
Package ‘HMMpa’
October 12, 2022

Title Analysing Accelerometer Data Using Hidden Markov Models

Version 1.0.1

Author Vitali Witowski, Ronja Foraita

Maintainer Ronja Foraita <foraita@leibniz-bips.de>

Description Analysing time-series accelerometer data to quantify length and
intensity of physical activity using hidden Markov models.
It also contains the traditional cut-off point method.
Witowski V, Foraita R, Pitsiladis Y, Pigeot I,
Wirsik N (2014)<doi:10.1371/journal.pone.0114089>.

Depends R (>= 2.10.0)

License GPL-3

Encoding UTF-8

LazyData true

NeedsCompilation no

Repository CRAN

Date/Publication 2018-11-15 09:00:03 UTC

R topics documented:
HMMpa-package . 2
AIC_HMM . 7
Baum_Welch_algorithm . 9
cut_off_point_method . 13
dgenpois . 17
direct_numerical_maximization . 18
forward_backward_algorithm . 21
HMM_based_method . 23
HMM_decoding . 28
HMM_simulation . 33
HMM_training . 36
initial_parameter_training . 40
local_decoding_algorithm . 42
Viterbi_algorithm . 45

1

https://doi.org/10.1371/journal.pone.0114089

2 HMMpa-package

Index 48

HMMpa-package Analysing Accelerometer Data Using Hidden Markov Models

Description

This package provides functions for analyzing accelerometer outpout data (known as a time-series
of (impulse)-counts) to quantify length and intensity of physical activity.

Usually, so called activity ranges are used to classify an activity as “sedentary”, “moderate” and so
on. Activity ranges are separated by certain thresholds (cut-off points). The choice of these cut-off
points depends on different components like the subjects’ age or the type of accelerometer device.

Cut-off point values and defined activity ranges are important input values of the following analyz-
ing tools provided by this package:

1. Cut-off point method (assigns an activity range to a count given its total magintude). This
traditional approach assigns an activity range to each count of the time-series independently of each
other given its total magnitude.

2. HMM-based method (assigns an activity range to a count given its underlying PA-level). This
approach uses a stochastic model (the hidden Markov model or HMM) to identify the (Markov
dependent) time-series of physical activity states underlying the given time-series of accelerometer
counts. In contrast to the cut-off point method, this approach assigns activity ranges to the estimated
PA-levels corresponding to the hidden activity states, and not directly to the accelerometer counts.

Details

Package: HMMpa
Type: Package
Version: 1.0.1
Date: 2018-04-20
License: GPL-3

The new procedure for analyzing accelerometer data can be roughly described as follows:
First, a hidden Markov model (HMM) is trained to estimate the number m of hidden physical activity
states and the model specific parameters (delta, gamma, distribution_theta). Then, a user-
sepcified decoding algorithm decodes the trainded HMM to classify each accelerometer count into
the m hidden physical activity states. Finally, the estimated distribution mean values (PA-levels)
corresponding to the hidden physical activity states are extracted and the accelerometer counts are
assigned by the total magnitudes of their corresponding PA-levels to given physical activity ranges
(e.g. "sedentary", "light", "moderate" and "vigorous") by the traditional cut-off point method.

Note

We thank Moritz Hanke for his help in realizing this package.

HMMpa-package 3

Author(s)

Vitali Witowski,
Ronja Foraita, Leibniz Institute for Prevention Research and Epidemiology (BIPS)

Maintainer: Ronja Foraita <foraita@leibniz-bips.de>

References

Baum, L., Petrie, T., Soules, G., Weiss, N. (1970). A maximization technique occurring in the sta-
tistical analysis of probabilistic functions of markov chains. The annals of mathematical statistics,
vol. 41(1), 164–171.

Brachmann, B. (2011). Hidden-Markov-Modelle fuer Akzelerometerdaten. Diploma Thesis, Uni-
versity Bremen - Bremen Institute for Prevention Research and Social Medicine (BIPS).

Dempster, A., Laird, N., Rubin, D. (1977). Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society. Series B (Methodological), vol. 39(1), 1–38.

Forney, G.D. (1973). The Viterbi algorithm. Proceeding of the IEE, vol. 61(3), 268–278.

Joe, H., Zhu, R. (2005). Generalized poisson distribution: the property of mixture of poisson and
comparison with negative binomial distribution. Biometrical Journal, vol. 47(2), 219–229.

MacDonald, I. L., Zucchini, W. (2009) Hidden Markov Models for Time Series: An Introduction
Using R, Boca Raton: Chapman & Hall.

Viterbi, A.J. (1967). Error Bounds for concolutional codes and an asymptotically optimal decoding
algorithm. Information Theory, IEEE Transactions on, vol. 13(2), 260–269.

Witowski, V., Foraita, R., Pitsiladis, Y., Pigeot, I., Wirsik, N. (2014) Using hidden Markov models
to improve quantifying physical activity in accelerometer data - A simulation study. PLOS ONE.
9(12), e114089. http://dx.doi.org/10.1371/journal.pone.0114089

Examples

##
Example 1 (traditional approach)
Solution of the cut-off point method
##

##
Fictitious activity counts
##

x <- c(1,16,19,34,22,6,3,5,6,3,4,1,4,3,5,7,9,8,11,11,
14,16,13,11,11,10,12,19,23,25,24,23,20,21,22,22,18,7,
5,3,4,3,2,3,4,5,4,2,1,3,4,5,4,5,3,5,6,4,3,6,4,8,9,12,
9,14,17,15,25,23,25,35,29,36,34,36,29,41,42,39,40,43,
37,36,20,20,21,22,23,26,27,28,25,28,24,21,25,21,20,21,
11,18,19,20,21,13,19,18,20,7,18,8,15,17,16,13,10,4,9,
7,8,10,9,11,9,11,10,12,12,5,13,4,6,6,13,8,9,10,13,13,
11,10,5,3,3,4,9,6,8,3,5,3,2,2,1,3,5,11,2,3,5,6,9,8,5,
2,5,3,4,6,4,8,15,12,16,20,18,23,18,19,24,23,24,21,26,

4 HMMpa-package

36,38,37,39,45,42,41,37,38,38,35,37,35,31,32,30,20,39,
40,33,32,35,34,36,34,32,33,27,28,25,22,17,18,16,10,9,
5,12,7,8,8,9,19,21,24,20,23,19,17,18,17,22,11,12,3,9,
10,4,5,13,3,5,6,3,5,4,2,5,1,2,4,4,3,2,1)

traditional_cut_off_point_method <- cut_off_point_method(x=x,
cut_points = c(5,15,23),
names_activity_ranges = c("SED","LIG","MOD","VIG"),
bout_lengths = c(1,1,2,4,5,10,11,20,21,60,61,260),
plotting = 1)

##
##
Examples 2,3 and 4 (new approach)
Solution of the HMM based cut-off point method
##
Demonstrated both in three steps (Example 2)
and condensed in one function (Examples 3 and 4)
##

##
Example 2) Manually in three steps
##

##
Fictitious activity counts
##

x <- c(1,16,19,34,22,6,3,5,6,3,4,1,4,3,5,7,9,8,11,11,
14,16,13,11,11,10,12,19,23,25,24,23,20,21,22,22,18,7,
5,3,4,3,2,3,4,5,4,2,1,3,4,5,4,5,3,5,6,4,3,6,4,8,9,12,
9,14,17,15,25,23,25,35,29,36,34,36,29,41,42,39,40,43,
37,36,20,20,21,22,23,26,27,28,25,28,24,21,25,21,20,21,
11,18,19,20,21,13,19,18,20,7,18,8,15,17,16,13,10,4,9,
7,8,10,9,11,9,11,10,12,12,5,13,4,6,6,13,8,9,10,13,13,
11,10,5,3,3,4,9,6,8,3,5,3,2,2,1,3,5,11,2,3,5,6,9,8,5,
2,5,3,4,6,4,8,15,12,16,20,18,23,18,19,24,23,24,21,26,
36,38,37,39,45,42,41,37,38,38,35,37,35,31,32,30,20,39,
40,33,32,35,34,36,34,32,33,27,28,25,22,17,18,16,10,9,
5,12,7,8,8,9,19,21,24,20,23,19,17,18,17,22,11,12,3,9,
10,4,5,13,3,5,6,3,5,4,2,5,1,2,4,4,3,2,1)

##
Step 1: Training of a HMM
for the given time-series of counts
##
More precisely: training of a poisson
distribution based hidden Markov model for
number of states m=2,...,6
and selection of the model with the most
plausible m

HMMpa-package 5

##

m_trained_HMM <- HMM_training(x = x,
min_m = 2,
max_m = 6,
distribution_class = "pois")$trained_HMM_with_selected_m

###
Step 2: Decoding of the trained HMM for the given
time-series of accelerometer counts to extract
hidden PA-levels
###
hidden_PA_levels <- HMM_decoding(x = x,

m = m_trained_HMM$m,
delta = m_trained_HMM$delta,
gamma = m_trained_HMM$gamma,
distribution_class = m_trained_HMM
$distribution_class,
distribution_theta = m_trained_HMM$
distribution_theta)$decoding_distr_means

###
Step 3: Assigning of user-sepcified activity ranges
to the accelerometer counts via the total
magnitudes of their corresponding
hidden PA-levels
##
In this example four activity ranges
(named as "sedentary", "light", "moderate"
and "vigorous" physical activity) are
separated by the three cut-points 5, 15 and 23)
##
HMM_based_cut_off_point_method <- cut_off_point_method(x = x,

hidden_PA_levels = hidden_PA_levels,
cut_points = c(5,15,23),
names_activity_ranges = c("SED","LIG","MOD","VIG"),
bout_lengths = c(1,1,2,4,5,10,11,20,21,60,61,260),
plotting=1)

###
Example 3) In a single function (Step 1-3 of Example 2
combined in one function)
###

###
Fictitious activity counts
###

x <- c(1,16,19,34,22,6,3,5,6,3,4,1,4,3,5,7,9,8,11,11,
14,16,13,11,11,10,12,19,23,25,24,23,20,21,22,22,18,7,

6 HMMpa-package

5,3,4,3,2,3,4,5,4,2,1,3,4,5,4,5,3,5,6,4,3,6,4,8,9,12,
9,14,17,15,25,23,25,35,29,36,34,36,29,41,42,39,40,43,
37,36,20,20,21,22,23,26,27,28,25,28,24,21,25,21,20,21,
11,18,19,20,21,13,19,18,20,7,18,8,15,17,16,13,10,4,9,
7,8,10,9,11,9,11,10,12,12,5,13,4,6,6,13,8,9,10,13,13,
11,10,5,3,3,4,9,6,8,3,5,3,2,2,1,3,5,11,2,3,5,6,9,8,5,
2,5,3,4,6,4,8,15,12,16,20,18,23,18,19,24,23,24,21,26,
36,38,37,39,45,42,41,37,38,38,35,37,35,31,32,30,20,39,
40,33,32,35,34,36,34,32,33,27,28,25,22,17,18,16,10,9,
5,12,7,8,8,9,19,21,24,20,23,19,17,18,17,22,11,12,3,9,
10,4,5,13,3,5,6,3,5,4,2,5,1,2,4,4,3,2,1)

###
Use a (m=4 state) hidden Markov model based on the
generalized poisson distribution to assign an
activity range to the counts
###
In this example three activity ranges
(named as "light", "moderate" and "vigorous" physical
activity) are separated by the two cut-points 15 and 23
###

HMM_based_cut_off_point_method <- HMM_based_method(x = x,
cut_points = c(15,23),
min_m = 4,
max_m = 4,
names_activity_ranges = c("LIG","MOD","VIG"),
distribution_class = "genpois",
training_method = "numerical",
DNM_limit_accuracy = 0.05,
DNM_max_iter = 10,
bout_lengths = c(1,1,2,4,5,10,11,20,21,60,61,260),
plotting = 1)

###
Example 4) In a single function (Step 1-3 of Example 2
combined in one function)
(large and highly scatterd time-series)
###

##
Generate a large time-series of highly scattered counts
##

x <- HMM_simulation(
size = 1500,
m = 10,
gamma = 0.93 * diag(10) + rep(0.07 / 10, times = 10),
distribution_class = "norm",
distribution_theta = list(mean = c(10, 100, 200, 300, 450,
600, 700, 900, 1100, 1300, 1500),
sd=c(rep(100,times=10))),

AIC_HMM 7

obs_round=TRUE,
obs_non_neg=TRUE,
plotting=5)$observations

##
Compare results of the tradional cut-point method
and the (6-state-normal-)HMM based method
##

traditional_cut_off_point_method <- cut_off_point_method(x=x,
cut_points = c(200,500,1000),
names_activity_ranges = c("SED","LIG","MOD","VIG"),
bout_lengths = c(1,1,2,4,5,10,11,20,21,60,61,260),
plotting = 1)

HMM_based_cut_off_point_method <- HMM_based_method(x=x,
max_scaled_x = 200,
cut_points = c(200,500,1000),
min_m = 6,
max_m = 6,
BW_limit_accuracy = 0.5,
BW_max_iter = 10,
names_activity_ranges = c("SED","LIG","MOD","VIG"),
distribution_class = "norm",
bout_lengths = c(1,1,2,4,5,10,11,20,21,60,61,260),
plotting = 1)

AIC_HMM AIC and BIC Value for a Discrete Time Hidden Markov Model

Description

Computes the Aikaike’s information criterion and the Bayesian information criterion for a discrete
time hidden Markov model, given a time-series of observations.

Usage

AIC_HMM(logL, m, k)
BIC_HMM(size, m, k, logL)

Arguments

size length of the time-series of observations x (also T).

m number of states in the Markov chain of the model.

k single numeric value representing the number of parameters of the underlying
distribution of the observation process (e.g. k=2 for the normal distribution
(mean and standard deviation)).

logL logarithmized likelihood of the model.

8 AIC_HMM

Details

For a discrete-time hidden Markov model, AIC and BIC are as follows (MacDonald & Zucchini
(2009, Paragraph 6.1 and A.2.3)):

AIC = −2logL+ 2p

BIC = −2logL+ p log T

where T indicates the length/size of the observation time-series and p denotes the number of inde-
pendent parameters of the model. In case of a HMM as provided by this package, where k and m
are defined as in the arguments above, p can be calculated as follows:

p = m2 + km− 1.

Value

The AIC or BIC value of the fitted hidden Markov model.

Author(s)

Based on MacDonald & Zucchini (2009, Paragraph 6.1 and A.2.3). Implementation by Vitali
Witowski (2013).

References

MacDonald, I. L., Zucchini, W. (2009) Hidden Markov Models for Time Series: An Introduction
Using R, Boca Raton: Chapman & Hall.

See Also

HMM_training

Examples

##
Fictitious observations
##

x <- c(1,16,19,34,22,6,3,5,6,3,4,1,4,3,5,7,9,8,11,11,
14,16,13,11,11,10,12,19,23,25,24,23,20,21,22,22,18,7,
5,3,4,3,2,3,4,5,4,2,1,3,4,5,4,5,3,5,6,4,3,6,4,8,9,12,
9,14,17,15,25,23,25,35,29,36,34,36,29,41,42,39,40,43,
37,36,20,20,21,22,23,26,27,28,25,28,24,21,25,21,20,21,
11,18,19,20,21,13,19,18,20,7,18,8,15,17,16,13,10,4,9,
7,8,10,9,11,9,11,10,12,12,5,13,4,6,6,13,8,9,10,13,13,
11,10,5,3,3,4,9,6,8,3,5,3,2,2,1,3,5,11,2,3,5,6,9,8,5,
2,5,3,4,6,4,8,15,12,16,20,18,23,18,19,24,23,24,21,26,
36,38,37,39,45,42,41,37,38,38,35,37,35,31,32,30,20,39,
40,33,32,35,34,36,34,32,33,27,28,25,22,17,18,16,10,9,
5,12,7,8,8,9,19,21,24,20,23,19,17,18,17,22,11,12,3,9,
10,4,5,13,3,5,6,3,5,4,2,5,1,2,4,4,3,2,1)

Baum_Welch_algorithm 9

Assummptions (probability vector, transition matrix,
and distribution parameters)

delta <- c(0.25,0.25,0.25,0.25)

gamma <- 0.7 * diag(length(delta)) + rep(0.3 / length(delta))

distribution_class <- "pois"

distribution_theta <- list(lambda = c(4,9,17,25))

log-likelihood

logL <- forward_backward_algorithm (x = x,
delta = delta, gamma=gamma,
distribution_class= distribution_class,
distribution_theta=distribution_theta)$logL

the Poisson distribution has one paramter, hence k=1

AIC_HMM(logL = logL, m = length(delta), k = 1)

BIC_HMM(size = length(x) , logL = logL, m = length(delta), k = 1)

Baum_Welch_algorithm Estimation Using the Baum-Welch Algorithm

Description

Estimates the parameters of a (non-stationary) discrete-time hidden Markov model. The Baum-
Welch algorithm is a version of the EM (Estimation/Maximization) algorithm. See MacDonald &
Zucchini (2009, Paragraph 4.2) for further details.

Usage

Baum_Welch_algorithm(x, m, delta, gamma, distribution_class,
distribution_theta, discr_logL = FALSE,
discr_logL_eps = 0.5,
BW_max_iter = 50, BW_limit_accuracy = 0.001,
BW_print = TRUE, Mstep_numerical = FALSE,
DNM_limit_accuracy = 0.001, DNM_max_iter = 50,
DNM_print = 2)

10 Baum_Welch_algorithm

Arguments

x a vector object containing the time-series of observations that are assumed to be
realizations of the (hidden Markov state dependent) observation process of the
model.

m a (finite) number of states in the hidden Markov chain.

delta a vector object containing starting values for the marginal probability distribu-
tion of the m states of the Markov chain at the time point t=1 for the Baum-Welch
algorithm.

gamma a matrix (ncol=nrow=m) containing starting values for the transition matrix of
the hidden Markov chain.

distribution_class

a single character string object with the abbreviated name of the m observation
distributions of the Markov dependent observation process. The following dis-
tributions are supported: Poisson (pois); generalized Poisson (genpois, param-
eter estimation via the Baum-Welch algorithm is only supported if the M-step is
performed numerically, i.e. if Mstep_numerical = TRUE); normal (norm).

distribution_theta

a list object containing starting values for the parameters of the m observation
distributions of the observation process that are dependent on the hidden Markov
state.

discr_logL a logical object indicating whether the discrete log-likelihood should be used
(for distribution_class="norm") for estimating the model specific parame-
ters instead of the general log-likelihood. See MacDonald & Zucchini (2009,
Paragraph 1.2.3) for further details. Default value is FALSE.

discr_logL_eps a single numerical value to approximately determine the discrete likelihood for a
hidden Markov model based on nomal distributions (for "norm"). Default value
is 0.5. See MacDonald & Zucchini (2009, Paragraph 1.2.3) for further details.

BW_max_iter a single numerical value representing the maximum number of iterations in the
Baum-Welch algorithm. Default value is 50.

BW_limit_accuracy

a single numerical value representing the convergence criterion of the Baum-
Welch algorithm. Default value is 0.001.

BW_print a logical object indicating whether the log-likelihood at each iteration-step shall
be printed. Default value is TRUE.

Mstep_numerical

a logical object indicating whether the Maximization Step of the Baum-Welch
algorithm shall be performed by numerical maximization using the nlm-function.
Default value is FALSE.

DNM_limit_accuracy

a single numerical value representing the convergence criterion of the numerical
maximization algorithm using the nlm-function (used to perform the M-step of
the Baum-Welch-algorithm). Default value is 0.001.

DNM_max_iter a single numerical value representing the maximum number of iterations of the
numerical maximization using the nlm-function (used to perform the M-step of
the Baum-Welch-algorithm). Default value is 50.

Baum_Welch_algorithm 11

DNM_print a single numerical value to determine the level of printing of the nlm-function.
See nlm-function for further informations. The value 0 suppresses, that no print-
ing will be outputted. Default value is 2 for full printing.

Value

Baum_Welch_algorithm returns a list containing the estimated parameters of the hidden Markov
model and other components. See MacDonald & Zucchini (2009, Paragraph 4.2) for further details
on the calculated objects within this algorithm.

x input time-series of observations.

m input number of hidden states in the Markov chain.

zeta a (T,m)-matrix (when T indicates the length/size of the observation time-series
and m the number of states of the HMM) containing probabilities (estimates of
the conditional expectations of the missing data given the observations and the
estimated model specific parameters) calculated by the algorithm. See MacDon-
ald & Zucchini (2009, Paragraph 4.2.2) for further details.

eta a (T,m,m)-dimensional-array (when T indicates the length of the observation
time-series and m the number of states of the HMM) containing probabilities
(estimates of the conditional expectations of the missing data given the observa-
tions and the estimated model specific parameters) calculated by the algorithm.
See MacDonald & Zucchini (2009, Paragraph 4.2.2) for further details.

logL a numerical value representing the logarithmized likelihood calculated by the
forward_backward_algorithm.

iter number of performed iterations.

BIC a numerical value representing the Bayesian information criterion for the hidden
Markov model with estimated parameters.

delta a vector object containing the estimates for the marginal probability distribution
of the m states of the Markov chain at time-point point t=1.

gamma a matrix containing the estimates for the transition matrix of the hidden Markov
chain.

... other input values (as arguments above). In the case that the algorithm stops
before the targeted accuracy or the maximum number of iterations has been
reached, further values are displayed and the estimates from the last successful
iteration step are saved.

Author(s)

The basic algorithm for a Poisson-HMM is provided by MacDonald & Zucchini (2009, Paragraph
4.2, Paragraph A.2.3). Extension and implementation by Vitali Witowski (2013).

References

Baum, L., Petrie, T., Soules, G., Weiss, N. (1970). A maximization technique occurring in the sta-
tistical analysis of probabilistic functions of markov chains. The annals of mathematical statistics,
vol. 41(1), 164–171.

12 Baum_Welch_algorithm

Dempster, A., Laird, N., Rubin, D. (1977). Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society. Series B (Methodological), vol. 39(1), 1–38.

MacDonald, I. L., Zucchini, W. (2009) Hidden Markov Models for Time Series: An Introduction
Using R, Boca Raton: Chapman & Hall.

See Also

HMM_based_method, HMM_training, direct_numerical_maximization, forward_backward_algorithm,
initial_parameter_training

Examples

##
Fictitious observations
##

x <- c(1,16,19,34,22,6,3,5,6,3,4,1,4,3,5,7,9,8,11,11,
14,16,13,11,11,10,12,19,23,25,24,23,20,21,22,22,18,7,
5,3,4,3,2,3,4,5,4,2,1,3,4,5,4,5,3,5,6,4,3,6,4,8,9,12,
9,14,17,15,25,23,25,35,29,36,34,36,29,41,42,39,40,43,
37,36,20,20,21,22,23,26,27,28,25,28,24,21,25,21,20,21,
11,18,19,20,21,13,19,18,20,7,18,8,15,17,16,13,10,4,9,
7,8,10,9,11,9,11,10,12,12,5,13,4,6,6,13,8,9,10,13,13,
11,10,5,3,3,4,9,6,8,3,5,3,2,2,1,3,5,11,2,3,5,6,9,8,5,
2,5,3,4,6,4,8,15,12,16,20,18,23,18,19,24,23,24,21,26,
36,38,37,39,45,42,41,37,38,38,35,37,35,31,32,30,20,39,
40,33,32,35,34,36,34,32,33,27,28,25,22,17,18,16,10,9,
5,12,7,8,8,9,19,21,24,20,23,19,17,18,17,22,11,12,3,9,
10,4,5,13,3,5,6,3,5,4,2,5,1,2,4,4,3,2,1)

Assummptions (number of states, probability vector,
transition matrix, and distribution parameters)

m <- 4

delta <- c(0.25,0.25,0.25,0.25)

gamma <- 0.7 * diag(m) + rep(0.3 / m)

distribution_class <- "pois"

distribution_theta <- list(lambda = c(4,9,17,25))

Estimation of a HMM using the Baum-Welch algorithm

trained_HMM_with_m_hidden_states <-
Baum_Welch_algorithm(x = x,

m = m,
delta = delta,

cut_off_point_method 13

gamma = gamma,
distribution_class = distribution_class,
distribution_theta = distribution_theta)

print(trained_HMM_with_m_hidden_states)

cut_off_point_method Cut-Off Point Method for Assigning Physical Activity Patterns

Description

This function assigns an activity range to each observation of a time-series, such as for a sequence of
impulse counts recorded by an accelerometer. The activity ranges are defined by thresholds called
“cut-off points”. Furthermore, bout periods are analysed (see Details for further informations).

Usage

cut_off_point_method (x, cut_points,
names_activity_ranges = NA, hidden_PA_levels = NA,
bout_lengths = NULL, plotting = 0)

Arguments

x a vector object of length T containing non-negative observations of a time-series,
such as a sequence of accelerometer impulse counts.

cut_points a vector object containing cut-off points to separate activity ranges. For instance,
the vector c(7,15,23) separates the four activity ranges [0,7);[7,15);[15,23);[23,Inf).

names_activity_ranges

an optional character string vector to name the activity ranges induced by the
cut-points. This vector must contain one element more than the vector cut_points.

bout_lengths a vector object (with even number of elemets) to define the range of the bout
intervals (see Details for the definition of bouts). For instance,
bout_lengths=c(1,1,2,2,3,10,11,20,1,20) defines the five bout intervals
[1,1] (1 count); [2,2] (2 counts); [3,10] (3-10 counts); [11,20] (11-20 counts);
[1,20] (1-20 counts - overlapping with other bout intervalls is possible). Default
value is bout_lengths=NULL.

hidden_PA_levels

an optional vector object of length T containing a sequence of the estimated
hidden physical activity levels (i.e. means) underlying the time-series of ac-
celerometer counts. Such a sequence can be extracted by decoding a trained
hidden Markov model. The cut-point method classifies then each count by its
level in the hidden Markov chain that generates the physical activity counts,
and does not use the observed count value (see HMM_based_method for further
details). Default is NA (for the traditional cut-point method).

14 cut_off_point_method

plotting a numeric value between 0 and 5 (generates different outputs). NA suppresses
graphical output. Default value is 0.
0: output 1-5
1: summary of all results
2: time series of activity counts, classified into activity ranges
3: time series of bouts (and, if available, the sequence of the estimated hidden
physical activity levels, extracted by decoding a trained HMM, in green colour)
4: barplots of absolute and relative frequencies of time spent in different activity
ranges
5: barplots of absolute frequencies of different bout intervals (overall and by
activity ranges)

Details

A bout is defined as a period of time spending a defined intensity of physical activities in a specified
physical activity range, without switching to activity intensities in a different activity range.

Value

cut_off_point_method returns a list containing the extracted sequence of activity ranges and
plots key figures.

activity_ranges

an array object containing the cut-off intervals that indicate the activity ranges.

classification an integer vector containing the sequence of activity ranges that were assigned
to the observed time-series of accelerometer counts. If hidden_PA_levels=NA,
then classification is the output of the traditional cut-point method, meaning
that an activity range has been assigned to each accelerometer count over its
observed value actual position. In case when hidden_PA_levels is available,
classification is the output of the extendend cut-point method using hidden
Markov models (see HMM_based_method for further details).

classification_per_activity_range

a pairlist object containing the classification of the observed counts by the as-
signed activity range.

freq_acitvity_range

table object containing the absolute frequencies of classifications into activity
ranges.

rel_freq_acitvity_range

table object containing the relative frequencies of classifications into activity
ranges.

quantity_of_bouts

overall number of bouts.

bout_periods an array including the bout length assigned to acitiy ranges.

abs_freq_bouts_el

a pairlist object containing the absolute frequency of bout length per epoch
length (aggregated).

cut_off_point_method 15

Author(s)

Vitali Witowski (2013).

See Also

HMM_based_method

Examples

##
Fictitious activity counts
##

x <- c(1,16,19,34,22,6,3,5,6,3,4,1,4,3,5,7,9,8,11,11,
14,16,13,11,11,10,12,19,23,25,24,23,20,21,22,22,18,7,
5,3,4,3,2,3,4,5,4,2,1,3,4,5,4,5,3,5,6,4,3,6,4,8,9,12,
9,14,17,15,25,23,25,35,29,36,34,36,29,41,42,39,40,43,
37,36,20,20,21,22,23,26,27,28,25,28,24,21,25,21,20,21,
11,18,19,20,21,13,19,18,20,7,18,8,15,17,16,13,10,4,9,
7,8,10,9,11,9,11,10,12,12,5,13,4,6,6,13,8,9,10,13,13,
11,10,5,3,3,4,9,6,8,3,5,3,2,2,1,3,5,11,2,3,5,6,9,8,5,
2,5,3,4,6,4,8,15,12,16,20,18,23,18,19,24,23,24,21,26,
36,38,37,39,45,42,41,37,38,38,35,37,35,31,32,30,20,39,
40,33,32,35,34,36,34,32,33,27,28,25,22,17,18,16,10,9,
5,12,7,8,8,9,19,21,24,20,23,19,17,18,17,22,11,12,3,9,
10,4,5,13,3,5,6,3,5,4,2,5,1,2,4,4,3,2,1)

##
i.) Tradionional cut_point method
##

Assigning activity ranges to activity counts using
fictitious cut-off points that produce the four activity
ranges "sedentary"", "light"", "moderate"", and "vigorous".

solution_of_traditional_cut_off_point_method <-
cut_off_point_method(x = x,

cut_points = c(5,15,23),
names_activity_ranges = c("SED","LIG","MOD","VIG"),
bout_lengths = c(1,1,2,2,3,3,4,4,5,5,6,12,
13,40,41,265,1,265),
plotting = 0)

print(solution_of_traditional_cut_off_point_method)

###
ii.) Extension of the tradionional cut_point method
using HMMs

16 cut_off_point_method

###

The following three steps define an extension of the
traditional cut-off method by first extracting the hidden
physical activity pattern behind the accelerometer counts
using a HMM (those three steps are basically combined in
the function HMM_based_method, see HMM_based_method for
further details and references):

Step 1

Train hidden Markov model for different number of
states m=2,...,6 and select the model with the most
plausible m

m_trained_HMM <-
HMM_training(x = x,

min_m = 2,
max_m = 6, BW_print=FALSE,
distribution_class = "pois")$trained_HMM_with_selected_m

Step 2

Decode the trained HMM (by using the
Viterbi algorithm (global decoding)) to get the estimated
sequence of hidden physical activity levels
underlying the the accelerometer counts

You have to compute 'm_trained_HMM' first (see Step 1)

global_decoding <-
HMM_decoding(x = x,

m = m_trained_HMM$m,
delta = m_trained_HMM$delta,
gamma = m_trained_HMM$gamma,
distribution_class = m_trained_HMM$distribution_class,
distribution_theta = m_trained_HMM$distribution_theta,
decoding_method = "global")

hidden_PA_levels <-
global_decoding$decoding_distr_means

Step 3

Assigning activity ranges to activity counts using the
information extracted by decoding the HMM for the counts
(PA-levels) and fictitious cut-off points that produce
four so-called activity ranges:"sedentary", "light",
"moderate" and "vigorous":

dgenpois 17

You have to compute 'm_trained_HMM' and
'hidden_PA_levels' first (see above)

solution_of_HMM_based_cut_off_point_method <-
cut_off_point_method(x = x,
hidden_PA_levels = hidden_PA_levels,
cut_points = c(5,15,23),
names_activity_ranges = c("SED","LIG","MOD","VIG"),
bout_lengths = c(1,1,2,2,3,3,4,4,5,5,6,12,13,40,41,265,1,265),
plotting=1)

dgenpois The Generalized Poisson Distribution

Description

Density, distribution function and random generation function for the generalized Poisson distribu-
tion.

Usage

dgenpois(x, lambda1, lambda2)
pgenpois(q, lambda1, lambda2)
rgenpois(n, lambda1, lambda2)

Arguments

x a vector object of (non-negative integer) quantiles.

q a numeric value.

n number of random values to return.

lambda1 a single numeric value for parameter lambda1 with lambda1 > 0.

lambda2 a single numeric value for parameter lambda2 with 0 ≤ lamdba2 < 1. When
lambda2=0, the generalized Poisson distribution reduces to the Poisson distri-
bution.

Details

The generalized Poisson distribution has the density

p(x) = λ1(λ1 + λ2 · x)x−1 exp(−λ1 − λ2 · x))
x!

for x = 0, 1, 2, . . .,b

with E(X) = λ1

1−λ2
and variance var(X) = λ1

(1−λ2)3
.

18 direct_numerical_maximization

Value

dgenpois gives the density, pgenpois gives the distribution function and rgenpois generates ran-
dom deviates.

Author(s)

Based on Joe and Zhu (2005). Implementation by Vitali Witowski (2013).

References

Joe, H., Zhu, R. (2005). Generalized poisson distribution: the property of mixture of poisson and
comparison with negative binomial distribution. Biometrical Journal 47(2):219–229.

See Also

Distributions for other standard distributions, including dpois for the Poisson distribution.

Examples

dgenpois(x = seq(0,20), lambda1 = 10, lambda2 = 0.5)

pgenpois(q = 5, lambda1 = 10, lambda2 = 0.5)

hist(rgenpois(n = 1000, lambda1 = 10, lambda2 = 0.5))

direct_numerical_maximization

Estimation by Directly Maximizing the log-Likelihood

Description

Estimates the parameters of a (stationary) discrete-time hidden Markov model by directly maxi-
mizing the log-likelihood of the model using the nlm-function. See MacDonald & Zucchini (2009,
Paragraph 3) for further details.

Usage

direct_numerical_maximization(x, m, delta, gamma,
distribution_class, distribution_theta,
DNM_limit_accuracy = 0.001, DNM_max_iter = 50,
DNM_print = 2)

direct_numerical_maximization 19

Arguments

x a vector object containing the time-series of observations that are assumed to be
realizations of the (hidden Markov state dependent) observation process of the
model.

m a (finite) number of states in the hidden Markov chain.

delta a vector object containing starting values for the marginal probability distribu-
tion of the m states of the Markov chain at the time point t=1. This implementa-
tion of the algorithm uses the stationary distribution as delta.

gamma a matrix (nrow=ncol=m) containing starting values for the transition matrix of
the hidden Markov chain.

distribution_class

a single character string object with the abbreviated name of the m observation
distributions of the Markov dependent observation process. The following dis-
tributions are supported by this algorithm: Poisson (pois); generalized Poisson
(genpois); normal (norm, discrete log-Likelihood not applicable by this algo-
rithm).

distribution_theta

a list object containing starting values for the parameters of the m observation
distributions that are dependent on the hidden Markov state.

DNM_limit_accuracy

a single numerical value representing the convergence criterion of the direct nu-
merical maximization algorithm using the nlm-function. Default value is 0.001.

DNM_max_iter a single numerical value representing the maximum number of iterations of the
direct numerical maximization using the nlm-function. Default value is 50.

DNM_print a single numerical value to determine the level of printing of the nlm-function.
See nlm-function for further informations. The value 0 suppresses, that no print-
ing will be outputted. Default value is 2 for full printing.

Value

direct_numerical_maximization returns a list containing the estimated parameters of the hid-
den Markov model and other components.

x input time-series of observations.

m input number of hidden states in the Markov chain.

logL a numerical value representing the logarithmized likelihood calculated by the
forward_backward_algorithm.

AIC a numerical value representing Akaike’s information criterion for the hidden
Markov model with estimated parameters.

BIC a numerical value representing the Bayesian information criterion for the hidden
Markov model with estimated parameters.

delta a vector object containing the estimates for the marginal probability distribution
of the m states of the Markov chain at time-point point t=1.

gamma a matrix containing the estimates for the transition matrix of the hidden Markov
chain.

20 direct_numerical_maximization

distribution_theta

a list object containing estimates for the parameters of the m observation distri-
butions that are dependent on the hidden Markov state.

distribution_class

input distribution class.

Author(s)

The basic algorithm of a Poisson-HMM is provided by MacDonald & Zucchini (2009, Paragraph
A.1). Extension and implementation by Vitali Witowski (2013).

References

MacDonald, I. L., Zucchini, W. (2009) Hidden Markov Models for Time Series: An Introduction
Using R, Boca Raton: Chapman & Hall.

See Also

HMM_based_method, HMM_training, Baum_Welch_algorithm, forward_backward_algorithm,

initial_parameter_training

Examples

##
Fictitious observations
##

x <- c(1,16,19,34,22,6,3,5,6,3,4,1,4,3,5,7,9,8,11,11,
14,16,13,11,11,10,12,19,23,25,24,23,20,21,22,22,18,7,
5,3,4,3,2,3,4,5,4,2,1,3,4,5,4,5,3,5,6,4,3,6,4,8,9,12,
9,14,17,15,25,23,25,35,29,36,34,36,29,41,42,39,40,43,
37,36,20,20,21,22,23,26,27,28,25,28,24,21,25,21,20,21,
11,18,19,20,21,13,19,18,20,7,18,8,15,17,16,13,10,4,9,
7,8,10,9,11,9,11,10,12,12,5,13,4,6,6,13,8,9,10,13,13,
11,10,5,3,3,4,9,6,8,3,5,3,2,2,1,3,5,11,2,3,5,6,9,8,5,
2,5,3,4,6,4,8,15,12,16,20,18,23,18,19,24,23,24,21,26,
36,38,37,39,45,42,41,37,38,38,35,37,35,31,32,30,20,39,
40,33,32,35,34,36,34,32,33,27,28,25,22,17,18,16,10,9,
5,12,7,8,8,9,19,21,24,20,23,19,17,18,17,22,11,12,3,9,
10,4,5,13,3,5,6,3,5,4,2,5,1,2,4,4,3,2,1)

Assummptions (number of states, probability vector,
transition matrix, and distribution parameters)

m <-4
delta <- c(0.25,0.25,0.25,0.25)
gamma <- 0.7 * diag(m) + rep(0.3 / m)
distribution_class <- "pois"
distribution_theta <- list(lambda = c(4,9,17,25))

forward_backward_algorithm 21

Estimation of a HMM using the method of
direct numerical maximization

trained_HMM_with_m_hidden_states <-
direct_numerical_maximization(x = x,

m = m,
delta = delta,
gamma = gamma,
distribution_class = distribution_class,
DNM_max_iter=100,
distribution_theta = distribution_theta)

print(trained_HMM_with_m_hidden_states)

forward_backward_algorithm

Calculating Forward and Backward Probabilities and Likelihood

Description

The function calculates the logarithmized forward and backward probabilities and the logarithmized
likelihood for a discrete time hidden Markov model, as defined in MacDonald & Zucchini (2009,
Paragraph 3.1- Paragraph 3.3 and Paragraph 4.1).

Usage

forward_backward_algorithm(x, delta, gamma, distribution_class,
distribution_theta, discr_logL=FALSE, discr_logL_eps=0.5)

Default for normal distributions
(calculate non-discrete likelihood)

Arguments

x a vector object containing the time-series of observations that are assumed to be
realizations of the (hidden Markov state dependent) observation process of the
model.

delta a vector object containing values for the marginal probability distribution of the
m states of the Markov chain at the time point t=1.

gamma a matrix (nrow=ncol=m) containing values for the transition matrix of the hidden
Markov chain.

distribution_class

a single character string object with the abbreviated name of the m observation
distributions of the Markov dependent observation process. The following distri-
butions are supported: Poisson (pois); generalized Poisson (genpois); normal
(norm); geometric (geom).

22 forward_backward_algorithm

distribution_theta

a list object containing the parameter values for the m observation distributions
of the observation process that are dependent on the hidden Markov state.

discr_logL a logical object. It is TRUE if the discrete log-likelihood shall be calculated (for
distribution_class="norm") instead of the general log-likelihood. See Mac-
Donald & Zucchini (2009, Paragraph 1.2.3) for further details. Default is FALSE.

discr_logL_eps a single numerical value to approximately determine the discrete log-likelihood
for a hidden Markov model based on normal distributions (for "norm"). The
default value is 0.5. See MacDonald & Zucchini (2009, Paragraph 1.2.3) for
further details.

Value

forward_backward_algorithm returns a list containing the logarithmized forward and backward
probabilities and the logarithmized likelihood.

log_alpha a (T,m)-matrix (when T indicates the length/size of the observation time-series
and m the number of states of the HMM) containing the logarithmized forward
probabilities.

log_beta a (T,m)-matrix (when T indicates the length/size of the observation time-series
and m the number of states of the HMM) containing the logarithmized backward
probabilities.

logL a single numerical value representing the logarithmized likelihood.
logL_calculation

a single character string object which indicates how logL has been calculated
(see Zucchini (2009) Paragrahp 3.1-3.4, 4.1, A.2.2, A.2.3 for further details).

Author(s)

The basic algorithm for a Poisson-HMM is provided by MacDonald & Zucchini (2009, Paragraph
A.2.2). Extension and implementation by Vitali Witowski (2013).

References

MacDonald, I. L., Zucchini, W. (2009) Hidden Markov Models for Time Series: An Introduction
Using R, Boca Raton: Chapman & Hall.

See Also

HMM_based_method, HMM_training, Baum_Welch_algorithm, direct_numerical_maximization,
initial_parameter_training

Examples

##
Fictitious observations
##

HMM_based_method 23

x <- c(1,16,19,34,22,6,3,5,6,3,4,1,4,3,5,7,9,8,11,11,
14,16,13,11,11,10,12,19,23,25,24,23,20,21,22,22,18,7,
5,3,4,3,2,3,4,5,4,2,1,3,4,5,4,5,3,5,6,4,3,6,4,8,9,12,
9,14,17,15,25,23,25,35,29,36,34,36,29,41,42,39,40,43,
37,36,20,20,21,22,23,26,27,28,25,28,24,21,25,21,20,21,
11,18,19,20,21,13,19,18,20,7,18,8,15,17,16,13,10,4,9,
7,8,10,9,11,9,11,10,12,12,5,13,4,6,6,13,8,9,10,13,13,
11,10,5,3,3,4,9,6,8,3,5,3,2,2,1,3,5,11,2,3,5,6,9,8,5,
2,5,3,4,6,4,8,15,12,16,20,18,23,18,19,24,23,24,21,26,
36,38,37,39,45,42,41,37,38,38,35,37,35,31,32,30,20,39,
40,33,32,35,34,36,34,32,33,27,28,25,22,17,18,16,10,9,
5,12,7,8,8,9,19,21,24,20,23,19,17,18,17,22,11,12,3,9,
10,4,5,13,3,5,6,3,5,4,2,5,1,2,4,4,3,2,1)

Assummptions (number of states, probability vector,
transition matrix, and distribution parameters)

m <-4

delta <- c(0.25,0.25,0.25,0.25)

gamma <- 0.7 * diag(m) + rep(0.3 / m)

distribution_class <- "pois"

distribution_theta <- list(lambda = c(4,9,17,25))

Calculating logarithmized forward/backward probabilities
and logarithmized likelihood

forward_and_backward_probabilities_and_logL <-
forward_backward_algorithm (x = x,

delta = delta,
gamma = gamma,
distribution_class = distribution_class,
distribution_theta = distribution_theta)

print(forward_and_backward_probabilities_and_logL)

HMM_based_method Hidden Markov Method for Predicting Physical Activity Patterns

Description

This function assigns a physical activity range to each observation of a time-series (such as a se-
quence of impulse counts recorded by an accelerometer) using hidden Markov models (HMM). The
activity ranges are defined by thresholds called cut-off points. Basically, this function combines
HMM_training, HMM_decoding and cut_off_point_method. See Details for further information.

24 HMM_based_method

Usage

HMM_based_method(x, cut_points, distribution_class,
min_m = 2, max_m = 6, n = 100,
max_scaled_x = NA, names_activity_ranges = NA,
discr_logL = FALSE, discr_logL_eps = 0.5,
dynamical_selection = TRUE, training_method = "EM",
Mstep_numerical = FALSE, BW_max_iter = 50,
BW_limit_accuracy = 0.001, BW_print = TRUE,
DNM_max_iter = 50, DNM_limit_accuracy = 0.001,
DNM_print = 2, decoding_method = 'global',
bout_lengths = NULL, plotting = 0)

Arguments

x a vector object of length T containing non-negative observations of a time-series,
such as a sequence of accelerometer impulse counts, which are assumed to be
realizations of the (hidden Markov state dependent) observation process of a
HMM.

cut_points a vector object containing cut-off points to separate activity ranges. For instance,
the vector c(7,15,23) separates the four activity ranges [0,7), [7,15), [15,23)
and [23,Inf).

distribution_class

a single character string object with the abbreviated name of the m observation
distributions of the Markov dependent observation process. The following distri-
butions are supported: Poisson (pois); generalized Poisson (genpois); normal
(norm)).

min_m miminum number of hidden states in the hidden Markov chain. Default value is
2.

max_m maximum number of hidden states in the hidden Markov chain. Default value is
6.

n a single numerical value specifying the number of samples. Default value is
100.

max_scaled_x an optional numerical value, to be used to scale the observations of the time-
series x before the hidden Markov model is trained and decoded (see Details).
Default value is NA.

names_activity_ranges

an optional character string vector to name the activity ranges induced by the
cut-points. This vector must contain one element more than the vector cut_points.

discr_logL a logical object indicating whether the discrete log-likelihood should be used
(for "norm") for estimating the model specific parameters instead of the general
log-likelihood. See MacDonald & Zucchini (2009, Paragraph 1.2.3) for further
details. Default is FALSE.

discr_logL_eps a single numerical value to approximate the discrete log-likelihood for a hidden
Markov model based on nomal distributions (for distribution_class="norm").
The default value is 0.5.

HMM_based_method 25

dynamical_selection

a logical value indicating whether the method of dynamical initial parameter
selection should be applied (see HMM_training for details). Default is TRUE.

training_method

a logical value indicating whether the Baum-Welch algorithm ("EM") or the
method of direct numerical maximization ("numerical") should be applied for
estimating the model specific parameters of the HMM. See Baum_Welch_algorithm
and direct_numerical_maximization for further details. Default is
training_method="EM".

Mstep_numerical

a logical object indicating whether the Maximization Step of the Baum-Welch
algorithm shall be performed by numerical maximization. Default is FALSE.

BW_max_iter a single numerical value representing the maximum number of iterations in the
Baum-Welch algorithm. Default value is 50.

BW_limit_accuracy

a single numerical value representing the convergence criterion of the Baum-
Welch algorithm. Default value is 0.001.

BW_print a logical object indicating whether the log-likelihood at each iteration-step shall
be printed. Default is TRUE.

DNM_max_iter a single numerical value representing the maximum number of iterations of the
numerical maximization using the nlm-function (used to perform the M-step of
the Baum-Welch-algorithm). Default value is 50.

DNM_limit_accuracy

a single numerical value representing the convergence criterion of the numerical
maximization algorithm using the nlm function (used to perform the M-step of
the Baum-Welch-algorithm). Default value is 0.001.

DNM_print a single numerical value to determine the level of printing of the nlm-function.
See nlm-function for further informations. The value 0 suppresses, that no print-
ing will be outputted. Default value is 2 for full printing.

decoding_method

a string object to choose the applied decoding-method to decode the HMM given
the time-series of observations x. Possible values are "global" (for the use of
the Viterbi_algorithm) and "local" (for the use of the local_decoding_algorithm).
Default value is "global".

bout_lengths a vector object (with even number of elemets) to define the range of the bout
intervals (see Details for the definition of bouts). For instance,
bout_lengths=c(1,1,2,2,3,10,11,20,1,20) defines the five bout intervals
[1,1] (1 count); [2,2] (2 counts); [3,10] (3-10 counts); [11,20] (11-20 counts);
[1,20] (1-20 counts - overlapping with other bout intervalls is possible). Default
value is bout_lengths=NULL.

plotting a numeric value between 0 and 5 (generates different outputs). NA suppresses
graphical output. Default value is 0.
0: output 1-5
1: summary of all results
2: time series of activity counts, classified into activity ranges
3: time series of bouts (and, if available, the sequence of the estimated hidden

26 HMM_based_method

physical activity levels, extracted by decoding a trained HMM, in green colour)
4: barplots of absolute and relative frequencies of time spent in different activity
ranges
5: barplots of relative frequencies of the lenghts of bout intervals (overall and
by activity ranges)

Details

The function combines HMM_training, HMM_decoding and cut_off_point_method as follows:

Step 1: HMM_training trains the most likely HMM for a given time-series of accelerometer counts.
Step 2: HMM_decoding decodes the trained HMM (Step 1) into the most likely sequence of hidden
states corresponding to the given time-series of observations (respectively the most likely sequence
of physical activity levels corresponding to the time-series of accelerometer counts).
Step 3. cut_off_point_method assigns an activity range to each accelerometer count by its hidden
physical activity level (extracted in Step 2).

Value

HMM_based_method returns a list containing the output of the trained hidden Markov model, includ-
ing the selected number of states m (i.e., number of physical activities) and plots key figures.

trained_HMM_with_selected_m

a list object containing the trained hidden Markov model including the selected
number of states m (see HMM_training for further details).

decoding a list object containing the output of the decoding (see HMM_decoding for further
details)

.

extendend_cut_off_point_method

a list object containing the output of the cut-off point method. The counts x
are classified into the activity ranges by the corresponding sequence of hidden
PA-levels, which were decoded by the HMM (see cut_off_point_method for
further details).

Note

The parameter max_scaled_x can be applied to scale the values of the observations. This might
prevent the alogrithm from numerical instabilities. At the end, the results are internaly rescaled
to the original scale. For instance, a value of max_scaled_x=200 shrinks the count values of the
complete time-series x to a maximum of 200. Training and decoding of the HMM is carried out
using the scaled time-series.
From our experience, especially time-series with observations values >1500, or where T > 1000,
show numerical instabilities. We then advice to make use of max_scaled_x .

The extention of the cut-off point method using a Poisson based HMM has been provided and
evaluated successfully on simulated data firstly by Barbara Brachmann in her diploma thesis (see
References).

HMM_based_method 27

Author(s)

Vitali Witowski (2013).

References

Brachmann, B. (2011). Hidden-Markov-Modelle fuer Akzelerometerdaten. Diploma Thesis, Uni-
versity Bremen - Bremen Institute for Prevention Research and Social Medicine (BIPS).

MacDonald, I. L., Zucchini, W. (2009) Hidden Markov Models for Time Series: An Introduction
Using R, Boca Raton: Chapman & Hall.

Witowski, V., Foraita, R., Pitsiladis, Y., Pigeot, I., Wirsik, N. (2014) Using hidden Markov models
to improve quantifying physical activity in accelerometer data - A simulation study. PLOS ONE.
9(12), e114089. http://dx.doi.org/10.1371/journal.pone.0114089

See Also

initial_parameter_training, Baum_Welch_algorithm, direct_numerical_maximization, AIC_HMM,
BIC_HMM, HMM_training, Viterbi_algorithm, local_decoding_algorithm, cut_off_point_method

Examples

##
Fictitious activity counts
##

x <- 100 * c(1,16,19,34,22,6,3,5,6,3,4,1,4,3,5,7,9,8,11,11,
14,16,13,11,11,10,12,19,23,25,24,23,20,21,22,22,18,7,
5,3,4,3,2,3,4,5,4,2,1,3,4,5,4,5,3,5,6,4,3,6,4,8,9,12,
9,14,17,15,25,23,25,35,29,36,34,36,29,41,42,39,40,43,
37,36,20,20,21,22,23,26,27,28,25,28,24,21,25,21,20,21,
11,18,19,20,21,13,19,18,20,7,18,8,15,17,16,13,10,4,9,
7,8,10,9,11,9,11,10,12,12,5,13,4,6,6,13,8,9,10,13,13,
11,10,5,3,3,4,9,6,8,3,5,3,2,2,1,3,5,11,2,3,5,6,9,8,5,
2,5,3,4,6,4,8,15,12,16,20,18,23,18,19,24,23,24,21,26,
36,38,37,39,45,42,41,37,38,38,35,37,35,31,32,30,20,39,
40,33,32,35,34,36,34,32,33,27,28,25,22,17,18,16,10,9,
5,12,7,8,8,9,19,21,24,20,23,19,17,18,17,22,11,12,3,9,
10,4,5,13,3,5,6,3,5,4,2,5,1,2,4,4,3,2,1)

Fictitious cut-off points that produce four so-called
activity ranges "sedentary", "light", "moderate",
and "vigorous".
cut_points <- 100 * c(7,15,23)
names_activity_ranges <- c("SED","LIG","MOD","VIG")

Plot fictitious activity counts
plot(x, main = "counts with high values",

xlab = "time/epoch", ylab = "counts")

28 HMM_decoding

abline(h = cut_points, col = "grey50", lty = "dashed")

##
Comparing the results of the traditional
cut-off point method and the new HMM-based method
##

Apply the traditional cut-off point method to assign
physical activity ranges to each observed count

solution_of_tradtionional_cut_off_point_method <-
cut_off_point_method(x = x,

hidden_PA_levels = NA,
cut_points = cut_points,
names_activity_ranges = names_activity_ranges,
bout_lengths = c(1,1,2,2,3,3,4,4,5,5,6,12,
13,40,41,265,1,265),

plotting = 1)

Apply the HMM-based method to assign physical activity
ranges to the hidden physical activity level of each count

solution_of_HMM_based_method <-
HMM_based_method(x = x,

max_scaled_x = 50,
cut_points =cut_points,

min_m = 2,
max_m = 6,
names_activity_ranges = names_activity_ranges,
distribution_class = "pois",
training_method = "EM",
decoding_method = "global",
bout_lengths = c(1,1,2,2,3,3,4,4,5,5,6,12,
13,40,41,265,1,265),
plotting = 1)

Print details of the traditional cut-off point method
and the new HMM-based method
print(solution_of_tradtionional_cut_off_point_method)
print(solution_of_HMM_based_method)

HMM_decoding Algorithm for Decoding Hidden Markov Models (local or global)

Description

The function decodes a hidden Markov model into a most likely sequence of hidden states. Further-
more this function provides estimated observation values along the most likely sequence of hidden

HMM_decoding 29

states. See Details for more information.

Usage

HMM_decoding(x, m, delta, gamma, distribution_class,
distribution_theta, decoding_method = "global",
discr_logL = FALSE, discr_logL_eps = 0.5)

Arguments

x a vector object containing the time-series of observations that are assumed to be
realizations of the (hidden Markov state dependent) observation process of the
model.

m a (finite) number of states in the hidden Markov chain.

delta a vector object containing values for the marginal probability distribution of the
m states of the Markov chain at the time point t=1.

gamma a matrix (ncol=nrow=m) containing values for the transition matrix of the hidden
Markov chain.

distribution_class

a single character string object with the abbreviated name of the m observation
distributions of the Markov dependent observation process. The following dis-
tributions are supported by this algorithm: Poisson (pois); generalized Poisson
(genpois); normal (norm); geometric (geom).

distribution_theta

a list object containing the parameter values for the m observation distributions
that are dependent on the hidden Markov state.

decoding_method

a string object to choose the applied decoding-method to decode the HMM given
the time-series of observations x. Possible values are "global" (for the use of
the Viterbi_algorithm) and "local" (for the use of the
local_decoding_algorithm). Default value is "global".

discr_logL a logical object. It is TRUE if the discrete log-likelihood shall be calculated (for
distribution_class="norm" instead of the general log-likelihood). Default
is FALSE.

discr_logL_eps a single numerical value to approximately determine the discrete log-likelihood
for a hidden Markov model based on nomal distributions (for "norm"). The
default value is 0.5.

Details

More precisely, the function works as follows:

Step 1: In a first step, the algorithm decodes a HMM into the most likely sequence of hidden states,
given a time-series of observations. The user can choose between a global and a local approch.
If decoding_method="global" is applied, the function calls Viterbi_algorithm to determine the
sequence of most likely hidden states for all time points simultaneously.
If decoding_method="local" is applied, the function calls local_decoding_algorithm to deter-
mine the most likely hidden state for each time point seperately.

30 HMM_decoding

Step 2: In a second step, this function links each observation to the mean of the distribution, that
corresponds to the decoded state at this point in time.

Value

HMM_decoding returns a list containing the following two components:

decoding_method

a string object indicating the applied decoding method.

decoding a numerical vector containing the most likely sequence of hidden states as de-
coded by the Viterbi_algorithm (if "global" was applied) or by the
local_decoding_algorithm (if "local" was applied).

decoding_distr_means

a numerical vector of estimated oberservation values along the most likely seuquence
of hidden states (see decoding and Step 2).

Author(s)

Vitali Witowski (2013).

References

MacDonald, I. L., Zucchini, W. (2009) Hidden Markov Models for Time Series: An Introduction
Using R, Boca Raton: Chapman & Hall.

See Also

local_decoding_algorithm, Viterbi_algorithm

Examples

##
i) HMM-training
##

##
Fictitious observations
##

x <- c(1,16,19,34,22,6,3,5,6,3,4,1,4,3,5,7,9,8,11,11,
14,16,13,11,11,10,12,19,23,25,24,23,20,21,22,22,18,7,
5,3,4,3,2,3,4,5,4,2,1,3,4,5,4,5,3,5,6,4,3,6,4,8,9,12,
9,14,17,15,25,23,25,35,29,36,34,36,29,41,42,39,40,43,
37,36,20,20,21,22,23,26,27,28,25,28,24,21,25,21,20,21,
11,18,19,20,21,13,19,18,20,7,18,8,15,17,16,13,10,4,9,
7,8,10,9,11,9,11,10,12,12,5,13,4,6,6,13,8,9,10,13,13,
11,10,5,3,3,4,9,6,8,3,5,3,2,2,1,3,5,11,2,3,5,6,9,8,5,
2,5,3,4,6,4,8,15,12,16,20,18,23,18,19,24,23,24,21,26,
36,38,37,39,45,42,41,37,38,38,35,37,35,31,32,30,20,39,

HMM_decoding 31

40,33,32,35,34,36,34,32,33,27,28,25,22,17,18,16,10,9,
5,12,7,8,8,9,19,21,24,20,23,19,17,18,17,22,11,12,3,9,
10,4,5,13,3,5,6,3,5,4,2,5,1,2,4,4,3,2,1)

Train hidden Markov model for different number of
states m=2,...,6 and select the optimal model

m_trained_HMM <-
HMM_training(x = x,

min_m = 2,
max_m = 6,
distribution_class="pois")$trained_HMM_with_selected_m

##
##
ii) Global decoding
##
##

Decode the trained HMM using the Viterbi algorithm to get
the estimated sequence of hidden physical activity levels
global_decoding <-

HMM_decoding(x = x,
m = m_trained_HMM$m,
delta = m_trained_HMM$delta,
gamma = m_trained_HMM$gamma,
distribution_class = m_trained_HMM$distribution_class,
distribution_theta = m_trained_HMM$distribution_theta,
decoding_method = "global")

Globally most likely sequence of hidden states,
i.e. in this case sequence of activity levels
global_decoding$decoding

par(mfrow = c(1,1))
plot(global_decoding$decoding)

Plot the observed impulse counts and the most likely
sequence (green) according to the Viterbi algorithm that
generated these observations
plot(x)
lines(global_decoding$decoding_distr_means, col = "green")

##
##
iii) Local decoding
##
##

Decode the trained HMM using the local decoding algorithm
to get the estimated sequence of hidden physical activity

32 HMM_decoding

levels
local_decoding <-

HMM_decoding(x = x,
m = m_trained_HMM$m,
delta = m_trained_HMM$delta,
gamma = m_trained_HMM$gamma,
distribution_class = m_trained_HMM$distribution_class,
distribution_theta = m_trained_HMM$distribution_theta,
decoding_method = "local")

Locally most likely sequence of hidden states,
i.e. in this case sequence of activity levels
local_decoding$decoding

par(mfrow=c(1,1))
plot(local_decoding$decoding)

Plot the observed impulse counts and the most likely
sequence (green) according to the local decoding algorithm
that generated these observations
plot(x)
lines(local_decoding$decoding_distr_means, col = "red")

##
##
iv) Comparison of global and local decoding
##
##

Comparison of global decoding (green), local decoding (red)
and the connection to the closest mean (blue)
print(global_decoding$decoding)
print(local_decoding$decoding)

Plot comparison
par(mfrow = c(2,2))
plot(global_decoding$decoding[seq(230,260)], col = "green",

ylab = "global decoding", main = "(zooming)")
plot(x[seq(230,260)], ylab = "global decoding",
main = "(zooming x[seq(230,260)])")

lines(global_decoding$decoding_distr_means[seq(230,260)],
col = "green")

plot(local_decoding$decoding[seq(230,260)], col = "red",
ylab = "local decoding", main = "(zooming)")

plot(x[seq(230,260)], ylab = "local decoding",
main = "(zooming x[seq(230,260)])")

lines(local_decoding$decoding_distr_means[seq(230,260)],
col = "red")

par(mfrow = c(1,1))

HMM_simulation 33

HMM_simulation Generating Realizations of a Hidden Markov Model

Description

This function generates a sequence of hidden states of a Markov chain and a corresponding parallel
sequence of observations.

Usage

HMM_simulation(size, m, delta = rep(1 / m, times = m),
gamma = 0.8 * diag(m) + rep(0.2 / m, times = m),
distribution_class, distribution_theta,
obs_range = c(NA, NA), obs_round = FALSE,
obs_non_neg = FALSE, plotting = 0)

Arguments

size length of the time-series of hidden states and observations (also T).

m a (finite) number of states in the hidden Markov chain.

delta a vector object containing starting values for the marginal probability distri-
bution of the m states of the Markov chain at the time point t=1. Default is
delta=rep(1/m,times=m).

gamma a matrix (nrow=ncol=m) containing starting values for the transition matrix of
the hidden Markov chain.
Default is gamma=0.8 * diag(m) + rep(0.2 / m, times = m).

distribution_class

a single character string object with the abbreviated name of the m observation
distributions of the Markov dependent observation process. The following dis-
tributions are supported by this algorithm: Poisson (pois); generalized Poisson
(genpois); normal (norm, discrete log-Likelihood not applicable by this algo-
rithm); geometric (geom).

distribution_theta

a list object containing starting values for the parameters of the m observation
distributions that are dependent on the hidden Markov state.

obs_range a vector object specifying the range for the observations to be generated. For
instance, the vector c(0,1500) allows only observations between 0 and 1500 to
be generated by the HMM. Default value is FALSE. See Notes for further details.

obs_round a logical object. TRUE if all generated observations are natural. Default value is
FALSE. See Notes for further details.

obs_non_neg a logical object. TRUE, if non negative observations are generated. Default value
is FALSE. See Notes for further details.

34 HMM_simulation

plotting a numeric value between 0 and 5 (generates different outputs). NA suppresses
graphical output. Default value is 0.
0: output 1-5
1: summary of all results
2: generated time series of states of the hidden Markov chain
3: means (of the observation distributions, which depend on the states of the
Markov chain) along the time series of states of the hidden Markov chain
4: observations along the time series of states of the hidden Markov chain
5: simulated observations

Value

The function HMM_simulation returns a list containing the following components:

size length of the generated time-series of hidden states and observations.

m input number of states in the hidden Markov chain.

delta a vector object containing the chosen values for the marginal probability distri-
bution of the m states of the Markov chain at the time point t=1.

gamma a matrix containing the chosen values for the transition matrix of the hidden
Markov chain.

distribution_class

a single character string object with the abbreviated name of the chosen obser-
vation distributions of the Markov dependent observation process.

distribution_theta

a list object containing the chosen values for the parameters of the m observation
distributions that are dependent on the hidden Markov state.

markov_chain a vector object containing the generated sequence of states of the hidden Markov
chain of the HMM.

means_along_markov_chain

a vector object containing the sequence of means (of the state dependent distri-
butions) corresponding to the generated sequence of states.

observations a vector object containing the generated sequence of (state dependent) observa-
tions of the HMM.

Note

Some notes regarding the default values:

gamma:
The default setting assigns higher probabilities for remaining in a state than changing into another.

obs_range:
Has to be used with caution. since it manipulates the results of the HMM. If a value for an obser-
vation at time t is generated outside the defined range, it will be regenerated as long as it falls into
obs_range. It is possible just to define one boundary, e.g. obs_range=c(NA,2000) for observa-
tions lower than 2000, or obs_range=c(100,NA) for observations higher than 100.

obs_round :
Has to be used with caution! Rounds each generated observation and hence manipulates the results
of the HMM (important for the normal distribution based HMM).

HMM_simulation 35

obs_ non_neg:
Has to be used with caution, since it manipulates the results of the HMM. If a negative value for an
observation at a time t is generated, it will be re-generated as long as it is non-negative (important
for the normal distribution based HMM).

Author(s)

Vitali Witowski (2013).

See Also

AIC_HMM, BIC_HMM, HMM_training

Examples

##
i.) Generating a HMM with Poisson-distributed data
##

Pois_HMM_data <-
HMM_simulation(size = 300,

m = 5,
distribution_class = "pois",
distribution_theta = list(lambda=c(10,15,25,35,55)))

print(Pois_HMM_data)

##
ii.) Generating 6 physical activities with normally
distributed accelerometer counts using a HMM.
##

Define number of time points (1440 counts equal 6 hours of
activity counts assuming an epoch length of 15 seconds).
size <- 1440

Define 6 possible physical activity ranges
m <- 6

Start with the lowest possible state
(in this case with the lowest physical activity)
delta <- c(1, rep(0, times = (m - 1)))

Define transition matrix to generate according to a
specific activity
gamma <- 0.935 * diag(m) + rep(0.065 / m, times = m)

Define parameters
(here: means and standard deviations for m=6 normal
distributions that define the distribution in
a phsycial acitivity level)

36 HMM_training

distribution_theta <- list(mean = c(0,100,400,600,900,1200),
sd = rep(x = 200, times = 6))

Assume for each count an upper boundary of 2000
obs_range <-c(NA,2000)

Accelerometer counts shall not be negative
obs_non_neg <-TRUE

Start simulation

accelerometer_data <-
HMM_simulation(size = size,

m = m,
delta = delta,
gamma = gamma,
distribution_class = "norm",
distribution_theta = distribution_theta,
obs_range = obs_range,
obs_non_neg= obs_non_neg, plotting=0)

print(accelerometer_data)

HMM_training Training of Hidden Markov Models

Description

Function to estimate the model specific parameters (delta, gamma, distribution_theta) for a
hidden Markov model, given a time-series and a user-defined distribution class. Can also be used
for model selection (selecting the optimal number of states m). See Details for more information.

Usage

HMM_training (x, distribution_class, min_m = 2, max_m = 6,
n = 100, training_method = "EM", discr_logL = FALSE,
discr_logL_eps = 0.5, Mstep_numerical = FALSE,
dynamical_selection = TRUE, BW_max_iter = 50,
BW_limit_accuracy = 0.001, BW_print = TRUE,
DNM_max_iter = 50, DNM_limit_accuracy = 0.001,
DNM_print = 2)

Arguments

x a vector object of length T containing observations of a time-series x, which are
assumed to be realizations of the (hidden Markov state dependent) observation
process of the HMM.

HMM_training 37

distribution_class

a single character string object with the abbreviated name of the m observa-
tion distributions of the Markov dependent observation process. The following
distributions are supported: Poisson (pois); generalized Poisson (genpois, only
available for training_method="numerical"); normal (norm)).

min_m minimum number of hidden states in the hidden Markov chain. Default value is
2.

max_m maximum number of hidden states in the hidden Markov chain. Default value is
6.

n a single numerical value specifying the number of samples to find the best start-
ing values for the training algorithm. Default value is n=100.

training_method

a logical value indicating whether the Baum-Welch algorithm ("EM") or the
method of direct numerical maximization ("numerical") should be applied
for estimating the model specific parameters. See Baum_Welch_algorithm and
direct_numerical_maximization for further details.
Default is training_method="EM".

discr_logL a logical object. Default is FALSE for the general log-likelihood, TRUE for the
discrete log-likelihood (for distribution_class="norm").

discr_logL_eps a single numerical value, used to approximate the discrete log-likelihood for a
hidden Markov model based on nomal distributions (for "norm"). The default
value is 0.5.

Mstep_numerical

a logical object indicating whether the Maximization Step of the Baum-Welch
algorithm should be performed by numerical maximization. Default is FALSE.

dynamical_selection

a logical value indicating whether the method of dynamical initial parameter
selection should be applied (see Details). Default is TRUE.

BW_max_iter a single numerical value representing the maximum number of iterations in the
Baum-Welch algorithm. Default value is 50.

BW_limit_accuracy

a single numerical value representing the convergence criterion of the Baum-
Welch algorithm. Default value is is 0.001.

BW_print a logical object indicating whether the log-likelihood at each iteration-step shall
be printed. Default is TRUE.

DNM_max_iter a single numerical value representing the maximum number of iterations of the
numerical maximization using the nlm-function (used to perform the Maximiza-
tion Step of the Baum-Welch-algorithm). Default value is 50.

DNM_limit_accuracy

a single numerical value representing the convergence criterion of the numerical
maximization algorithm using the nlm function (used to perform the Maximiza-
tion Step of the Baum-Welch- algorithm). Default value is 0.001.

DNM_print a single numerical value to determine the level of printing of the nlm-function.
See nlm-function for further informations. The value 0 suppresses, that no print-
ing will be outputted. Default value is 2 for full printing.

38 HMM_training

Details

More precisely, the function works as follows:

Step 1: In a first step, the algorithm estimates the model specific parameters for different values of
m (indeed for min_m,...,max_m) using either the function Baum_Welch_algorithm or

direct_numerical_maximization. Therefore, the function first searches for plausible starting
values by using the function initial_parameter_training.

Step 2: In a second step, this function evaluates the AIC and BIC values for each HMM (built in
Step 1) using the functions AIC_HMM and BIC_HMM. Then, based on that values, this function decides
for the most plausible number of states m (respectively for the most appropriate HMM for the given
time-series of observations). In case when AIC and BIC claim for a different m, the algorithm
decides for the smaller value for m (with the background to have a more simplistic model). If the
user is intereseted in having a HMM with a fixed number for m, min_m and max_m have to be chosen
equally (for instance min_m=4=max_m for a HMM with m=4 hidden states).

To speed up the parameter estimation for each m > mmin, the user can choose the method of
dynamical initial parameter selection.

If the method of dynamical intial parameter selection is not applied, the function

initial_parameter_training will be called to find plausible starting values for each state m ∈
{minm, . . . ,maxm}.

If the method of dynamical intial parameter selection is applied, then starting parameter values us-
ing the function initial_parameter_training will be found only for the first HMM (respectively
the HMM with m_min states). The further starting parameter values for the next HMM (with m+1
states and so on) are retained from the trained parameter values of the last HMM (with m states and
so on).

Value

HMM_training returns a list containing the following components:

trained_HMM_with_selected_m

a list object containg the key data of the optimal trained HMM (HMM with
selected m) – summarized output of the Baum_Welch_algorithm or
direct_numerical_maximization algorithm, respectively.

list_of_all_initial_parameters

a list object containing the plausible starting values for all HMMs (one for each
state m).

list_of_all_trained_HMMs

a list object containing all trained m-state-HMMs. See Baum_Welch_algorithm
or direct_numerical_maximization for training_method="EM" or
training_method="numerical", respectively.

list_of_all_logLs_for_each_HMM_with_m_states

a list object containing all logarithmized Likelihoods of each trained HMM.
list_of_all_AICs_for_each_HMM_with_m_states

a list object containing the AIC values of all trained HMMs.

HMM_training 39

list_of_all_BICs_for_each_HMM_with_m_states

a list object containing the BIC values of all trained HMMs.
model_selection_over_AIC

is logical. TRUE, if model selection was based on AIC and FALSE, if model
selection was based on BIC.

Author(s)

Vitali Witowski (2013).

References

MacDonald, I. L., Zucchini, W. (2009) Hidden Markov Models for Time Series: An Introduction
Using R, Boca Raton: Chapman & Hall.

See Also

initial_parameter_training, Baum_Welch_algorithm, direct_numerical_maximization, AIC_HMM,
BIC_HMM

Examples

##
Fictitious observations
##

x <- c(1,16,19,34,22,6,3,5,6,3,4,1,4,3,5,7,9,8,11,11,
14,16,13,11,11,10,12,19,23,25,24,23,20,21,22,22,18,7,
5,3,4,3,2,3,4,5,4,2,1,3,4,5,4,5,3,5,6,4,3,6,4,8,9,12,
9,14,17,15,25,23,25,35,29,36,34,36,29,41,42,39,40,43,
37,36,20,20,21,22,23,26,27,28,25,28,24,21,25,21,20,21,
11,18,19,20,21,13,19,18,20,7,18,8,15,17,16,13,10,4,9,
7,8,10,9,11,9,11,10,12,12,5,13,4,6,6,13,8,9,10,13,13,
11,10,5,3,3,4,9,6,8,3,5,3,2,2,1,3,5,11,2,3,5,6,9,8,5,
2,5,3,4,6,4,8,15,12,16,20,18,23,18,19,24,23,24,21,26,
36,38,37,39,45,42,41,37,38,38,35,37,35,31,32,30,20,39,
40,33,32,35,34,36,34,32,33,27,28,25,22,17,18,16,10,9,
5,12,7,8,8,9,19,21,24,20,23,19,17,18,17,22,11,12,3,9,
10,4,5,13,3,5,6,3,5,4,2,5,1,2,4,4,3,2,1)

Train a poisson hidden Markov model using the Baum-Welch
algorithm for different number of states m=2,...,6

trained_HMMs <-
HMM_training(x = x,

distribution_class = "pois",
min_m = 2,
max_m = 6,
training_method = "EM")

40 initial_parameter_training

Various output values for the HMM
names(trained_HMMs)

Print details of the most plausible HMM for the given
time-series of observations
print(trained_HMMs$trained_HMM_with_selected_m)

Print details of all trained HMMs (by this function)
for the given time-series of observations
print(trained_HMMs$list_of_all_trained_HMMs)

Print the BIC-values of all trained HMMs for the given
time-series of observations
print(trained_HMMs$list_of_all_BICs_for_each_HMM_with_m_states)

Print the logL-values of all trained HMMs for the
given time-series of observations
print(trained_HMMs$list_of_all_logLs_for_each_HMM_with_m_states)

initial_parameter_training

Algorithm to Find Plausible Starting Values for Parameter Estimation

Description

The function computes plausible starting values for both the Baum-Welch algorithm and the algo-
rithm for directly maximizing the log-Likelihood. Plausible starting values can potentially diminish
problems of (i) numerical instability and (ii) not finding the global optimum.

Usage

initial_parameter_training(x, m, distribution_class, n = 100,
discr_logL = FALSE, discr_logL_eps = 0.5)

Arguments

x a vector object containing the time-series of observations that are assumed to be
realizations of the (hidden Markov state dependent) observation process of the
model.

m a (finite) number of states in the hidden Markov chain.
distribution_class

a single character string object with the abbreviated name of the m observation
distributions of the Markov dependent observation process. The following dis-
tributions are supported by this algorithm: Poisson (pois); generalized Poisson
(genpois); normal (norm); geometric (geom).

initial_parameter_training 41

n a single numerical value specifying the number of samples to find the best start-
ing value for the training algorithm. Default value is 100.

discr_logL a logical object. TRUE, if the discrete log-likelihood shall be calculated (for
distribution_class="norm" instead of the general log-likelihood. Default is
FALSE.

discr_logL_eps discrete log-likelihood for a hidden Markov model based on nomal distributions
(for distribution_class="norm"). The default value is 0.5.

Details

From our experience, parameter estimation for long time-series of observations (T>1000) or obser-
vation values >1500 tend to be numerical instable and does not necessarily find a global maximum.
Both problems can eventually be diminished with plausible starting values. Basically, the idea
behind initial_parameter_training is to sample randomly n sets of m observations from the
time-series x, as means (E) of the state-dependent distributions. This n samplings of E, therefore in-
duce n sets of parameters (distribution_theta) for the HMM without running a (slow) parameter
estimation algorithm. Furthermore, initial_parameter_training calculates the log-Likelihood
for all those n sets of parameters. The set of parameters with the best Likelihood are outputted as
plausible starting values. (Additionally to the n sets of randomly chosen observations as means, the
m quantiles of the observations are also checked as plausible means within this algorithm.)

Value

initial_parameter_training returns a list containing the following components:

m input number of states in the hidden Markov chain.

k a single numerical value representing the number of parameters of the defined
distribution class of the observation process.

logL logarithmized likelihood of the model evaluated at the HMM with given starting
values (delta, gamma, distribution theta) induced by E.

E randomly choosen means of the observation time-series x, used for the observa-
tion distributions, for which the induced parameters
(delta, gamma, distribution theta) produce the largest Likelihood.

distribution_theta

a list object containing the plausible starting values for the parameters of the m
observation distributions that are dependent on the hidden Markov state.

delta a vector object containing plausible starting values for the marginal probability
distribution of the m states of the Markov chain at the time point t=1. At the
moment:
delta = rep(1/m, times=m).

gamma a matrix (nrow=ncol=m) containing the plausible starting values for the transi-
tion matrix of the hidden Markov chain. At the moment:
gamma = 0.8 * diag(m) + rep(0.2/m, times=m).

Author(s)

Vitali Witowski (2013).

42 local_decoding_algorithm

See Also

Baum_Welch_algorithm direct_numerical_maximization HMM_training

Examples

##
Fictitious observations
##

x <- c(1,16,19,34,22,6,3,5,6,3,4,1,4,3,5,7,9,8,11,11,
14,16,13,11,11,10,12,19,23,25,24,23,20,21,22,22,18,7,
5,3,4,3,2,3,4,5,4,2,1,3,4,5,4,5,3,5,6,4,3,6,4,8,9,12,
9,14,17,15,25,23,25,35,29,36,34,36,29,41,42,39,40,43,
37,36,20,20,21,22,23,26,27,28,25,28,24,21,25,21,20,21,
11,18,19,20,21,13,19,18,20,7,18,8,15,17,16,13,10,4,9,
7,8,10,9,11,9,11,10,12,12,5,13,4,6,6,13,8,9,10,13,13,
11,10,5,3,3,4,9,6,8,3,5,3,2,2,1,3,5,11,2,3,5,6,9,8,5,
2,5,3,4,6,4,8,15,12,16,20,18,23,18,19,24,23,24,21,26,
36,38,37,39,45,42,41,37,38,38,35,37,35,31,32,30,20,39,
40,33,32,35,34,36,34,32,33,27,28,25,22,17,18,16,10,9,
5,12,7,8,8,9,19,21,24,20,23,19,17,18,17,22,11,12,3,9,
10,4,5,13,3,5,6,3,5,4,2,5,1,2,4,4,3,2,1)

Finding plausibel starting values for the parameter estimation
for a generealized-Pois-HMM with m=4 states
m <- 4

plausible_starting_values <-
initial_parameter_training(x = x,

m = m,
distribution_class = "genpois",
n=100)

print(plausible_starting_values)

local_decoding_algorithm

Algorithm for Decoding Hidden Markov Models (local)

Description

The function decodes a hidden Markov model into a most likely sequence of hidden states. Different
to the Viterbi_algorithm, this algorithm determines the most likely hidden state for each time
point seperately.

local_decoding_algorithm 43

Usage

local_decoding_algorithm(x, m, delta, gamma, distribution_class,
distribution_theta, discr_logL = FALSE, discr_logL_eps = 0.5)

Arguments

x a vector object containing the time-series of observations that are assumed to be
realizations of the (hidden Markov state dependent) observation process of the
model.

m a (finite) number of states in the hidden Markov chain.

delta a vector object containing values for the marginal probability distribution of the
m states of the Markov chain at the time point t=1.

gamma a matrix (ncol=nrow=m) containing values for the transition matrix of the hidden
Markov chain.

distribution_class

a single character string object with the abbreviated name of the m observation
distributions of the Markov dependent observation process. The following dis-
tributions are supported by this algorithm: Poisson (pois); generalized Poisson
(genpois); normal (norm); geometric (geom).

distribution_theta

a list object containing the parameter values for the m observation distributions
that are dependent on the hidden Markov state.

discr_logL a logical object. It is TRUE if the discrete log-likelihood shall be calculated (for
distribution_class="norm" instead of the general log-likelihood). Default
is FALSE.

discr_logL_eps a single numerical value to approximately determine the discrete log-likelihood
for a hidden Markov model based on nomal distributions (for "norm"). The
default value is 0.5.

Value

local_decoding_algorithm returns a list containing the following two components:

state_probabilities

a (T,m)-matrix (when T indicates the length/size of the observation time-series
and m the number of states of the HMM) containing probabilities (conditional
probability of a state i=1,...,m at a time point t=1,...,T given all observations
x) calculated by the algorithm. See MacDonald & Zucchini (2009, Paragraph
5.3.1) for further details.

decoding a numerical vector containing the locally most likely sequence of hidden states
as decoded by the local_decoding_algorithm.

Author(s)

The basic algorithm for a Poisson-HMM can be found in MacDonald & Zucchini (2009, Paragraph
A.2.6). Extension and implementation by Vitali Witowski (2013).

44 local_decoding_algorithm

References

MacDonald, I. L., Zucchini, W. (2009) Hidden Markov Models for Time Series: An Introduction
Using R, Boca Raton: Chapman & Hall.

See Also

Viterbi_algorithm, HMM_decoding

Examples

##
Fictitious observations
##

x <- c(1,16,19,34,22,6,3,5,6,3,4,1,4,3,5,7,9,8,11,11,
14,16,13,11,11,10,12,19,23,25,24,23,20,21,22,22,18,7,
5,3,4,3,2,3,4,5,4,2,1,3,4,5,4,5,3,5,6,4,3,6,4,8,9,12,
9,14,17,15,25,23,25,35,29,36,34,36,29,41,42,39,40,43,
37,36,20,20,21,22,23,26,27,28,25,28,24,21,25,21,20,21,
11,18,19,20,21,13,19,18,20,7,18,8,15,17,16,13,10,4,9,
7,8,10,9,11,9,11,10,12,12,5,13,4,6,6,13,8,9,10,13,13,
11,10,5,3,3,4,9,6,8,3,5,3,2,2,1,3,5,11,2,3,5,6,9,8,5,
2,5,3,4,6,4,8,15,12,16,20,18,23,18,19,24,23,24,21,26,
36,38,37,39,45,42,41,37,38,38,35,37,35,31,32,30,20,39,
40,33,32,35,34,36,34,32,33,27,28,25,22,17,18,16,10,9,
5,12,7,8,8,9,19,21,24,20,23,19,17,18,17,22,11,12,3,9,
10,4,5,13,3,5,6,3,5,4,2,5,1,2,4,4,3,2,1)

Train hidden Markov model for m=4

m_trained_HMM <-
HMM_training(x = x,

min_m = 4,
max_m = 4,
distribution_class = "pois")$trained_HMM_with_selected_m

Decode the trained HMM using the local-decoding algorithm
to get the locally most likely sequence of hidden states
for the time-series of observations
local_decoding <-

local_decoding_algorithm(x = x,
m = m_trained_HMM$m,
delta = m_trained_HMM$delta,
gamma = m_trained_HMM$gamma,
distribution_class = m_trained_HMM$distribution_class,
distribution_theta = m_trained_HMM$distribution_theta)

Most likely sequence of hidden states
print(local_decoding$decoding)
plot(local_decoding$decoding)

Viterbi_algorithm 45

Viterbi_algorithm Algorithm for Decoding Hidden Markov Models (global)

Description

The function decodes a trainded hidden Markov model into a most likely sequence of hidden
states. Different to the local_decoding_algorithm, this algorithm determines the sequence of
most likely hidden states for all time points simultaneously. See MacDonald & Zucchini (2009,
Paragraph 5.3.2) for further details.

Usage

Viterbi_algorithm(x, m, delta, gamma, distribution_class,
distribution_theta, discr_logL = FALSE, discr_logL_eps = 0.5)

Arguments

x a vector object containing the time-series of observations that are assumed to be
realizations of the (hidden Markov state dependent) observation process of the
model.

m a (finite) number of states in the hidden Markov chain.

delta a vector object containing values for the marginal probability distribution of the
m states of the Markov chain at the time point t=1.

gamma a matrix (ncol=nrow=m) containing values for the transition matrix of the hidden
Markov chain.

distribution_class

a single character string object with the abbreviated name of the m observation
distributions of the Markov dependent observation process. The following dis-
tributions are supported by this algorithm: Poisson (pois); generalized Poisson
(genpois); normal (norm); geometric (geom).

distribution_theta

a list object containing the parameter values for the m observation distributions
that are dependent on the hidden Markov state.

discr_logL a logical object. It is TRUE if the discrete log-likelihood shall be calculated (for
distribution_class="norm" instead of the general log-likelihood). Default
is FALSE.

discr_logL_eps a single numerical value to approximately determine the discrete log-likelihood
for a hidden Markov model based on nomal distributions (for "norm"). The
default value is 0.5.

Value

Viterbi_algorithm returns a list containing the following two components:

46 Viterbi_algorithm

omega a (T,m)-matrix (when T indicates the length/size of the observation time-series
and m the number of states of the HMM) containing probabilities (maximum
probability to generate the first t members (t=1,...,T) of the given time-series x
with the HMM and to stop in state i=1,...,m) calculated by the algorithm. See
MacDonald & Zucchini (2009, Paragraph 5.3.2) for further details.

decoding a numerical vector containing the globally most likely sequence of hidden states
as decoded by the Viterbi algorithm.

Author(s)

The basic algorithm for a Poisson-HMM can be found in MacDonald & Zucchini (2009, Paragraph
A.2.4). Extension and implementation by Vitali Witowski (2013).

References

MacDonald, I. L., Zucchini, W. (2009) Hidden Markov Models for Time Series: An Introduction
Using R, Boca Raton: Chapman & Hall.

Forney, G.D. (1973). The Viterbi algorithm. Proceeding of the IEE, vol. 61(3), 268–278.

Viterbi, A.J. (1967). Error Bounds for concolutional codes and an asymptotically optimal decoding
algorithm. Information Theory, IEEE Transactions on, vol. 13(2), 260–269.

See Also

local_decoding_algorithm, HMM_decoding

Examples

##
Fictitious observations
##

x <- c(1,16,19,34,22,6,3,5,6,3,4,1,4,3,5,7,9,8,11,11,
14,16,13,11,11,10,12,19,23,25,24,23,20,21,22,22,18,7,
5,3,4,3,2,3,4,5,4,2,1,3,4,5,4,5,3,5,6,4,3,6,4,8,9,12,
9,14,17,15,25,23,25,35,29,36,34,36,29,41,42,39,40,43,
37,36,20,20,21,22,23,26,27,28,25,28,24,21,25,21,20,21,
11,18,19,20,21,13,19,18,20,7,18,8,15,17,16,13,10,4,9,
7,8,10,9,11,9,11,10,12,12,5,13,4,6,6,13,8,9,10,13,13,
11,10,5,3,3,4,9,6,8,3,5,3,2,2,1,3,5,11,2,3,5,6,9,8,5,
2,5,3,4,6,4,8,15,12,16,20,18,23,18,19,24,23,24,21,26,
36,38,37,39,45,42,41,37,38,38,35,37,35,31,32,30,20,39,
40,33,32,35,34,36,34,32,33,27,28,25,22,17,18,16,10,9,
5,12,7,8,8,9,19,21,24,20,23,19,17,18,17,22,11,12,3,9,
10,4,5,13,3,5,6,3,5,4,2,5,1,2,4,4,3,2,1)

Train hidden Markov model for m=4

m_trained_HMM <-

Viterbi_algorithm 47

HMM_training(x = x,
min_m = 4,
max_m = 4,
distribution_class="pois")$trained_HMM_with_selected_m

Decode the trained HMM using the Viterbi algorithm to get
the globally most likely sequence of hidden states for
the time-series of observations
global_decoding <-

Viterbi_algorithm(x = x,
m = m_trained_HMM$m,
delta = m_trained_HMM$delta,
gamma = m_trained_HMM$gamma,
distribution_class = m_trained_HMM$distribution_class,
distribution_theta = m_trained_HMM$distribution_theta)

Most likely sequence of hidden states
print(global_decoding$decoding)
plot(global_decoding$decoding)

Index

∗ distribution
dgenpois, 17

∗ iteration
Baum_Welch_algorithm, 9
HMM_training, 36
HMMpa-package, 2
initial_parameter_training, 40

∗ models
AIC_HMM, 7

∗ ts
Baum_Welch_algorithm, 9
cut_off_point_method, 13
direct_numerical_maximization, 18
forward_backward_algorithm, 21
HMMpa-package, 2

AIC_HMM, 7, 27, 35, 38, 39

Baum_Welch_algorithm, 9, 20, 22, 25, 27,
37–39, 42

BIC_HMM, 27, 35, 38, 39
BIC_HMM (AIC_HMM), 7

cut_off_point_method, 13, 23, 26, 27

dgenpois, 17
direct_numerical_maximization, 12, 18,

22, 25, 27, 37–39, 42
Distributions, 18
dpois, 18

forward_backward_algorithm, 11, 12, 19,
20, 21

HMM_based_method, 12–15, 20, 22, 23
HMM_decoding, 23, 26, 28, 44, 46
HMM_simulation, 33
HMM_training, 8, 12, 20, 22, 23, 25–27, 35,

36, 42
HMMpa (HMMpa-package), 2
HMMpa-package, 2

initial_parameter_training, 12, 20, 22,
27, 38, 39, 40

local_decoding_algorithm, 25, 27, 29, 30,
42, 45, 46

nlm, 10, 18, 19, 25, 37

pgenpois (dgenpois), 17

rgenpois (dgenpois), 17

Viterbi_algorithm, 25, 27, 29, 30, 42, 44, 45

48

	HMMpa-package
	AIC_HMM
	Baum_Welch_algorithm
	cut_off_point_method
	dgenpois
	direct_numerical_maximization
	forward_backward_algorithm
	HMM_based_method
	HMM_decoding
	HMM_simulation
	HMM_training
	initial_parameter_training
	local_decoding_algorithm
	Viterbi_algorithm
	Index

