Implements a novel predictive model, Partially Interpretable Estimators (PIE), which jointly trains an interpretable model and a black-box model to achieve high predictive performance as well as partial model. See the paper, Wang, Yang, Li, and Wang (2021) <doi:10.48550/arXiv.2105.02410>.
Version: | 1.0.0 |
Depends: | R (≥ 3.5.0), gglasso, xgboost |
Imports: | splines, stats |
Suggests: | knitr, rmarkdown |
Published: | 2025-01-27 |
DOI: | 10.32614/CRAN.package.PIE |
Author: | Tong Wang [aut], Jingyi Yang [aut, cre], Yunyi Li [aut], Boxiang Wang [aut] |
Maintainer: | Jingyi Yang <jy4057 at stern.nyu.edu> |
License: | GPL-2 |
NeedsCompilation: | no |
Citation: | PIE citation info |
CRAN checks: | PIE results |
Reference manual: | PIE.pdf |
Vignettes: |
Introduction to PIE – A Partially Interpretable Model with Black-box Refinement (source) |
Package source: | PIE_1.0.0.tar.gz |
Windows binaries: | r-devel: not available, r-release: PIE_1.0.0.zip, r-oldrel: PIE_1.0.0.zip |
macOS binaries: | r-release (arm64): PIE_1.0.0.tgz, r-oldrel (arm64): not available, r-release (x86_64): not available, r-oldrel (x86_64): not available |
Please use the canonical form https://CRAN.R-project.org/package=PIE to link to this page.