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PAGFL Apply the Pairwise Adaptive Group Fused Lasso

Description

The pairwise adaptive group fused lasso (PAGFL) by Mehrabani (2023) jointly estimates the latent
group structure and group-specific slope parameters in a panel data model. It can handle static and
dynamic panels, either with or without endogenous regressors.

Usage

PAGFL(
y,
X,
n_periods,
lambda,
method = "PLS",
Z = NULL,
min_group_frac = 0.05,
bias_correc = FALSE,
kappa = 2,
max_iter = 2000,
tol_convergence = 0.001,
tol_group = sqrt(p/(sqrt(N * n_periods) * log(log(N * n_periods)))),
rho = 0.07 * log(N * n_periods)/sqrt(N * n_periods),
varrho = max(sqrt(5 * N * n_periods * p)/log(N * n_periods * p) - 7, 1),
verbose = TRUE

)

Arguments

y aNT×1 vector or data.frame of the dependent variable, with y = (y1, . . . , yN )′,
yi = (yi1, . . . , yiT )′ and the scalar yit.

X aNT×pmatrix or data.frame of explanatory variables, withX = (x1, . . . , xN )′,
xi = (xi1, . . . , xiT )′ and the p× 1 vector xit.

n_periods the number of observed time periods T .

lambda the tuning parameter governing the strength of the penalty term. Either a single
λ or a vector of candidate values can be passed. If a vector is supplied, a BIC-
type information criterion selects the best fitting parameter value.

method the estimation method. Options are

’PLS’ for using the penalized least squares (PLS) algorithm. We recommend
PLS in case of (weakly) exogenous regressors (Mehrabani, 2023, sec. 2.2).

’PGMM’ for using the penalized Generalized Method of Moments (PGMM).
PGMM is required when instrumenting endogenous regressors (Mehrabani,
2023, sec. 2.3). A matrix Z contains the necessary exogenous instruments.
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Default is 'PLS'.

Z a NT × q matrix of exogenous instruments, where q ≥ p, Z = (z1, . . . , zN )′,
zi = (zi1, . . . , ziT )′ and zit is a q × 1 vector. Z is only required when method
= 'PGMM' is selected. When using 'PLS', either pass NULL or any matrix Z is
disregarded. Default is NULL.

min_group_frac the minimum group size as a fraction of the total number of individuals N . In
case a group falls short of this threshold, a hierarchical classifier allocates its
members to the remaining groups. Default is 0.05.

bias_correc logical. If TRUE, a Split-panel Jackknife bias correction following Dhaene and
Jochmans (2015) is applied to the slope parameters. We recommend using this
correction when facing a dynamic panel. Default is FALSE.

kappa the weight placed on the adaptive penalty weights. Default is 2.

max_iter the maximum number of iterations for the ADMM estimation algorithm. Default
is 2000.

tol_convergence

the tolerance limit for the stopping criterion of the iterative ADMM estimation
algorithm. Default is 0.001.

tol_group the tolerance limit for within-group differences. Two individuals are placed in
the same group if the Frobenius norm of their coefficient parameter difference
is below this parameter. If left unspecified, the heuristic

√
p√

NT log(log(NT ))
is

used. We recommend the default.

rho the tuning parameter balancing the fitness and penalty terms in the information
criterion that determines the penalty parameter λ. If left unspecified, the heuris-
tic ρ = 0.07

√
NT log(NT )

NT of Mehrabani (2023, sec. 6) is used. We recommend
the default.

varrho the non-negative Lagrangian ADMM penalty parameter. For PLS, the % value
is trivial. However, for PGMM, small values lead to slow convergence of the
algorithm. If left unspecified, the default heuristic % = max(

√
5NTp

log(NTp) − 7, 1) is
used.

verbose logical. If TRUE, a progression bar is printed when iterating over candidate λ
values and helpful warning messages are shown. Default is TRUE.

Details

The PLS method minimizes the following criterion:

1

T

N∑
i=1

T∑
t=1

(ỹit − β′ix̃it)2 +
λ

N

∑
1≤i

∑
i<j≤N

ẇij‖βi − βj‖,

where ỹit is the de-meaned dependent variable, x̃it represents a vector of de-meaned weakly ex-
ogenous explanatory variables, λ is the penalty tuning parameter and ẇij reflects adaptive penalty
weights (see Mehrabani, 2023, eq. 2.6). ‖ ·‖ denotes the Frobenius norm. The adaptive weights ẇij

are obtained by a preliminary least squares estimation. The solution β̂ is computed via an iterative
alternating direction method of multipliers (ADMM) algorithm (see Mehrabani, 2023, sec. 5.1).
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PGMM employs a set of instruments Z to control for endogenous regressors. Using PGMM, β =
(β′1, . . . , β

′
N )′ is estimated by minimizing:

N∑
i=1

[
1

N

T∑
t=1

zit(∆yit − β′i∆xit)

]′
Wi

[
1

T

T∑
t=1

zit(∆yit − β′i∆xit)

]
+
λ

N

∑
1≤i

∑
i<j≤N

ẅij‖βi−βj‖.

ẅij are obtained by an initial GMM estimation. ∆ gives the first differences operator ∆yit =
yit − yit−1. Wi represents a data-driven q × q weight matrix. I refer to Mehrabani (2023, eq. 2.10)
for more details. β is again estimated employing an efficient ADMM algorithm (Mehrabani, 2023,
sec. 5.2).

Two individuals are assigned to the same group if ‖β̂i−β̂j‖ ≤ εtol, where εtol is given by tol_group.

We suggest identifying a suitable λ parameter by passing a logarithmically spaced grid of candidate
values with a lower limit of 0 and an upper limit that leads to a fully homogenous panel. A BIC-type
information criterion then selects the best fitting λ value.

Value

A list holding

IC the BIC-type information criterion.

lambda the penalization parameter. If multiple λ values were passed, the parameter
yielding the lowest IC.

alpha_hat a K × p matrix of the post-Lasso group-specific parameter estimates.

K_hat the estimated total number of groups.

groups_hat a vector of estimated group memberships.

iter the number of executed algorithm iterations.

convergence logical. If TRUE, convergence was achieved. If FALSE, max_iter was reached.

Author(s)

Paul Haimerl

References

Dhaene, G., & Jochmans, K. (2015). Split-panel jackknife estimation of fixed-effect models. The
Review of Economic Studies, 82(3), 991-1030. doi:10.1093/restud/rdv007.

Mehrabani, A. (2023). Estimation and identification of latent group structures in panel data. Journal
of Econometrics, 235(2), 1464-1482. doi:10.1016/j.jeconom.2022.12.002.

Examples

# Simulate a panel with a group structure
sim <- sim_DGP(N = 50, n_periods = 80, p = 2, n_groups = 3)
y <- sim$y
X <- sim$X

# Run the PAGFL procedure for a set of candidate tuning parameter values

https://doi.org/10.1093/restud/rdv007
https://doi.org/10.1016/j.jeconom.2022.12.002
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lambda_set <- exp(log(10) * seq(log10(1e-4), log10(10), length.out = 10))
estim <- PAGFL(y = y, X = X, n_periods = 80, lambda = lambda_set, method = 'PLS')
print(estim)

sim_DGP Simulate a Panel With a Latent Group Structure

Description

Construct a static or dynamic, exogenous or endogenous panel data set subject to a latent group
structure with optional AR(1) or GARCH(1, 1) innovations.

Usage

sim_DGP(
N = 50,
n_periods = 40,
p = 2,
n_groups = 3,
group_proportions = NULL,
error_spec = NULL,
dyn_panel = FALSE,
q = NULL,
alpha_0 = NULL

)

Arguments

N the number of cross-sectional units. Default is 50.

n_periods the number of simulated time periods T . Default is 40.

p the number of explanatory variables. Default is 2.

n_groups the number of latent groups K. Default is 3.
group_proportions

a numeric vector of length n_groups indicating the fraction of N each group
will contain. If NULL, all groups are of size N

K . Default is NULL.

error_spec the error specification used. Options are

NULL for iid errors.
’AR’ for an AR(1) error process with an autoregressive coefficient of 0.5.
’GARCH’ for a GARCH(1, 1) error process with a 0.05 constant, a 0.05 ARCH

and a 0.9 GARCH coefficient.

Default is NULL.

dyn_panel Logical. If TRUE, the panel includes one stationary autoregressive lag of the
dependent variable (see sec. Details for information on the AR coefficient).
Default is FALSE.
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q the number of exogenous instruments when a panel with endogenous regressors
is to be simulated. If panel data set with exogenous regressors is supposed to be
generated, pass NULL. Default is NULL.

alpha_0 an optional pre-specified K × p parameter matrix. If NULL, the coefficients
are drawn randomly (see sec. Details). If dyn_panel = TRUE, the first column
represents the stationary AR coefficient. Default is NULL.

Details

The scalar dependent variable yit is driven by the following panel data model

yit = ηi + β′ixit + uit, i = {1, . . . , N}, t = {1, . . . , T}.

ηi represents individual fixed effects and xit = (xit,1, . . . , xit,p) a p × 1 vector of regressors. The
individual slope coefficient vectors βi are subject to a latent group structure βi =

∑K
k=1 αk1{i ∈

Gk}. As a consequence, the group-level coefficients α = (α′1, . . . , α
′
K)′ follow the partition G of

N cross-sectional unitsG = (G1, . . . , GK) such that ∪Kk=1 = {1, . . . , N} andGk∩Gl = ∅, αk 6=
αl for any two groups k 6= l (Mehrabani, 2023, sec. 2.1).

If a panel data set with exogenous regressors is generated (set q = NULL), the p predictors are simu-
lated as:

xit,j = 0.2ηi + eit,j , ηi, eit,j ∼ i.i.d.N(0, 1), j = {1, . . . , p},

where eit,j denotes a series of innovations. ηi and ei are independent of each other.

In case alpha_0 = NULL, the group-level slope parameters αk are drawn from ∼ U [−2, 2].

If a dynamic panel is specified (dyn_panel = TRUE), the AR coefficients βAR
i are drawn from a

uniform distribution with support (−1, 1) and xit,j = eit,j . The individual fixed effects enter
the dependent variable via (1 − βAR

i )ηi to account for the autoregressive dependency. I refer to
Mehrabani (2023, sec 6) for details.

When specifying an endogenous panel (set q to q ≥ p), eit,j correlate with the cross-sectional
innovations uit by a magnitude of 0.5 to produce endogenous regressors with E(u|X) 6= 0. How-
ever, the endogenous regressors can be accounted for by exploiting the q instruments in Z, for
which E(u|Z) = 0 holds. The instruments and the first stage coefficients are generated in the same
fashion asX and α when q = NULL, respectively.

The function nests, among other, the DGPs employed in the simulation study of Mehrabani (2023,
sec. 6).

Value

A list holding

alpha the K × p matrix of group-specific slope parameters. In case of dyn_panel =
TRUE, the first column holds the AR coefficient.

groups a vector indicating the group memberships.

y a NT × 1 vector of the dependent variable, with y = (y1, . . . , yN )′, yi =
(yi1, . . . , yiT )′ and the scalar yit.

X a NT × p matrix of explanatory variables, with X = (x1, . . . , xN )′, xi =
(xi1, . . . , xiT )′ and the p× 1 vector xit.
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Z a NT × q matrix of instruments , where q ≥ p, Z = (z1, . . . , zN )′, zi =
(zi1, . . . , ziT )′ and zit is a q×1 vector. In case a panel with exogenous regressors
is generated (q = NULL), Z equals NULL.

Author(s)

Paul Haimerl

References

Mehrabani, A. (2023). Estimation and identification of latent group structures in panel data. Journal
of Econometrics, 235(2), 1464-1482. doi:10.1016/j.jeconom.2022.12.002.

Examples

# Simulate DGP 1 from Mehrabani (2023, sec. 6)
alpha_0_DGP1 <- matrix(c(0.4, 1, 1.6, 1.6, 1, 0.4), ncol = 2)
DGP1 <- sim_DGP(

N = 50, n_periods = 20, p = 2, n_groups = 3,
group_proportions = c(.4, .3, .3), alpha_0 = alpha_0_DGP1

)

# Simulate DGP 6 from Mehrabani (2023, sec. 6)
alpha_0_DGP6 <- cbind(

c(0.8, 0.6, 0.4, 0.2, -0.2, -0.4, -0.6, -0.8),
c(-4, -3, -2, -1, 1, 2, 3, 4),
c(4, 3, 2, 1, -1, -2, -3, -4)

)

https://doi.org/10.1016/j.jeconom.2022.12.002
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