Changes in v1.5.0
- Add textmodel_lss.tokens()to usewordvector::textmodel_word2vec()as the underlying
engine.
- Rename wtokintextmodel_lss.fcm()to make it consistent with other
methods.
Changes in v1.4.5
- Enable grouping by multiple variables using
smooth_lss().
- Fix tests for textplot_*()for upcoming
ggplot2.
Changes in v1.4.4
- Fix a bug in as.textmodel_lss()when atextmodel_wordvectorobject is given.
- Add samplingtotextplot_terms()to
improve highlighting of words when the distribution of polarity scores
is asymmetric.
Changes in v1.4.3
- Improve the handling of textmodel_wordvectorobjects
from the wordvector package inas.textmodel_lss().
- Deprecate auto_weightintextmodel_lss().
- Deprecate textplot_simil().
Changes in v1.4.2
- Add as.textmodel_lss()for objects from the
wordvector package.
- Reduce dependent packages by moving rsparse,
irlba and rsvd to Suggests.
- Fix handling of phrasal patterns in
textplot_terms().
- Improve objects created by
as.textmodel_lss.textmodel_lss().
Changes in v1.4.1
- Add grouptosmooth_lss()to smooth LSS
scores by group.
- Add optimize_lss()as an experimental function.
Changes in v1.4.0
- Change the default value to max_highlighted = 1000intextplot_terms().
- Add ...to customize text labels totextplot_terms().
- Highlight words in different colors when a dictionary is passed to
highlighted.
- Add mode = "predict"andremove = FALSEtobootstrap_lss().
Changes in v1.3.2
- Fix the error in textplot_terms()when the frequency of
terms are zero (#85).
Changes in v1.3.1
- Fix the range of scores when cutis used.
- Add bootstrap_lss()as an experimental function.
Changes in v1.3.0
- Add cuttopredict.
- Move examples to the new package website:
http://koheiw.github.io/LSX.
- Rename “rescaling” to “rescale” for simplicity and consistency.
- Improve random sampling of words to highlight in
textplot_terms()to avoid congestion.
Changes in v1.2.0
- Add group_datatotextmodel_lss()to
simplify the workflow.
- Add max_highlightedtotextplot_terms()to
automatically highlight polarity words.
Changes in v1.1.4
- Update as.textmodel_lss()to avoid errors intextplot_terms()whentermsis used.
Changes in v1.1.3
- Restore examples for textmodel_lss().
- Defunct char_keyness()that has been deprecated for
long.
Changes in v1.1.2
- Update examples to pass CRAN tests.
Changes in v1.1.1
- Add min_ntopredict()to make polarity
scores of short documents more stable.
Changes in v1.1.0
- Add as.textmodel_lss()for textmodel_lss objects to
allow modifying existing models.
- Allow termsintextmodel_lss()to be a
named numeric vector to give arbitrary weights.
Changes in v1.0.2
- Add the auto_weightargument totextmodel_lss()andas.textmodel_lss()to
improve the accuracy of scaling.
- Remove the groupargument fromtextplot_simil()to simplify the object.
- Make as.seedwords()to accept multiple indices forupperandlower.
Changes in v1.0.0
- Add max_counttotextmodel_lss.fcm()that
will be passed tox_maxinrsparse::GloVe$new().
- Add max_wordstotextplot_terms()to avoid
overcrowding.
- Make textplot_terms()to work with objects fromtextmodel_lss.fcm().
- Add concatenatortoas.seedwords().
Changes in v0.9.9
- Correct how textstat_context()andchar_context()computes statistics.
- Deprecate char_keyness().
Changes in v0.9.8
- Stop using functions and arguments deprecated in quanteda
v3.0.0.
Changes in v0.9.7
- Make as.textmodel_lss.matrix()more reliable.
- Remove quanteda.textplots from dependencies.
Changes in v0.9.6
- Updated to reflect changes in quanteda (creation of
quanteda.textstats).
Changes in v0.9.4
- Fix char_context()to always return more frequent words
in context.
- Experimental textplot_factor()has been removed.
- as.textmodel_lss()takes a pre-trained
word-embedding.
Changes in v0.9.3
- Add textstat_context()andchar_context()to replacechar_keyness().
- Make the absolute sum of seed weight equal to 1.0 in both upper and
lower ends.
- textplot_terms()takes glob patterns in character
vector or a dictionary object.
- char_keyness()no longer raise error when no patter is
found in tokens object.
- Add enginetosmooth_lss()to applylocfit()to large datasets.
Changes in v0.9.2
- Updated unit tests for the new versions of stringi and
quanteda.
Changes in v0.9.0
- Renamed from LSS to LSX for CRAN submission.
Changes in v0.8.7
- Added textplot_terms()to improve visualization of
model terms.