In this example, we use a real dataset and apply a customised covariance kernel.
For visualisation purposes, we will use only the first five years of the sample.
We want to fit a GPR model using the observed data and then make predictions at a \(1000\) equally spaced time points:
We will first fit a GPR model with a linear trend line for the mean
function by setting meanModel='t'
, and a exponential
covariance function by setting Cov='pow.ex'
and
gamma=1
.
set.seed(789)
fit1 <- gpr(input=input, response=y, Cov='pow.ex', gamma=1, meanModel='t',
nInitCandidates=50, trace=2)
Since the noise variance vv
estimate is extremely low,
this fitted model basically interpolates the datapoints:
See below the large uncertainty in predictions for test input points:
pred1 <- gprPredict(train = fit1, inputNew=inputNew)
plot(pred1, main="exponential kernel - predictions")
These results suggest that the exponential kernel is likely not to be the best choice. A kernel which takes into account a periodic pattern may be wanted.
To capture the periodic pattern, we use the following covariance function: \[\begin{equation} k(t,t')=v \exp(-w (t-t')^2 - u \sin^2(\pi (t-t'))), \quad v,w,u > 0 \label{cus-cov} \end{equation}\] (see Williams, C. K., & Rasmussen, C. E. (2006). “Gaussian Processes for Machine Learning”, the MIT press).
This is not a standard covariance kernel and is not included in the package. Therefore, we will define it manually.
The first step is to define the covariance kernel itself. The name of
the kernel must be constituted by the prefix cov.
and 6
letters ( e.g., cov.custom
).
Here the C++ function distMat
is used to calculate
distances \(\exp(w)(t-t')^2\). The
similar distMatSq
function is used when t
and
t'
are identical. See package documentation for more
details.
cov.custom <- function(hyper, input, inputNew=NULL){
hyper <- lapply(hyper, exp)
if(is.null(inputNew)){
inputNew <- as.matrix(input)
}else{
inputNew <- as.matrix(inputNew)
}
input <- as.matrix(input)
A1 <- distMat(input=input, inputNew=inputNew, A=as.matrix(hyper$custom.w),
power=2)
sept <- outer(input[,1], inputNew[,1], "-")
A2 <- hyper$custom.u*(sin(pi*sept))^2
customCov <- hyper$custom.v*exp(-A1-A2)
return(customCov)
}
The second step is to define the first derivative of the log-likelihood with respect to each of the hyperparameters of the covariance kernel.
The name of the functions should look like
Dloglik.custom.w
, where the middle affix is the custom
defined name, and the last letter (i.e. w
) names the vector
of the hyperparameters.
For details about derivatives, see Shi, J. Q., and Choi, T. (2011), “Gaussian Process Regression Analysis for Functional Data”, CRC Press.
Dloglik.custom.w <- function(hyper, input, AlphaQ){
A1 <- distMatSq(input=input, A=as.matrix(exp(hyper$custom.w)), power=2)
Dcov <- - cov.custom(hyper, input)*A1
out <- 0.5*sum(diag(AlphaQ%*%Dcov))
return(out)
}
Dloglik.custom.u <- function(hyper, input, AlphaQ){
sept <- outer(input[,1], input[,1], "-")
A2 <- exp(hyper$custom.u)*(sin(pi*sept))^2
Dcov <- - cov.custom(hyper, input)*A2
out <- 0.5*sum(diag(AlphaQ%*%Dcov))
return(out)
}
Dloglik.custom.v <- function(hyper, input, AlphaQ){
Dcov <- cov.custom(hyper, input)
out <- 0.5*sum(diag(AlphaQ%*%Dcov))
return(out)
}
The third step is to define the second derivatives of the log-likelihood.
D2custom.w <- function(hyper, input, inv.Q, Alpha.Q){
Cov <- cov.custom(hyper, input)
A1 <- distMatSq(input=input, A=as.matrix(exp(hyper$custom.w)), power=2)
D1cov <- -Cov*A1
D2cov <- -(D1cov + Cov)*A1
D2c.w <- D2(D1cov, D2cov, inv.Q, Alpha.Q)
return(D2c.w)
}
D2custom.u <- function(hyper, input, inv.Q, Alpha.Q){
Cov <- cov.custom(hyper, input)
sept <- outer(input[,1], input[,1], "-")
A2 <- exp(hyper$custom.u)*(sin(pi*sept))^2
D1cov <- - Cov*A2
D2cov <- -(D1cov + Cov)*A2
D2c.u <- D2(D1cov, D2cov, inv.Q, Alpha.Q)
return(D2c.u)
}
D2custom.v <- function(hyper, input, inv.Q, Alpha.Q){
out <- cov.custom(hyper, input)
return(out)
}
Finally, we define a function to calculate a diagonal matrix contanining the variance of the customised covariance function. This is used for making predictions at new input points.
fit2 <- gpr(input=input, response=y, Cov='custom',
NewHyper=c('custom.w','custom.u','custom.v'), gamma=2, meanModel='t',
nInitCandidates=50, trace=2, useGradient = F)
sapply(fit2$hyper, exp)
#> custom.u custom.v custom.w vv
#> 0.4299023 15.4127823 0.0009464 0.0677307
Note that now the noise variance vv
estimate is no
longer so small. Both the fitted model and the predictions seem much
more reasonable for this dataset:
#> Predicted values not found, ploting fitted values