1, Step II). As for the number of subsamples, a
larger number of subsamples leads to more accurate results, while a smaller number of subsamples is faster
computationally. We use 50 in this example. In general, we recommend to subsample 500-1000 times or
more. Below is the setup and description of the subsampling parameters:

• 𝑠 = (𝑠1, 𝑠2): Proportions of feature subsampling from 𝑋1, 𝑋2. Default values are 𝑠1 = 0.7, 𝑠2 = 0.9.
• 𝑆𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔𝑁𝑢𝑚: Number of subsamples.

After obtaining the canonical weight 𝑊𝑠, which has the dimension of 𝑝1 + 𝑝2 (total number of features) by𝑝1𝑠1 + 𝑝2𝑠2 (number of feature subsamples), the next step is to obtain the adjacency matrix by taking the
outer product of each 𝑊 with itself to obtain an adjacency matrix and average the matrices to obtain 𝐴𝑏𝑎𝑟,
a sparse matrix object (illustrate in the next section).
# feature sampling proportions, 0.9 for miRNA since it has less features. **
s <- c(0.7,0.9)
# number of subsamples.
SubsamplingNum <- 50
# run SmCCA on the subsamples (Figure 1, Step II)
Ws <- getRobustWeightsMulti(X,

Trait = as.matrix(Y),
NoTrait = FALSE,CCcoef = scalingFactor,
Lambda = as.numeric(overallCVInfo[optIdx,1:num_omics]),
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s = s,
SubsamplingNum = SubsamplingNum)

2.5 Step IV: Obtain multi-omics modules through network clustering
From the canonical weights obtained in the last step, we can get multi-omics modules by constructing global
adjacency matrix and applying hierarchical tree cutting and plotting the reconstructed networks (Figure 1).
The edge signs are recovered from pairwise feature correlations when visualizing the network.
# construct adjacency matrix
Abar <- getAbar(Ws, FeatureLabel = AbarLabel)
# perform clustering based on the adjacency matrix Abar
OmicsModule <- getOmicsModules(Abar, PlotTree = FALSE)
save(Ws, Abar, OmicsModule, file = paste0(CVDir, "SmCCNetWeights.RData"))

2.6 Step V: Obtain network summarization score and pruned subnetworks
The next step is to prune the network so that the unnecessary features (nodes) will be 昀椀ltered from the
original network module. This principle is based on a subject-level score of interest known as the network
summarization score. There are two di昀昀erent network summarization methods: PCA and NetSHy (network
summarization via a hybrid approach, Vu et al 2023 Bioinformatics), which are speci昀椀ed by the argument
‘method’. We evaluate two criteria stepwise 1) summarization score correlation with respect to the phenotype,
which is used to verify if the summarization score for the current subnetwork has a strong signal with respect
to the phenotype and 2) The correlation between the summarization of the current subnetwork and that of
the baseline network with a pre-de昀椀ned baseline network size. This is used to check if the addition of more
molecular features introduces noise. The stepwise approach for network pruning is:

• Calculate PageRank score for all molecular features in global network, and rank them according to
PageRank score.

• Start from minimally possible network size 𝑚1, iterate the following steps until reaching the maximally
possible network size 𝑚2 (de昀椀ned by users):

– Add one more molecular feature into the network based on node ranking, then calculate Net-
SHy/PCA summarization score (PC1 - PC3) for this updated network.

– Calculate the correlation between this network summarization score and phenotype for all the
possible network size 𝑖 ∈ [𝑚1, 𝑚2], and only use PC with the highest (determined by absolute
value) w.r.t. phenotype, de昀椀ne this correlation as 𝜌(𝑖,𝑝ℎ𝑒𝑛𝑜), where 𝑖 stands for the current network
size.

• Identify network size 𝑚∗ (𝑚∗ ∈ [𝑚1, 𝑚2]) with 𝜌(𝑚∗,𝑝ℎ𝑒𝑛𝑜) being the maximally possible summarization
score correlation w.r.t. phenotype (determined by absolute value).

• Treat 𝑚∗ as the new baseline network size, let 𝜌(𝑚∗,𝑖) be the correlation of summarization score between
network with size 𝑚∗ and network with size 𝑖. De昀椀ne 𝑥 to be the network size (𝑥 ∈ [𝑚∗, 𝑚2]), such
that 𝑥 = max{𝑖|(𝑖 ∈ [𝑚∗, 𝑚2])&(|𝜌(𝑚∗,𝑖)| > 0.8)}.

• Between network size of 𝑚 and 𝑥, the optimal network size 𝑚𝑜𝑝𝑡 is de昀椀ned to be the maximum network
size such that |𝜌𝑚(𝑜𝑝𝑡,𝑝ℎ𝑒𝑛𝑜) | ≥ 0.9 ⋅ |𝜌(𝑚,𝑝ℎ𝑒𝑛𝑜)|.

In the following example, the summarization used is the 昀椀rst 3 NetSHy principal components. After clus-
tering, there are 6 network modules, with only 1 network module having more than 10 nodes. The optimal
network size after network pruning is 18. The output from this steps contains a network adjacency matrix,
summarization scores (昀椀rst 3 NetSHy PCs), PC loadings and more, which are stored in a .Rdata 昀椀le in the
user speci昀椀ed location.
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# make sure there are no duplicated labels
AbarLabel <- make.unique(AbarLabel)

# create concatenate omics data for network pruning
X_big <- cbind(X1,X2)

# calculate feature correlation matrix
bigCor2 <- cor(X_big)

# data type
types <- c(rep('gene', ncol(X1)), rep('mirna', ncol(X2)))

# filter out network modules with insufficient number of nodes
module_length <- unlist(lapply(OmicsModule, length))
network_modules <- OmicsModule[module_length > 10]
# extract pruned network modules
for(i in 1:length(network_modules))
{

cat(paste0('For network module: ', i, '\n'))
# define subnetwork
abar_sub <- Abar[network_modules[[i]],network_modules[[i]]]
cor_sub <- bigCor2[network_modules[[i]],network_modules[[i]]]
# prune network module
networkPruning(Abar = abar_sub,CorrMatrix = cor_sub,

type = types[network_modules[[i]]],
data = X_big[,network_modules[[i]]],

Pheno = Y, ModuleIdx = i, min_mod_size = 10,
max_mod_size = 100, method = 'NetSHy',
saving_dir = CVDir)

}

3 Results
We present the network result based on the synthetic data. The 昀椀rst table below contains the individual
molecular features correlation with respect to phenotype, and their associated p-value (from correlation
testing).

Table 2: Individual molecular features correlation table with re-
spect to phenotype (correlation and p-value).

Molecular Feature Correlation to Phenotype P-value
Gene_1 0.3828730 0.0000000
Gene_2 0.3411378 0.0000000
Gene_5 0.1310036 0.0131111
Gene_6 0.6284530 0.0000000
Gene_7 0.6531262 0.0000000
Gene_9 0.0774726 0.1434883
Gene_10 0.1201825 0.0229506
Gene_74 -0.1401523 0.0079155
Gene_88 0.1234406 0.0194714
Gene_90 -0.0752956 0.1551147
Gene_123 -0.0703372 0.1842334
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Molecular Feature Correlation to Phenotype P-value
Gene_170 0.1007365 0.0568835
Gene_216 -0.0946349 0.0737229
Gene_219 0.1158386 0.0284166
Gene_367 0.1499230 0.0044714
Gene_391 -0.0570075 0.2820460
Gene_485 0.1176494 0.0260153
Mir_2 -0.3474835 0.0000000
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Figure 4: PC1 loading for each subnetwork feature.

Figure 4 is the visualization of the PC loadings that contribution of each molecular features to the 昀椀rst
NetSHy PC. In addition, there are two network heatmaps based on (1) correlation matrix (Figure 5), and
(2) adjacency matrix (Figure 6). Based on the summarization table, genes 1,2,6,7, and miRNA 2 have
relatively high correlation with respect to phenotype. The PC loadings also con昀椀rm that genes 6,7, and
miRNA 2 and generally have higher PC contribution. From the correlation heatmap, we do not observe
associations between molecular features, but for the adjacency matrix heatmap, we observe the higher
connections between genes 6,7 and miRNA 2. We also recommend experimenting more PCs (up to 3) with
Figure 4 to demonstrate the contribution of molecular features to each PC.

3.1 Step VI: Visualize network module
The initial approach to network visualization is facilitated through our SmCCNet shinyApp, acces-
sible at https://smccnet.shinyapps.io/smccnetnetwork/. Upon obtaining a subnetwork 昀椀le named
‘size_a_net_b.Rdata’, users can upload it to the shinyApp. The platform provides various adjustable
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Figure 5: Correlation heatmap for subnetwork features.

17



Gene_1

Gene_2

Gene_5

Gene_6

Gene_7

Gene_9

Gene_10

Gene_74

Gene_88

Gene_90

Gene_123

Gene_170

Gene_216

Gene_219

Gene_367

Gene_391

Gene_485

Mir_2

Gene_1Gene_2Gene_5Gene_6Gene_7Gene_9Gene_10Gene_74Gene_88Gene_90Gene_123Gene_170Gene_216Gene_219Gene_367Gene_391Gene_485Mir_2
Var1

V
ar

2

0.00

0.25

0.50

0.75

1.00
value

Adjacency Matrix Heatmap of Network Features

Figure 6: Adjacency matrix heatmap for subnetwork features.

18



visualization parameters, enabling users to tailor the network visualization to their preferences. In addition,
the Shiny application provides other visualization for the subnetworks in addition to the network, which
includes principal component loading visualization, correlation heatmap, and subject-level 3D graph.

An alternative way to visualize the 昀椀nal network module, we need to download the Cytoscape software
(Shannon et al., 2003), and use the package RCy3 to visualize the subnetwork generated from the network
pruning step. In general, since the network obtained through the PageRank pruning algorithm is densely
connected, and some of the edges may be false positive (meaning that two nodes are not associated, but
with higher edge values in the adjacency matrix). Therefore, we use the correlation matrix to 昀椀lter out those
weak network edges.

In the network visualization (Figure 7), di昀昀erent colored edges denote di昀昀erent directions of the association
between two nodes, where red or blue denotes a positive or negative association respectively. The width of
the edge represents the connection strength between two nodes.
library(RCy3)
library(igraph)
# load subnetwork data (example, user need to provide the directory)
load('ResultDirectory/size_a_net_b.Rdata')
M <- as.matrix(M)
correlation_filter <- 0.05
# correlation matrix filtering for the subnetwork edge-cut
filter_index <- which(abs(correlation_sub) < correlation_filter)
M_ind <- ifelse(correlation_sub > 0, 1, -1)
M_adj <- M * M_ind
M_adj[filter_index] <- 0
diag(M_adj) <- 0

# network visualization through cytoscape
graph <- igraph::graph_from_adjacency_matrix(M_adj, mode = 'undirected',

weighted = TRUE, diag = TRUE, add.colnames = NULL, add.rownames = NA)

# define network node type and connectivity and use them in cytoscape
V(graph)$type <- sub_type
V(graph)$type
V(graph)$connectivity <- rowSums(abs(M))
V(graph)$connectivity
# export subnetwork to Cytoscape
createNetworkFromIgraph(graph,"multi_omics_network")

4 Methods for Optimal Scaling Factors Selection
As shown above, the scaling factors must be supplied to prioritize correlation structure of interest. However,
it is not always straightforward to determine the scaling factors. In the section below, we provide 3 di昀昀erent
methods to select the scaling factors of interest.

4.1 Method 1: Use Prompt to De昀椀ne Scaling Factors
A common choice for the scaling factors is to prioritize the omics-phenotype correlation. For instance, in
multi-omics quantitative phenotype analysis with 2 omics data, let 𝑎1,2 be the scaling factor for omics-omics
correlation, 𝑏1 and 𝑏2 be the scaling factors for omics-phenotype correlation, then a common choice of the
scaling factor (𝑎1,2, 𝑏1, 𝑏2) is (1, 10, 10). This can be done through manual entry with interactive function
‘scalingFactorInput()’, and the example is given in section 2.2.2.
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Figure 7: Pruned module 1. The strength of the node connections is indicated by the thickness of edges.
Red edges and blue edges are for negative and positive connections respectively. Red node represents genes,
and blue node represent miRNAs.
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4.2 Method 2: Use Automated SmCCNet to Select Scaling Factors Based on
Pairwise Correlation.

Another method is to check the pairwise correlation between each pair of omics data using sparse canonical
correlation analysis (SCCA). We ran SCCA with the most stringent penalty pair (0.1, 0.1), and calculate
the canonical correlation. The canonical correlation calculated will be treated as the between-omics scaling
factor, while scaling factor of 1 will be used for omics-phenotype relationship. In addition, we introduced
another parameter called shrinkage factor to prioritize either omics-omics relationship or omics-phenotype
relationship. For instance, in a multi-omics analysis with two omics data, if omics-omics correlation is 0.8,
and the shrinkage parameter is 2, then the 昀椀nal scaling factors are set to (𝑎, 𝑏1, 𝑏2) = 𝑐(0.4, 1, 1). This
method is currently only implemented in fastAutoSmCCNet(). If user want to use this method, please
refer to the automated SmCCNet vignette.

4.3 Method 3: Use Cross-Validation to Select Scaling Factors
Let’s assume that there are two omics data mRNA and miRNA with a quantitative phenotype. We want to
systematically evaluate the performance of each pair of scaling factors. The best way is to create candidate
scaling factors set by setting all omics-omics scaling factor to 1, and varying the omics-phenotype scaling
factors. To make performance comparable, we scale each set of scaling factors so that they sum up to 1.
For instance, with the two omics example, the scaling factor (𝑎1,2, 𝑏1, 𝑏2) should satisfy 𝑎1,2 + 𝑏1 + 𝑏2 = 1.
We implement a nested grid search approach to select the best scaling factors along with the corresponding
optimal penalty parameters. For each set of scaling factors, the sparse penalty parameters (l1, l2) were
chosen through a K-fold cross validation to 昀椀nd the penalty pair that minimized the scaled prediction error,
and the best scaled prediction error is recorded for each set of scaling factors and is used to 昀椀nd the optimal
scaling factors. All penalty pairs from the set were also tested in a grid search to 昀椀nd the optimal pair
(l1, l2). The penalty parameters determine how many miRNA (l1) and mRNA (l2) are in the 昀椀nal results.
Scaling factors in the grid search were evaluated to identify which value yielded the best network results
with a prede昀椀ned criterion. We discuss the evaluation criterion in section 4.3.2.

4.3.1 Cross validation with each set of scaling factors

Below is the penalty parameter grid search setup for the SmCCNet algorithm. Note that it is the same step
as the section 2.2:
# number of folds in K-fold CV.
K <- 3
N <- nrow(X1)
# create a list of omics data
X <- list(X1, X2)
# number of omics dataset
num_omics <- 2
# tuning parameter candidate length for each omics data
tuneLength <- 5
# tuning parameter candadate range for each omics data
minTune <- 0.1
maxTune <- 0.5
# create empty matrix to store all possible penalty parameters
penSelect <- matrix(0, nrow = tuneLength, ncol = num_omics)
# create sparsity penalty options.
for (Idx in 1:ncol(penSelect))
{

penSelect[,Idx] <- seq(from = minTune,
to = maxTune,
length.out = tuneLength)

}
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# expand grid
# convert matrix to list of columns
list_cols <- as.list(as.data.frame(penSelect))
# generate all possible combinations
PenExpand <- do.call(expand.grid, list_cols)

# set a CV directory.
CVDir <- "Example3foldCVTune/"
dir.create(CVDir)

Same as above, we split the original data into K di昀昀erent folds for evaluation:
set.seed(12345) # set random seed.

# split data into folds
X <- lapply(X, scale)
foldIdx <- suppressWarnings(split(1:nrow(X[[1]]), sample(1:nrow(X[[1]]), K)))
folddata <- purrr::map(1:length(foldIdx), function(x){

Y <- as.matrix(Y)
X_train <- list()
X_test <- list()
Y_train <- list()
Y_test <- list()
for (i in 1:length(X))
{

X_train[[i]] <- X[[i]][-foldIdx[[x]],]
X_test[[i]] <- X[[i]][foldIdx[[x]],]

}
Y_train <- Y[-foldIdx[[x]],]
Y_test <- Y[foldIdx[[x]],]
return(list(X_train = X_train, X_test = X_test,Y_train = Y_train,

Y_test = Y_test))
})
# name each fold of data
names(folddata) <- paste0('Fold_', 1:K)
# saving all preliminary data into local directory for reproducibility purpose
save(folddata, PenExpand,

file = paste0(CVDir, "CVData.RData"))

Below is the function to set up the searching grid for scaling factors. There are 3 di昀昀erent arguments in this
function:

• 𝐷𝑎𝑡𝑎𝑇 𝑦𝑝𝑒: The vector with each omics type annotated (in same order as 𝑋), followed by ‘phenotype’.
• 𝑡𝑢𝑛𝑒𝐿𝑒𝑛𝑔𝑡ℎ: The length of candidate scaling factors for each pairwise combination.
• 𝑡𝑢𝑛𝑒𝑅𝑎𝑛𝑔𝑒𝑃ℎ𝑒𝑛𝑜: A vector of length 2 with the 昀椀rst argument being the minimally possible scaling

factor value, and the second argument being the maximally possible scaling factor value.
# create a function that set up the scaling factor candidate grids
gridCCcoef <- function(DataType, tuneLength = 5, tuneRangePheno = c(1,10))
{
# store the length of the data
datalength <- length(DataType)
phenotunelength <- datalength - 1
# create empty matrix for storing the candidate scaling factors
candCoef <- matrix(1, nrow = tuneLength^phenotunelength,

ncol = ncol(utils::combn(datalength, 2)))
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# create storage empty grid
phenoGrids <- matrix(0, nrow = tuneLength,

ncol = phenotunelength)
# create grids
for (phenoIdx in 1:phenotunelength)
{

phenoGrids[,phenoIdx] <- seq(from = tuneRangePheno[1],
to = tuneRangePheno[2],
length.out = tuneLength)

}
# expand grid
# convert matrix to list of columns
list_cols <- as.list(as.data.frame(phenoGrids))
# generate combinations
phenoGridsExpand <- do.call(expand.grid, list_cols)
candCoef[,which(utils::combn(datalength,2)[2,] == datalength)] <- as.matrix(

phenoGridsExpand)
# provide column names
colnames(candCoef) <- apply(utils::combn(datalength,2),2, function(x){

paste0(DataType[x[1]],'_', DataType[x[2]])
})

# scale scaling factors so that each set of scaling factors sum up to 1
candCoef <- t(apply(candCoef, 1, function(x) {x/sum(x)}))
return(candCoef)

}

# scaling factor grids
CCcoefMatrix <- gridCCcoef(c('mRNA','miRNA', 'pheno'),

tuneLength = 3, tuneRangePheno = c(5,10))

# create data matrix to store the cross-validation result
CVEval <- matrix(0, nrow = nrow(CCcoefMatrix), ncol = num_omics +

ncol(utils::combn(num_omics + 1, 2)) + 3)
CVEval[,1:ncol(utils::combn(num_omics + 1, 2))] <- CCcoefMatrix
colnames(CVEval)<- c( paste0('CCcoef:', colnames(CCcoefMatrix)),

paste0('l',1:num_omics), "TrainingCC", "TestCC",
"CCPredError")

In the example below, with two omics and a quantitative phenotype, we set the 𝑡𝑢𝑛𝑒𝐿𝑒𝑛𝑔𝑡ℎ to 3, with the
range of scaling factor to be between 5 and 10. Since there are a large number of candidate scaling factor
pairs, to speed up the cross-validation step, the parallel computation can be implemented.
for (CCIdx in 1:nrow(CCcoefMatrix))
{

coef <- CCcoefMatrix[CCIdx,]
cat(paste0('Now running SmCCA for the scaling factor candidate ',

CCIdx, '\n'))

future::plan(future::multisession, workers = K)
CVResult <- furrr::future_map(1:K, function(CVidx) {
# set scaling factor
CCcoef <- coef
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# create empty vector for storing cross-validation result
RhoTrain <- RhoTest <- DeltaCor <- rep(0, nrow(PenExpand))
for(idx in 1:nrow(PenExpand))
{
# consider one pair of sparsity penalties at a time.
l <- PenExpand[idx, ]
# run SmCCA on the subsamples (Figure 1, Step II)
Ws <- getCanWeightsMulti(folddata[[CVidx]][["X_train"]],

Trait = as.matrix(folddata[[CVidx]][["Y_train"]]),
Lambda = as.numeric(l), NoTrait = FALSE,
CCcoef = CCcoef)

# evaluate the canonical correlation for training and testing data
rho.train <- getCanCorMulti(X = folddata[[CVidx]][["X_train"]],

Y = as.matrix(folddata[[CVidx]][["Y_train"]]),
CCWeight = Ws,
CCcoef = CCcoef)

rho.test <- getCanCorMulti(X = folddata[[CVidx]][["X_test"]],
Y = as.matrix(folddata[[CVidx]][["Y_test"]]),
CCWeight = Ws,
CCcoef = CCcoef)

# store cv result
RhoTrain[idx] <- round(rho.train, digits = 5)
RhoTest[idx] <- round(rho.test, digits = 5)
DeltaCor[idx] <- abs(rho.train - rho.test)

}

# record prediction errors for given CV fold and all sparsity penalty
# options.
DeltaCor.all <- cbind(RhoTrain, RhoTest, DeltaCor)
return(DeltaCor.all)

},.progress = TRUE,.options = furrr::furrr_options(seed = TRUE))
cat('\n')
# aggregate CV result and select the best penalty term
AggregatedCVResult <- Reduce("+", CVResult) / length(CVResult)
EvalMetric <- apply(AggregatedCVResult, 1, function(x) {x[3]/abs(x[2])})
# determine the best CV result
optIdx <- which.min(EvalMetric)
# fill in the optimal penalty pair for current scaling scaling
# factor selection as well as the evaluation result
CVEval[CCIdx,(ncol(utils::combn(num_omics + 1, 2))+

1):ncol(CVEval)] <- c(as.numeric(PenExpand[optIdx,]),
as.numeric(AggregatedCVResult[optIdx,]))

# write out the cross-validation result
write.csv(CVEval,

file = paste0(CVDir, "/PredictionError.csv"), row.names = FALSE)
}

4.3.2 Select optimal scaling factors with associated penalty parameters

Scaling constants in the grid search were evaluated to identify which values yielded the best network results.
How to de昀椀ne a evaluation criterion depends on the interest of study. In the two omics example, the criterion
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is set to be:

(𝑎1,2, 𝑏1, 𝑏2)=arg max𝑎̃1,2,𝑏̃1, ̃𝑐2 |𝑡𝑟𝑎𝑖𝑛𝐶𝐶 − 𝑡𝑒𝑠𝑡𝐶𝐶||𝑡𝑒𝑠𝑡𝐶𝐶| (3)

# read in the overall cv result
evalResult <- read.csv(paste0(CVDir, "/PredictionError.csv"))
# find the optn
evalOptIdx <- which.min(evalResult$CCPredError/abs(evalResult$TestCC))
# print the optimal result
evalResult[evalOptIdx,]

With the selected parameters of scaling factors (CCcoef), l1, and l2, we run SmCCNet on the entire dataset
as Session 2.3 and identify the networks related to phenotype of interest as session 2.4.
# feature sampling proportions, 0.9 for miRNA since it has less features.
s <- c(0.7,0.9)
# number of subsamples.
SubsamplingNum <- 50
# run SmCCA on the subsamples (Figure 1, Step II)
Ws <- getRobustWeightsMulti(X,

Trait = as.matrix(Y),
NoTrait = FALSE,
CCcoef = as.numeric(evalResult[evalOptIdx,

1:ncol(utils::combn(num_omics + 1,2))]),
Lambda = as.numeric(evalResult[evalOptIdx,

(ncol(utils::combn(num_omics + 1, 2))
+1):(ncol(utils::combn(num_omics +
1, 2))+num_omics)]), s = s,

SubsamplingNum = SubsamplingNum)

5 Multi-Omics SmCCNet with Binary Phenotype
Consider 𝑋1, 𝑋2, ..., 𝑋𝑇 as 𝑇 omics datasets, and 𝑌 as the phenotype data. The general work昀氀ow for
multi-omics SmCCNet with binary phenotype is as follows (Figure 8):

1. Run Weighted/Unweighted Sparse Multiple Canonical Correlation Analysis (SmCCA):
This is done on 𝑋1, 𝑋2, ..., 𝑋𝑇 (excluding phenotype data). The output is canonical weight vectors
(with nonzero entries, zero entries are 昀椀ltered) 𝑊̃𝑡 ∈ ℝ𝑝(𝑠𝑢𝑏)𝑡 ×1, 𝑡 = 1, 2, ..., 𝑇 , which represent the omics-
omics connections. In this step, we 昀椀lter out features that have no connections with other features,
which helps reduce dimensionality. Note that we tend to set relaxed penalty terms for this step to
include as many omics features as possible to increase the performance of the classi昀椀er in the next step.

2. Subset Omics Data: Each dataset 𝑋1, 𝑋2, ..., 𝑋𝑇 is subsetted to include only omics features selected
in Step 1, call subsetted data 𝑋𝑡(𝑠𝑢𝑏) ∈ ℝ𝑛×𝑝(𝑠𝑢𝑏)𝑡 .

3. Concatenate and Run Sparse Partial Least Squared Discriminant Analysis (SPLSDA)
(Chung and Keles, 2010): The subsetted datasets 𝑋1(𝑠𝑢𝑏), 𝑋2(𝑠𝑢𝑏), ..., 𝑋𝑇 (𝑠𝑢𝑏) are concatenated
into 𝑋(𝑠𝑢𝑏) = [𝑋1(𝑠𝑢𝑏), 𝑋2(𝑠𝑢𝑏), ..., 𝑋𝑇 (𝑠𝑢𝑏)] ∈ ℝ𝑛×𝑝, 𝑝 = ∑𝑇𝑖=1 𝑝𝑖. The Sparse PLSDA algorithm is
then run to extract 𝑅 latent factors and projection matrix, by default, 𝑅 is set to 3. Projection matrix
is de昀椀ned as 𝑃 ∈ ℝ𝑝(𝑠𝑢𝑏)×𝑅. Latent factors are de昀椀ned as 𝑟 = [𝑟1, 𝑟2, ..., 𝑟𝑅] = 𝑋(𝑠𝑢𝑏) ⋅ 𝑃 ∈ ℝ𝑛×𝑅.

4. Aggregate Latent Factors: The 𝑅 latent factors are aggregated into one using logistic regression,
de昀椀ned by logit(𝑌 ) = 𝛼1𝑟1 + 𝛼2𝑟2 + ... + 𝛼𝑅𝑟𝑅. Estimate 𝛼’s and report performance (e.g., accu-
racy/AUC score). Feature weights are given by aggregation of the projection matrix from Sparse
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Figure 8: SmCCNet work昀氀ow overview for Binary Phenotype. X1, X2, and X3 are three omics data types
for the same set of n subjects. Y indicates a Binary phenotype measure for those n subjects. Note that the
昀氀owchart demonstrate work昀氀ow for three omics data, it is also compatible with more than three omics data
or two omics data.

26



PLSDA 𝑊 ∗𝑡 = 𝑃𝑡 ⋅ 𝛼 ∈ ℝ𝑝(𝑠𝑢𝑏)𝑡 ×1, 𝑡 = 1, 2, ..., 𝑇 , 𝛼 = [𝛼1, 𝛼2, ...., 𝛼𝑟] ∈ ℝ𝑅×1, where 𝑃𝑡 is the subset of
projection matrix 𝑃 such that it only includes features from the 𝑡th omics data.

5. Normalize and Calculate Final Canonical Weight: The feature weights 𝑊 ∗1 , 𝑊 ∗2 , ..., 𝑊 ∗𝑇 based
on sparse PLSDA are normalized to have an L2 norm of 1. Let 𝛾1 and 𝛾2 be two scalars representing
the strength of omics-omics and omics-phenotype connections, respectively,then the 昀椀nal canonical
weight is obtained by weighted combining the canonical weight from step 1 and the feature weight
from classi昀椀er 𝑊𝑡 = 𝛾1𝛾1+𝛾2 𝑊̃𝑡 + 𝛾2𝛾1+𝛾2 𝑊 ∗𝑡 , 𝑡 = 1, 2, ..., 𝑇 .

6. Construct Multi-Omics Network and Perform Network Pruning: A multi-omics network is
constructed and pruned (same as multi-omics SmCCNet with quantitative phenotype).

Note that Steps 1-3 are repeated multiple times with di昀昀erent penalty pairs to select the best pair with
cross-validation. The evaluation metric is maximizing the classi昀椀cation evaluation metric such as testing
prediction accuracy or testing AUC score. Currently there are 5 di昀昀erent evaluation metrics to choose from:
accuracy, AUC score, precision, recall, and F1 score, with accuracy as the default selection. For instance, if
the phenotype is subject’s disease status with possible values of 1 (disease-positive) and 0 (disease-negative),
then below is the guidance on how to choose the best evaluation metric in this context:

• Prediction Accuracy: Use accuracy when both disease-positive and disease-negative subjects are
almost even in number and equally important. It is a method that gives the percentage of all correct
predictions out of all subjects.

• AUC Score: The AUC evaluates the model’s ability in distinguishing disease-positive from disease-
negative subjects across varying thresholds when the predicted probability of a patient’s disease status
is given. It demonstrates the e昀昀ectiveness in detecting disease-positive versus disease-negative subjects.

• Precision: Precision is used when misclassifying a disease-negative subject as disease-positive has
high consequences. It indicates the percentage of true disease-positive subjects among those predicted
as disease-positive.

• Recall: Recall is used when it’s important to correctly classify as many disease-positive subjects as
possible, even at the risk of misclassifying some disease-negative subjects. It tells the percentage of
actual disease-positive subjects the model correctly spotted.

• F1 Score: The F1 Score is the harmonic mean of precision and recall, ideal for uneven class distribu-
tions. We can think of it as the perfect blend of precision and recall in one number.

5.1 Synthetic dataset
As an example, we consider a synthetic data set with 500 genes (𝑋1) and 100 miRNAs (𝑋2) expression levels
measured for 358 subjects, along with a binary phenotype created by binarizing quantitative phenotype (𝑌 )
based on median.
data(ExampleData)
head(X1[ , 1:6])

## Gene_1 Gene_2 Gene_3 Gene_4 Gene_5 Gene_6
## Samp_1 22.48570 40.35372 31.02575 20.84721 26.69729 30.20545
## Samp_2 37.05885 34.05223 33.48702 23.53146 26.75463 31.73594
## Samp_3 20.53077 31.66962 35.18957 20.95254 25.01883 32.15723
## Samp_4 33.18689 38.48088 18.89710 31.82330 34.04938 38.79989
## Samp_5 28.96198 41.06049 28.49496 18.37449 30.81524 24.00454
## Samp_6 18.05983 29.55471 32.54002 29.68452 26.19996 26.76684
head(X2[ , 1:6])

## Mir_1 Mir_2 Mir_3 Mir_4 Mir_5 Mir_6
## Samp_1 15.22391 17.54583 15.78472 14.89198 10.34821 9.689755
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## Samp_2 16.30697 16.67283 13.36153 14.48855 12.66090 11.333613
## Samp_3 16.54512 16.73501 14.61747 17.84527 13.82279 11.329333
## Samp_4 13.98690 16.20743 16.29308 17.72529 12.30056 9.844108
## Samp_5 16.33833 17.39387 16.39792 15.85373 13.38767 10.599414
## Samp_6 14.54110 16.51999 14.73958 15.87504 13.21359 10.922393
# binarize phenotype variable
Y <- ifelse(Y > median(Y), 1, 0)
head(Y)

## Pheno
## Samp_1 0
## Samp_2 1
## Samp_3 0
## Samp_4 1
## Samp_5 1
## Samp_6 0

Denote the number of features in 𝑋1&𝑋2 as 𝑝1&𝑝2 respectively, and the number of subjects as 𝑛.
p1 <- ncol(X1)
p2 <- ncol(X2)
n <- nrow(X1)
AbarLabel <- c(colnames(cbind(X1, X2)))

Although SmCCNet does not require normality, it calculates the Pearson correlation between linear com-
binations of omics features and the phenotype, which assumes 昀椀nite variances and 昀椀nite covariance. It is
necessary to include a transformation if the data are skewed. The algorithm also requires the data to be
standardizable (i.e. none of the data matrices include a column with zero variance.)

5.2 Step II: Determine optimal sparsity penalties through cross-validation (op-
tional)

All the parameters set up are the same as multi-omics with quantitative phenotype except that there is an
extra penalty term to evaluate: lasso penalty for SPLSDA classi昀椀er.
# number of folds in K-fold CV.
K <- 3
N <- nrow(X1)
# create a list of omics data
X <- list(X1, X2)
# number of component for PLS
ncomp <- 3
# number of omics dataset
num_omics <- 2
# tuning parameter candidate length for each omics data
tuneLength <- 5
# tuning parameter candadate range for each omics data
minTune <- 0.1
maxTune <- 0.5
# create empty matrix to store all possible penalty parameters
penSelect <- matrix(0, nrow = tuneLength, ncol = num_omics)
# set up the evaluation metric (choose between 'accuracy', 'auc', 'precision',
# 'recall', 'f1')
metric <- 'auc'
# create sparsity penalty options.
for (Idx in 1:ncol(penSelect))
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{
penSelect[,Idx] <- seq(from = minTune,

to = maxTune,
length.out = tuneLength)

}
# combine with penalty term for classifier
penSelect <- cbind(penSelect, seq(from = 0.5,

to = 0.9,
length.out = tuneLength))

# expand grid
# convert matrix to list of columns
list_cols <- as.list(as.data.frame(penSelect))
# generate all possible combinations
PenExpand <- do.call(expand.grid, list_cols)

# set a CV directory.
CVDir <- "Example3foldCVBinary/"
dir.create(CVDir)

5.2.1 Create test and training data sets.

Same as before, we need to split the data (𝑋1, 𝑋2, 𝑌 ) into test and training sets (Figure 2, Step I.1). Here
we scale the complete dataset rather than each fold to increase the performance in predicting the testing
phenotype:
set.seed(12345) # set random seed.

# split data into folds
X <- lapply(X, scale)
foldIdx <- suppressWarnings(split(1:nrow(X[[1]]), sample(1:nrow(X[[1]]), K)))
folddata <- purrr::map(1:length(foldIdx), function(x){

Y <- as.matrix(Y)
X_train <- list()
X_test <- list()
Y_train <- list()
Y_test <- list()
for (i in 1:length(X))
{

X_train[[i]] <- X[[i]][-foldIdx[[x]],]
X_test[[i]] <- X[[i]][foldIdx[[x]],]

}
Y_train <- Y[-foldIdx[[x]],]
Y_test <- Y[foldIdx[[x]],]
return(list(X_train = X_train, X_test = X_test,Y_train = Y_train,

Y_test = Y_test))
})
# name each fold of data
names(folddata) <- paste0('Fold_', 1:K)
# saving all preliminary data into local directory for reproducibility purpose
save(folddata, PenExpand,

file = paste0(CVDir, "CVData.RData"))
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5.2.2 Set Scaling Factors

It is important to set scaling factors for each pairwise correlation to prioritize correlation structure(s) of
interest. If two omics data are used, there is only one scaling factor for between-omics canonical correlation
analysis, then it is natural to set the scaling factor to 1:
scalingFactor <- 1

If more than two omics data are used, then below is the function that use prompt to help user de昀椀ne the
scaling factor intended for the analysis, note that di昀昀erent from the quantitative phenotype, the phenotype
should be excluded from the scaling factor input:
scalingFactor <- scalingFactorInput(c('mRNA', 'miRNA'))

5.2.3 Run K-fold CV

Same as multi-omics with quantitative phenotype, cross-validation should be run to determine the best
penalty terms combinations. The di昀昀erence here is that since this is a predictive modeling problem, the
evaluation metric used should be based on the testing data, not the comparison between training and
testing. In the example here, we use the testing AUC score to evaluate the model performance.
# create an empty list to store the cv result
CVResult <- list()
# load cross-validation data
load(paste0(CVDir, "CVData.RData"))
for (CVidx in 1:K)
{

CCcoef <- scalingFactor
TrainScore <- TestScore <- rep(0, nrow(PenExpand))
for(idx in 1:nrow(PenExpand)){
# consider one pair of sparsity penalties at a time.
l <- PenExpand[idx, ]
# run multi-block PLS
CCcoef <- scalingFactor
# run multi-block PLS
suppressMessages(projection <- getRobustWeightsMultiBinary(

folddata[[CVidx]][["X_train"]],
as.numeric(folddata[[CVidx]][["Y_train"]]),
SubsamplingPercent=c(1,1),
Between_Discriminate_Ratio = c(1,1),
LambdaBetween = l[1,1:num_omics],
LambdaPheno = l[1,(num_omics + 1)],
SubsamplingNum = 1,
CCcoef = CCcoef,
ncomp_pls = ncomp, EvalClassifier = TRUE,
testData = folddata[[CVidx]][["X_test"]]))

# create training and testing data, and fit logistic regression model
train_data <- data.frame(x = projection[[1]],

y = as.factor(folddata[[CVidx]][["Y_train"]]))
test_data <- data.frame(x = projection[[2]])

# catching error when performing the logistic regression
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has_error <- FALSE
suppressWarnings(
tryCatch({

# fit logistic regression model
logisticFit <- stats::glm(y ~ ., family = 'binomial', data = train_data)
# make prediction for train/test set
train_pred <- stats::predict(logisticFit, train_data, type = 'response')
test_pred <- stats::predict(logisticFit, test_data, type = 'response')
train_score <- classifierEval(obs = folddata[[CVidx]][["Y_train"]],

pred = train_pred,
EvalMethod = metric, print_score = FALSE)

test_score <- classifierEval(obs = folddata[[CVidx]][["Y_test"]],
pred = test_pred,
EvalMethod = metric, print_score = FALSE)

},
error = function(e) {
cat("Caught an error:", e$message, "\n")
has_error <- TRUE

})
)

TrainScore[idx] <- round(train_score, digits = 5)
TestScore[idx] <- round(test_score, digits = 5)

}

# record prediction errors for given CV fold and all sparsity penalty
# options.
CVResult[[CVidx]] <- cbind(TrainScore, TestScore)

}

5.2.4 Extract penalty terms with the highest testing evaluation score

Finally, we extract the total prediction score and conclude the best penalty pair as the pair with the highest
prediction score (in the example’s context, AUC score).
# aggregate CV result and select the best penalty term
AggregatedCVResult <- Reduce("+", CVResult) / length(CVResult)
# determine the best CV result
optIdx <- which.max(AggregatedCVResult[,2])

In the last step, we store the aggregated cross-validation result into the local directory:
# combine CV evaluation result with penalty candidates
overallCVInfo <- cbind(PenExpand, AggregatedCVResult)
# set column names for penalty terms for omics
colnames(overallCVInfo)[1:num_omics] <- paste0('l',1:num_omics)
# set column names for penalty terms for classifier
colnames(overallCVInfo)[num_omics+1] <- paste0('lpheno')
# save overall CV result
write.csv(overallCVInfo, file = paste0(CVDir, 'overallCVInfo.csv'),

row.names = FALSE)
# print out the best CV penalty pair and associated result
print(overallCVInfo[optIdx,])
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5.3 Step III: Run SPLSDA with pre-selected penalty terms
Same as above, with a pre-selected penalty pair, we apply our method to subsampled features of 𝑋1, 𝑋2 and𝑌 , and repeat the process to generate a robust similarity matrix. Note that in addition to the subsampling,
we need to add a between-discriminant ratio (de昀椀ned as 𝛾1/𝛾2) to control for the trade-o昀昀 between omics-
omics relationship and omics-phenotype relationship presented in the subsequent adjacency matrix. The
larger the second number is, the more emphasize is on the omics-phenotype correlation, and vice versa.
# feature sampling proportions, 0.9 for miRNA since it has less features.
s <- c(0.7,0.9)
# number of subsamples.
SubsamplingNum <- 50
# run SPLSDA on the subsamples
Ws <- getRobustWeightsMultiBinary(X,

as.numeric(Y),
SubsamplingPercent=s,
Between_Discriminate_Ratio = c(1,1),
LambdaBetween = as.numeric(overallCVInfo[optIdx,1:num_omics]),
LambdaPheno = as.numeric(overallCVInfo[optIdx,num_omics + 1]),
SubsamplingNum = SubsamplingNum,
CCcoef = scalingFactor,
ncomp_pls = ncomp, EvalClassifier = FALSE)

The rest of the network analysis step is the same as the multi-omics SmCCNet with quantitative phenotype,
please refer to section 2.3 and 2.4 for further information. Note that since the cross-validation penalty terms
evaluation with binary phenotype doesn’t involve the participation of canonical weight from step 1, there
is no need to tune the scaling factors with the method 3 above in section 4.3. However, method 1 and 2
(section 4.1 and 4.2) can be used to determine the scaling factors for between-omics relationship if there are
more than 2 omics data.
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7 Session info

sessionInfo()

## R version 4.2.2 (2022-10-31 ucrt)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 22631)
##
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=C
## [2] LC_CTYPE=English_United States.utf8
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## [3] LC_MONETARY=English_United States.utf8
## [4] LC_NUMERIC=C
## [5] LC_TIME=English_United States.utf8
##
## attached base packages:
## [1] grid stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] reshape2_1.4.4 shadowtext_0.1.2 forcats_0.5.2 stringr_1.4.1
## [5] dplyr_1.0.10 purrr_0.3.5 readr_2.1.3 tidyr_1.2.1
## [9] tibble_3.1.8 ggplot2_3.4.0 tidyverse_1.3.2 SmCCNet_2.0.3
## [13] furrr_0.3.1 future_1.33.1 igraph_2.0.2 Matrix_1.5-1
## [17] pbapply_1.7-0
##
## loaded via a namespace (and not attached):
## [1] httr_1.4.4 jsonlite_1.8.4 modelr_0.1.10
## [4] assertthat_0.2.1 highr_0.9 googlesheets4_1.0.1
## [7] cellranger_1.1.0 yaml_2.3.6 globals_0.16.1
## [10] pillar_1.8.1 backports_1.4.1 lattice_0.20-45
## [13] glue_1.6.2 digest_0.6.30 rvest_1.0.3
## [16] colorspace_2.0-3 htmltools_0.5.4 plyr_1.8.7
## [19] pkgconfig_2.0.3 broom_1.0.1 listenv_0.8.0
## [22] haven_2.5.1 scales_1.2.1 tzdb_0.3.0
## [25] timechange_0.1.1 googledrive_2.0.0 farver_2.1.1
## [28] generics_0.1.3 ellipsis_0.3.2 withr_2.5.0
## [31] cli_3.4.1 magrittr_2.0.3 crayon_1.5.2
## [34] readxl_1.4.1 evaluate_0.18 fs_1.5.2
## [37] fansi_1.0.3 parallelly_1.36.0 xml2_1.3.3
## [40] tools_4.2.2 hms_1.1.2 gargle_1.2.1
## [43] lifecycle_1.0.3 munsell_0.5.0 reprex_2.0.2
## [46] compiler_4.2.2 tinytex_0.42 rlang_1.1.3
## [49] rstudioapi_0.14 labeling_0.4.2 rmarkdown_2.18
## [52] gtable_0.3.1 codetools_0.2-18 DBI_1.1.3
## [55] R6_2.5.1 lubridate_1.9.0 knitr_1.40
## [58] fastmap_1.1.0 utf8_1.2.2 stringi_1.7.8
## [61] Rcpp_1.0.11 parallel_4.2.2 vctrs_0.5.0
## [64] dbplyr_2.2.1 tidyselect_1.2.0 xfun_0.34
warnings()
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