Package ‘DataCombine’

October 12, 2022
Title Tools for Easily Combining and Cleaning Data Sets

Description Tools for combining and cleaning data sets, particularly
with grouped and time series data.

Version 0.2.21
Date 2016-04-13
License GPL (>=3)

URL http://CRAN.R-project.org/package=DataCombine

BugReports https://github.com/christophergandrud/DataCombine/issues
Depends R (>=3.0.2)

Imports data.table, dplyr (>= 0.4)

Suggests devtools, testthat

RoxygenNote 5.0.1

NeedsCompilation no

Author Christopher Gandrud [aut, cre]

Maintainer Christopher Gandrud <christopher.gandrud@gmail.com>
Repository CRAN

Date/Publication 2016-04-13 17:59:09

R topics documented:

CasesTable e
change L e e e
CountSpell e e
dMerge e e
DropNA e
FillDown o e
Fillln e
FindDups e
FindReplace e
greplsub. . .o

http://CRAN.R-project.org/package=DataCombine
https://github.com/christophergandrud/DataCombine/issues

2 CasesTable
InsertRow e 11
MoveFront L 12
NaVar e e 13
PercChange e 14
TMEXCEPL o e e e e e e e 15
shift e 16
shiftMA e 17
slide 17
slideMA e 19
SpreadDummy L. e e e 20
StartEnd L e 21
TimeExpand 22
TimeFill e 23
VarDrop o e e 24

Index 25

CasesTable Create reports cases after listwise deletion of missing values for time-
series cross-sectional data.

Description

Create reports cases after listwise deletion of missing values for time-series cross-sectional data.

Usage

CasesTable(data, GroupVar, TimeVar, Vars)

Arguments

data a data frame with the full sample.

GroupVar a character string specifying the variable in data which contains the group IDs.

TimeVar an optional character string specifying the variable in data which contains the
time variable.

Vars a character vector with variables names from data for which you would like to
listwise delete observations with missing values.

Value

If TimeVar is specified then a data frame is returned with three colums. One identifying the
GroupVar and two others specifying each unique value of GroupVar’s first and last observation

time

IfT1i

post-listwise deletion of missing values.

meVar is not specified, then a vector of unique GroupVar post-listwise deletion of missing

values is returned.

change 3

Examples

Create dummy data

ID <- rep(1:4, 4)

time <- rep(2000:2003, 4)

a <- rep(c(1:3, NA), 4)

b <- rep(c(1, NA, 3:4), 4)

Data <- data.frame(ID, time, a, b)

Find cases that have not been listwise deleted
CasesTable(Data, GroupVar = 'ID')

CasesTable(Data, GroupVar '"ID', Vars = 'a')
CasesTable(Data, GroupVar '"ID', TimeVar = '

time', Vars = 'a')

change Calculate the changes (absolute, percent, and proportion) changes
from a specified lag, including within groups

Description

Calculate the changes (absolute, percent, and proportion) changes from a specified lag, including
within groups

Usage
change(data, Var, GroupVar, TimeVar, NewVar, slideBy = -1, type = "percent”,
)
Arguments

data a data frame object.

Var a character string naming the variable you would like to find the percentage
change for.

GroupVar a character string naming the variable grouping the units within which the per-
centage change will be found for (i.e. countries in a time series). If GroupVar is
missing then the entire data frame is treated as one unit.

TimeVar optional character string naming the time variable. If specified then the data is
ordered by Var-TimeVar before finding the change.

NewVar a character string specifying the name for the new variable to place the percent-
age change in.

slideBy numeric value specifying how many rows (time units) to make the percentage
change comparison for. Positive values shift the data up—lead the data.

type character string set at absolute, percent for percentages, or proportion to

find proportions.

arguments passed to slide.

4 CountSpell

Details

Finds the absolute, percentage, or proportion change for over a given time period either within
groups of data or the whole data frame. Important: the data must be in time order and, if groups are
used, group-time order.

Value

a data frame

Examples

Create fake data frame
A<-c(1,1,1,1,1,2,2,2,2,2)
B <- c(1:10)

Data <- data.frame(A, B)

Find percentage change from two periods before
Out <- change(Data, Var = 'B',
type = 'proportion',

NewVar = 'PercentChange',
slideBy = -2)
Out
CountSpell Count spells, including for grouped data
Description

CountSpell is a function that returns a variable counting the spell number for an observation.
Works with grouped data.

Usage

CountSpell(data, TimeVar, SpellVar, GroupVar, NewVar, SpellValue)

Arguments
data a data frame object.
TimeVar a character string naming the time variable.
Spellvar a character string naming the variable with information on when each spell
starts.
GroupVar a character string naming the variable grouping the units experiencing the spells.
NewVar New Var a character string naming the new variable to place the spell counts in.

SpellValue a value indicating when a unit is in a spell. Must match the class of the SpellVar.

dMerge 5

Examples

Create fake data

ID <- sort(rep(seq(1:4), 5))

Time <- rep(1:20)

Dummy <- c¢(1, sample(c(@, 1), size = 19, replace = TRUE))
Data <- data.frame(ID, Time, Dummy)

Find spell for whole data frame

DataSpelll <- CountSpell(Data, TimeVar = 'Time', SpellVar = 'Dummy’,
SpellValue = 1)

head(DataSpelll)

Find spell for each ID group

DataSpell2 <- CountSpell(Data, TimeVar = 'Time', SpellVar = 'Dummy’,
GroupVar = 'ID', SpellValue = 1)

head(DataSpell2)

dMerge Merges 2 data frames and report/drop/keeps only duplicates.

Description

dMerge merges 2 data frames and reports/drops/keeps only duplicates.

Usage

dMerge(datal, data2, by, Var, dropDups = TRUE, dupsOut = FALSE,
fromLast = FALSE, all = FALSE, all.x = all, all.y = all,

sort = TRUE, suffixes = c(”".x", ".y"), incomparables = NULL)
Arguments
datail a data frame. The first data frame to merge.
data2 a data frame. The second data frame to merge.
by specifications of the columns used for merging.
Var depricated.
dropDups logical. Whether or not to drop duplicated rows based on Var. If dropDups =

FALSE then it gives a count of the duplicated rows.

dupsOut logical. If TRUE then a data frame only containing duplicated values is returned
and dropDups is ignored.

fromLast logical indicating if duplication should be considered from the reverse side.
Only relevant if dropDups = TRUE.

6 DropNA

all logical; all = L is shorthand for all.x =L and all.y =L, where L is either TRUE
or FALSE.
all.x logical; if TRUE, then extra rows will be added to the output, one for each row

in x that has no matching row in y. These rows will have NAs in those columns
that are usually filled with values from y. The default is # FALSE, so that only
rows with data from both x and y are included in the output.

all.y logical; analogous to all.x.

sort logical. Should the result be sorted on the by columns?

suffixes a character vector of length 2 specifying the suffixes to be used for making
unique the names of columns in the result which not used for merging (appearing
in by etc).

incomparables values which cannot be matched. See match.

See Also

duplicated, merge

DropNA Drop rows from a data frame with missing values on a given vari-
able(s).

Description

DropNA drops rows from a data frame when they have missing (NA) values on a given variable(s).

Usage

DropNA(data, Var, message = TRUE)

Arguments
data a data frame object.
Var a character vector naming the variables you would like to have only non-missing
(NA) values. If not specified, then all NAs will be dropped from the data frame.
message logical. Whether or not to give you a message about the number of rows that are
dropped.
Source

Partially based on Stack Overflow answer written by donshikin: http://stackoverflow.com/
questions/4862178/remove-rows-with-nas-in-data-frame

http://stackoverflow.com/questions/4862178/remove-rows-with-nas-in-data-frame
http://stackoverflow.com/questions/4862178/remove-rows-with-nas-in-data-frame

FillDown 7

Examples

Create data frame

a <- c(1:4, NA)

b <- c(1, NA, 3:5)

ABData <- data.frame(a, b)

Remove missing values from column a
ASubData <- DropNA(ABData, Var = "a", message = FALSE)

Remove missing values in columns a and b
ABSubData <- DropNA(ABData, Var = c("a", "b"))

Remove missing values in all columns of ABDatat
AllSubData <- DropNA(ABData)

FillDown Fills in missing (NA) values with the previous non-missing value

Description

Fills in missing (NA) values with the previous non-missing value

Usage

FillDown(data, Var)

Arguments

data a data frame. Optional as you can simply specify a vector with Var,

Var the variable in data or a vector you would like to fill down missing (NA) values.

Value

data frame

Examples

Create fake data

id <- c('Algeria', NA, NA, NA, 'Mexico', NA, NA)
score <- rnorm(7)

Data <- data.frame(id, score)

FillDown id
DataOut <- FillDown(Data, 'id')

Not run:
Use group_by and mutate from dplyr to FillDown grouped data, e.g.:
Example <- Example %>% group_by(grouping) %>%

8 Fillln

mutate(NewFilled = FillDown(Var = VarToFill))

End(Not run)

FillIn A function for filling in missing values of a variable from one data
[frame with the values from another variable.

Description

FillIn uses values of a variable from one data set to fill in missing values in another.

Usage

FillIn(D1, D2, Varl, Var2, KeyVar = c("iso2c", "year"),
allow.cartesian = FALSE, KeepD2Vars = FALSE)

Arguments
D1 the data frame with the variable you would like to fill in.
D2 the data frame with the variable you would like to use to fill in D1.
Vari a character string of the name of the variable in D1 you want to fill in.
Var2 an optional character string of variable name in D2 that you would like to use to
fill in. Note: must be of the same class as Var1.
KeyVar a character vector of variable names that are shared by D1 and D2 that can be

used to join the data frames.
allow.cartesian

logical. See the data.table documentation for more details.
KeepD2Vars logical, indicating whether or not to keep the variables from D2 in the output

data frame. The default is KeepD2Vars = FALSE. Hint: avoid having variables in
your D2 data frame that share names with variables in D1 other than the KeyVars

Examples

Create data set with missing values
naDF <- data.frame(a = sample(c(1,2), 100, rep = TRUE),
b = sample(c(3,4), 100, rep = TRUE),
fNA = sample(c(100, 200, 300, 400, NA), 100, rep = TRUE))

Created full data set
fillDF <- data.frame(a = c(1, 2, 1, 2),
b =c(3, 3, 4, 4),
j =c(5, 5, 5, 5),
fFull = c(100, 200, 300, 400))

Fill in missing f's from naDF with values from fillDF
FilledInData <- FillIn(naDF, fillDF, Var1 = "fNA",
Var2 = "fFull”, KeyVar = c("a", "b"))

FindDups 9

FindDups Find duplicated values in a data frame and subset it to either include
or not include them.

Description

Find duplicated values in a data frame and subset it to either include or not include them.

Usage
FindDups(data, Vars, NotDups = FALSE, test = FALSE, ...)
Arguments
data a data frame to select the duplicated values from.
Vars character vector of variables in data to find duplicated values on.
NotDups logical. If TRUE then a data frame without duplicated values is returned.
test logical. If TRUE then the function will return an error if there are duplicated
values.
arguments to pass to duplicated.
Value

a data frame, unless test = TRUE and there are duplicates.

Examples

Data <- data.frame(ID = c(1, 1, 2, 2), Value = c(1, 2, 3, 4))

FindDups(Data, Vars = '"ID')

FindReplace Replace multiple patterns found in a character string column of a data
frame

Description
FindReplace allows you to find and replace multiple character string patterns in a data frame’s
column.

Usage

FindReplace(data, Var, replaceData, from = "from”, to = "to",
exact = TRUE, vector = FALSE)

10

Arguments

data

Var

replaceData

from

to

exact

vector

Examples

grepl.sub

data frame with the column you would like to replace string patterns.

character string naming the column you would like to replace string patterns.
The column must be of class character or factor.

a data frame with at least two columns. One contains the patterns to replace and
the other contains their replacement. Note: the pattern and its replacement must
be in the same row.

character string naming the column with the patterns you would like to replace.
character string naming the column with the the pattern replacements.

logical. Indicates whether to only replace exact pattern matches (TRUE) or not
(FALSE).

logical. If TRUE then the replacement is returned as a single vector. If FALSE
then the whole data frame is returned.

Create original data
ABData <- data.frame(a = c("London, UK", "Oxford, UK", "Berlin, DE",

"Hamburg, DE", "Oslo, NO"),
b=c(8, 0.1, 3, 2, 1))

Create replacements data frame
Replaces <- data.frame(from = c("UK", "DE"), to = c("England”, "Germany"))

Replace patterns and return full data frame

nan

ABNewDF <- FindReplace(data = ABData, Var = "a", replaceData = Replaces,

from = "from”, to = "to"”, exact = FALSE)

Replace patterns and return the Var as a vector
ABNewVector <- FindReplace(data = ABData, Var = "a", replaceData = Replaces,

from = "from”, to = "to", vector = TRUE)

grepl.sub

Subset a data frame if a specified pattern is found in a character string

Description

Subset a data frame if a specified pattern is found in a character string

Usage

grepl.sub(data, pattern, Var, keep.found = TRUE, ...)

InsertRow 11

Arguments
data data frame.
pattern character vector containing a regular expression to be matched in the given char-
acter vector.
Var character vector of the variables that the pattern should be found in.
keep. found logical. whether or not to keep observations where the pattern is found (TRUE)
or not found (FALSE).
arguments to pass to grepl.
Examples

Create data frame

ABData <- data.frame(a = c("London, UK", "Oxford, UK", "Berlin, DE",
"Hamburg, DE", "Oslo, NO"),
b =c(8, 0.1, 3, 2, 1))

Keep only data from Germany (DE)
ABGermany <- grepl.sub(data = ABData, pattern = "DE"”, Var = "a")

InsertRow Inserts a new row into a data frame

Description

Inserts a new row into a data frame

Usage

InsertRow(data, NewRow, RowNum = NULL)

Arguments
data a data frame to insert the new row into.
NewRow a vector whose length is the same as the number of columns in data.
RowNum numeric indicating which row to insert the new row as. If not specified then the
new row is added to the end using a vanilla rbind call.
Source

The function largely implements: http://stackoverflow.com/a/11562428

http://stackoverflow.com/a/11562428

12 MoveFront

Examples

Create dummy data
A <- B <- C <- D <- sample(1:20, size = 20, replace = TRUE)
Data <- data.frame(A, B, C, D)

Create new row
New <- rep(1000, 4)

Insert into 4th row
Data <- InsertRow(Data, NewRow = New, RowNum = 4)

MoveFront Move variables to the front of a data frame.

Description

MoveFront moves variables to the front of a data frame.

Usage

MoveFront(data, Var, exact = TRUE, ignore.case = NULL, fixed = NULL)

Arguments

data a data frame object containing the variable you want to move.

Var a character vector naming the variables you would like to move to the front of
the data frame. The order of the variables should match the order you want
them to have in the data frame, i.e. the first variable in the vector will be the first
variable in the data frame.

exact logical. If TRUE (the default), only exact variable names are matched.

ignore.case logical. If FALSE, the variable name matching is case sensitive and if TRUE, case
is ignored during matching. Only available when exact = FALSE.

fixed logical. If TRUE, pattern is a string to be matched as is. Overrides all conflicting
arguments. Only available when exact = FALSE.

Source

Based primarily on a Stack Overflow answer written by rcs: http://stackoverflow.com/questions/
3369959/moving-columns-within-a-data-frame-without-retyping.

http://stackoverflow.com/questions/3369959/moving-columns-within-a-data-frame-without-retyping
http://stackoverflow.com/questions/3369959/moving-columns-within-a-data-frame-without-retyping

NaVar 13

Examples

Create fake data
A<-B<-C<-1:50
0ldOrder <- data.frame(A, B, C)

Move C to front
NewOrder1 <- MoveFront(0ldOrder, "C")
names (NewOrder1)

Move B and A to the front
NewOrder2 <- MoveFront(0ldOrder, c("B", "A"))
names (NewOrder2)

Non-exact matching (example from Felix Hass)

Create fake data

df <- data.frame(dummy = c(1,0), Name = c("Angola”, "Chad"),
DyadName = c("Government of Angola - UNITA",
"Government of Chad - FNT"),
Year = c("2002", "1992"))

df <- MoveFront(df, c(”Name”, "Year"), exact = FALSE)
names (df)

df <- MoveFront(df, c(”"Name", "Year"), exact = TRUE)

names (df)
NaVar Create new variable(s) indicating if there are missing values in other
variable(s)
Description

Create new variable(s) indicating if there are missing values in other variable(s)

Usage

NaVar(data, Var, Stub = "Miss_", reverse = FALSE, message = TRUE)

Arguments
data a data frame object.
Var a character vector naming the variable(s) within which you would like to identify
missing values.
Stub a character string indicating the stub you would like to append to the new vari-

ables’ name(s).

14

reverse

message

Examples

PercChange

logical. If reverse = FALSE then missing values are coded as 1 and non-missing
values are coded as @. If reverse = TRUE then missing values are coded as @ and
non-missing values are coded as 1.

logical. Whether or not to give you a message about the names of the new
variables that are created.

Create data frame
a<-c(1, 2, 3, 4, NA)

b <- c(1, NA, 3, 4, 5)
ABData <- data.frame(a, b)

Create varibles indicating missing values in columns a and b
ABDatal <- NaVar(ABData, Var = c('a', 'b'))

Create varible indicating missing values in columns a with reversed dummy
ABData2 <- NaVar(ABData, Var = 'a', reverse = TRUE, message = FALSE)

PercChange

Calculate the percentage change from a specified lag, including within
groups

Description

Calculate the percentage change from a specified lag, including within groups

Usage
PercChange(data, Var, GroupVar, NewVar, slideBy = -1, type = "percent”, ...)
Arguments

data a data frame object.

Var a character string naming the variable you would like to find the percentage
change for.

GroupVar a character string naming the variable grouping the units within which the per-
centage change will be found for (i.e. countries in a time series). If GroupVar is
missing then the entire data frame is treated as one unit.

NewVar a character string specifying the name for the new variable to place the percent-
age change in.

slideBy numeric value specifying how many rows (time units) to make the percentage
change comparison for. Positive values shift the data up—lead the data.

type character string set at either percent for percentages or proportion to find

proportions.

arguments passed to slide.

rmExcept 15

Details

Finds the percentage or proportion change for over a given time period either within groups of
data or the whole data frame. Important: the data must be in time order and, if groups are used,
group-time order.

Value

a data frame

Examples

Create fake data frame

A<-cQ, 1,1,1,1, 2, 2,2, 2, 2)
B <- c(1:10)

Data <- data.frame(A, B)

Find percentage change from two periods before
Out <- PercChange(Data, Var = 'B',
type = 'proportion',

NewVar = 'PercentChange',
slideBy = -2)
Out
rmExcept Remove all objects from a workspace except those specified by the
user.
Description

rmExcept removes all objects from a workspace except those specified by the user.

Usage

rmExcept(keepers, envir = globalenv(), message = TRUE)

Arguments
keepers a character vector of the names of object you would like to keep in your workspace.
envir the environment to remove objects from. The default is the global environment
(i.e. globalenv).
message logical, whether or not to return a message informing the user of which objects

were removed.

16 shift

Examples
Create objects
A<-1; B<-2; C<-3

Remove all objects except for A
rmExcept ("A")

Show workspace

IsO

shift A function for creating lag and lead variables.

Description

The function shifts a vector up or down to create lag or lead variables. Note: your data needs to be
sorted by date. The date should be ascending (i.e. increasing as it moves down the rows).

Usage

shift(VarVect, shiftBy, reminder = TRUE)

Arguments
VarVect a vector you would like to shift (create lag or lead).
shiftBy numeric value specifying how many rows (time units) to shift the data by. Neg-
ative values shift the data down-lag the data. Positive values shift the data up—
lead the data.
reminder logical. Whether or not to remind you to order your data by the GroupVar and
time variable before running shift.
Details

shift a function for creating lag and lead variables, including for time-series cross-sectional data.

Value
a vector
Source
Largely based on TszKin Julian’s shift function: http://ctszkin.com/2012/03/11/generating-a-laglead-variable

See Also

slide

http://ctszkin.com/2012/03/11/generating-a-laglead-variables/

shift MA

17

shiftMA

Internal function for slideMA

Description

Internal function for slideMA

Usage

shiftMA(x, shiftBy, Abs, reminder)

Arguments
X vector
shiftBy numeric
Abs numeric
reminder logical
slide A function for creating lag and lead variables, including for time-
series cross-sectional data.
Description

The function slides a column up or down to create lag or lead variables. If GroupVar is specified
it will slide Var for each group. This is important for time-series cross-section data. The slid data
is placed in a new variable in the original data frame. Note: your data needs to be sorted by date.
The date should be ascending (i.e. increasing as it moves down the rows). Also, the time difference
between rows should be constant, e.g. days, months, years.

Usage

slide(data, Var, TimeVar, GroupVar, NewVar, slideBy = -1,
keepInvalid = FALSE, reminder = TRUE)

Arguments

data
Var

TimeVar

GroupVar

a data frame object.
a character string naming the variable you would like to slide (create lag or lead).

optional character string naming the time variable. If specified then the data is
ordered by Var-TimeVar before sliding.

a character string naming the variable grouping the units within which Var will
be slid. If GroupVar is missing then the whole variable is slid up or down. This
is similar to shift, though shift returns the slid data to a new vector rather
than the original data frame.

18 slide

NewVar a character string specifying the name for the new variable to place the slid data
in.
slideBy numeric value specifying how many rows (time units) to shift the data by. Neg-

ative values slide the data down-lag the data. Positive values shift the data
up-lead the data.

keepInvalid logical. Whether or not to keep observations for groups for which no valid
lag/lead can be created due to an insufficient number of time period observa-
tions. If TRUE then these groups are returned to the bottom of the data frame and
NA is given for their new lag/lead variable value.

reminder logical. Whether or not to remind you to order your data by the GroupVar and
time variable before running slide, plus other messages.
Details

slide a function for creating lag and lead variables, including for time-series cross-sectional data.

Value

a data frame

Source

Partially based on TszKin Julian’s shift function: http://ctszkin.com/2012/03/11/generating-a-laglead-variable

See Also

shift, dplyr

Examples

Create dummy data

A <- B <- C <- sample(1:20, size = 20, replace = TRUE)
ID <- sort(rep(seq(1:4), 5))

Data <- data.frame(ID, A, B, C)

Lead the variable by two time units
DataSlidl <- slide(Data, Var = 'A', NewVar = 'AlLead', slideBy = 2)

Lag the variable one time unit by ID group
DataSlid2 <- slide(data = Data, Var = 'B', GroupVar = 'ID',
NewVar = 'BlLag', slideBy = -1)

Lag the variable one time unit by ID group, with invalid lags
Data <- Data[1:16,]

DataSlid3 <- slide(data = Data, Var = 'B', GroupVar = 'ID',
NewVar = 'BLag', slideBy = -2, keepInvalid = TRUE)

http://ctszkin.com/2012/03/11/generating-a-laglead-variables/

slideMA 19

slideMA Create a moving average for a period before or after each time point
for a given variable

Description

Create a moving average for a period before or after each time point for a given variable

Usage

slideMA(data, Var, GroupVar, periodBound = -3, offset = 1, NewVar,
reminder = TRUE)

Arguments

data a data frame object.

Var a character string naming the variable you would like to create the lag/lead mov-
ing averages from.

GroupVar a character string naming the variable grouping the units within which Var will
be turned into slid moving averages. If GroupVar is missing then the whole
variable is slid up or down and moving averages will be created. This is similar
to shift, though shift returns the slid data to a new vector rather than the
original data frame.

periodBound integer. The time point for the outer bound of the time period over which to
create the moving averages. The default is -3, i.e. the moving average period
begins three time points before a given time point. Can also be positive for
leading moving averages.

offset integer. How many time increments away from a given time point to begin the
moving average time period. The default is 1. Effectively controls how wide the
moving average window is in the other direction of periodBound. Note: must
be positive.

NewVar a character string specifying the name for the new variable to place the slid data
in.

reminder logical. Whether or not to remind you to order your data by the GroupVar and
time variable before running slideMA.

Details

slideMA is designed to give you more control over the window for creating the moving average.
Think of the periodBound and of fset arguments working together. If for example, periodBound
= -3 and of fset = 1 then the variable of interest will be lagged by 2 then a moving average window
of three time increments around the lagged variable is found.

Value

a data frame

20 SpreadDummy

See Also
shift, slide, dplyr

Examples

Create dummy data

A <- B <- C <- sample(1:20, size = 20, replace
ID <- sort(rep(seq(1:4), 5))

Data <- data.frame(ID, A, B, C)

TRUE)

Lead the variable by two time units
DataSlidMA1 <- slideMA(Data, Var = 'A', NewVar = 'ALead_MA',
periodBound = 3)

Lag the variable one time unit by ID group
DataSlidMA2 <- slideMA(data = Data, Var = 'B', GroupVar = 'ID',
NewVar = 'BLag_MA', periodBound = -3, offset = 2)

SpreadDummy Spread a dummy variable (1’s and 0’) over a specified time period and
for specified groups

Description

Spread a dummy variable (1°s and 0’) over a specified time period and for specified groups

Usage

SpreadDummy (data, Var, GroupVar, NewVar, spreadBy = -2, reminder = TRUE)

Arguments

data a data frame object.

Var a character string naming the numeric dummy variable with values 0 and 1 that
you would like to spread. Can be either spread as a lag or lead.

GroupVar a character string naming the variable grouping the units within which Var will
be spread If GroupVar is missing then the whole variable is spread up or down.
This is similar to shift, though shift slides the data and returns it to a new
vector rather than the original data frame.

NewVar a character string specifying the name for the new variable to place the spread
dummy data in.

spreadBy numeric value specifying how many rows (time units) to spread the data over.
Negative values spread the data down-lag the data. Positive values spread the
data up—lead the data.

reminder logical. Whether or not to remind you to order your data by the GroupVar and

time variable before running SpreadDummy.

StartEnd 21

See Also

slide

Examples

Create dummy data

ID <- sort(rep(seq(1:4), 5))

NotVar <- rep(1:5, 4)

Dummy <- sample(c(@, 1), size = 20, replace = TRUE)
Data <- data.frame(ID, NotVar, Dummy)

Spread
DataSpreadl <- SpreadDummy(data = Data, Var = 'Dummy',
spreadBy = 2, reminder = FALSE)

DataSpread2 <- SpreadDummy(data = Data, Var = 'Dummy', GroupVar = 'ID',
spreadBy = -2)

StartEnd Find the starting and ending time points of a spell

Description

StartEnd finds the starting and ending time points of a spell, including for time-series cross-
sectional data. Note: your data needs to be sorted by date. The date should be ascending (i.e.
increasing as it moves down the rows).

Usage
StartEnd(data, SpellVar, GroupVar, SpellValue, OnlyStart = FALSE, ...)
Arguments
data a data frame object.
Spellvar a character string naming the variable with information on when each spell
starts.
GroupVar a character string naming the variable grouping the units experiencing the spells.
If GroupVar is missing then .
Spellvalue a value indicating when a unit is in a spell. If SpellValue is missing then any
change in Var’s value will be treated as the start/end of a spell. Must specify if
OnlyStart = TRUE.
OnlyStart logical for whether or not to only add a new Spell_Start variable. Please see

the details.

Aguments to pass to slide.

22 TimeExpand

Value
a data frame. If OnlyStart = FALSE then two new variables are returned:

 Spell_Start: The time period year of a given spell.
* Spell_End: The end time period of a given spell.

If OnlyStart = TRUE then only Spell_Start is added. This variable includes both 1’s for the start
of a new spell and for the start of a *gap spell’, i.e. a spell after Spell_End.

See Also
slide

Examples

Create fake data

ID <- sort(rep(seq(1:4), 5))

Time <- rep(1:5, 4)

Dummy <- c¢(1, sample(c(@, 1), size = 19, replace = TRUE))
Data <- data.frame(ID, Time, Dummy)

Find start/end of spells denoted by Dummy = 1
DataSpell <- StartEnd(Data, SpellVar = 'Dummy', GroupVar = 'ID',
TimeVar = 'Time', SpellValue = 1)

head(DataSpell)
TimeExpand Expands a data set so that it includes an observation for each time
point in a sequence. Works with grouped data.
Description

Expands a data set so that it includes an observation for each time point in a sequence. Works with
grouped data.

Usage

TimeExpand(data, GroupVar, TimeVar, begin, end, by = 1)

Arguments
data a data frame.
GroupVar the variable in data that signifies the group variable.
TimeVar the variable in data that signifies the time variable. The sequence will be ex-

panded between its minimum and maximum value if begin and end are not
specified.

TimeFill 23

begin numeric of length 1. Specifies beginning time point. Only relevant if end is
specified.

end numeric of length 1. Specifies ending time point. Only relevant if begin is
specified.

by numeric or character string specifying the steps in the TimeVar sequence. Can

use "month”, "year" etc for POSIXt data.

Examples
Data <- data.frame(country = c(”"Cambodia”, "Camnodia”, "Japan”, "Japan"),
year = c(1990, 2001, 1994, 2012))
ExpandedData <- TimeExpand(Data, GroupVar = 'country', TimeVar = 'year')
TimeFill Creates a continuous Unit-Time-Dummy data frame from a data frame
with Unit-Start-End times
Description

Creates a continuous Unit-Time-Dummy data frame from a data frame with Unit-Start-End times

Usage

TimeFill(data, GroupVar, StartVar, EndVar, NewVar = "TimeFilled”,
NewTimeVar = "Time", KeepStartStop = FALSE)

Arguments

data a data frame with a Group, Start, and End variables.

GroupVar a character string naming the variable grouping the units within which the new
dummy variable will be found.

StartVar a character string indicating the variable with the starting times of some series.

EndVar a character string indicating the variable with the ending times of some series.

NewVar a character string specifying the name of the new dummy variable for the series.
The default is TimeFilled.

NewTimeVar a character string specifying the name of the new time variable. The default is
Time.

KeepStartStop logical indicating whether or not to keep the StartVar and EndVar variables in
the output data frame.

Value

Returns a data frame with at least three columns, with the GroupVar, NewTimeVar, and a new
dummy variable with the name specified by NewVar. This variable is 1 for every time increment
between and including StartVar and EndVar. It is @ otherwise.

Examples

Create fake data

Country = c('Panama', 'Korea', 'Korea', 'Germany', 'Finland')

Start = c(1995, 1980, 2004, 2000, 2012)
End = c(1995, 2001, 2010, 2002, 2014)

Data <- data.frame(Country, Start, End)
TimeFill
FilledData <- TimeFill(Data, GroupVar = 'Country',

StartVar = 'Start', EndvVar = 'End')

Show selection from TimeFill-ed data

FilledData[90:100,]

VarDrop

VarDrop Drop one or more variables from a data frame.

Description

VarDrop drops one or more variables from a data frame.

Usage

VarDrop(data, Var)

Arguments

data a data frame.

Var character vector containing the names of the variables to drop.

Examples

Create dummy data

<- c(1, 2, 3, 4, NA)

<-c(1, NA, 3, 4, 5)

<- c(1:5)

<- c(1:5)

ABCData <- data.frame(a, b, c, d)

o 0 T o

Drop a and b
DroppedData <- VarDrop(ABCData, c('b',

')

Index

x internals StartEnd, 21
shiftMA, 17
TimeExpand, 22
CasesTable, 2 TimeFill, 23
change, 3
CountSpell, 4 VarDrop, 24

data.table, 8
dMerge, 5
dplyr, 18, 20
DropNA, 6
duplicated, 6, 9

environment, /5

FillDown, 7
FilllIn, 8
FindDups, 9
FindReplace, 9

globalenv, 15
grepl, 11
grepl.sub, 10

InsertRow, 11

match, 6
merge, 6
MoveFront, 12

NaVar, 13
PercChange, 14

rbind, /1
rmExcept, 15

shift, 16, 17-20
shiftMA, 17

slide, 3, 14, 16, 17, 20-22
slideMA, 19
SpreadDummy, 20

25

	CasesTable
	change
	CountSpell
	dMerge
	DropNA
	FillDown
	FillIn
	FindDups
	FindReplace
	grepl.sub
	InsertRow
	MoveFront
	NaVar
	PercChange
	rmExcept
	shift
	shiftMA
	slide
	slideMA
	SpreadDummy
	StartEnd
	TimeExpand
	TimeFill
	VarDrop
	Index

