Package ‘ConFluxPro’

July 10, 2025
Type Package
Title Soil Gas Analysis and Flux Modeling
Version 1.3.1

Description Model soil gas fluxes with the Flux-Gradient Method. It includes
functions for data handling, a forward and an inverse model for flux
modeling and methods for calibration and uncertainty estimation. For more
details see Gartiser et al. (2025a) <doi:10.21105/joss.08094> and Gartiser
et al. (2025b) <doi:10.1111/ejss.70126>.

Imports stats (>=4.1.0), lubridate (>= 1.9.2), tibble (>=3.0.1),
dplyr (>= 1.1.1), magrittr (>= 2.0.3), splines (>= 4.1.0),
tidyr (>= 1.3.0), rlang (>= 1.1.0), furrr (>= 0.2.3), progressr
(>=0.10.0), ggplot2 (>= 3.4.2), scales (>= 1.2.1), lifecycle

License GPL (>=3)

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

Depends R (>=4.1.0)

Suggests rmarkdown, testthat (>= 3.0.0), knitr, DiagrammeR, purrr

VignetteBuilder knitr, rmarkdown

URL https://confluxpro.valentingartiser.de/,
https://github.com/valentingar/ConFluxPro,
https://valentingar.github.io/ConFluxPro/

BugReports https://github.com/valentingar/ConFluxPro/issues
NeedsCompilation no

Author Valentin Gartiser [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0001-5320-374X>),
Martin Maier [ctb] (ORCID: <https://orcid.org/0000-0002-7959-0108>),
Verena Lang [ctb]

Maintainer Valentin Gartiser <code@valentingartiser.de>
Repository CRAN
Date/Publication 2025-07-10 15:20:21 UTC

https://doi.org/10.21105/joss.08094
https://doi.org/10.1111/ejss.70126
https://confluxpro.valentingartiser.de/
https://github.com/valentingar/ConFluxPro
https://valentingar.github.io/ConFluxPro/
https://github.com/valentingar/ConFluxPro/issues
https://orcid.org/0000-0001-5320-374X
https://orcid.org/0000-0002-7959-0108

2 Contents

Contents
alternate e e e e e 3
base dat L e 4
DOOLSLIap_eITOr v o e e e e e e 5
cfp_altapply 8
cfp_dat e e 8
cfp_fgmod e 10
cfp_fgres . . . e 11
cfp_gasdata 12
cfp_layered_profile 13
cfp_layers_map 14
cfp_parameter e 16
cfp_pfmod e e 16
cfp_pfres L e 17
cfp_profile e 18
cfp_run_map e 19
cfp_soilphys 20
check_soilphys L 22
combine_models e 22
complete_soilphys 23
DO_massman e e e e e 25
deepflux e e 25
depth_structure L e e 26
discretize_depth 27
DSDO e 30
efflux e 31
EITOr_CONCENTIAtION+ © v v v v e e e e e e e e e e e e e e e s e s 32
evaluate_models e 34
EXITACIOTS . . . o v v v e i et e 35
fg flux . . . o e 38
filter e e e 39
lux . e 40
gasdata 41
harm L e 41
layers_map e e e e e e e e e 42
N_ZIOUPS « v v v v v e 42
plot_profile e e 43
Production e e e e e e 44
pro_flux 45
TINSE . v v v v e e e e e e e e e e e e 46
TUN_INAD « ¢ o v v v v e e e e e e e e e e e e e e e e e e 47
scale_min_median L e e e 49
SCASOM & v v v v v v e 49
sobol_calc_indices e e 50
sobol_run_map e e e e 51
soildiff L 53

soilphys 54

alternate 3

SOIltEMP e e e e e 54
sollwater L e e e e 55
UNIQUE_ZASES . -« « « o v e 55
Index 56
alternate Run parameter variation
Description

Alternate cfp_pfres() / cfp_fgres() models for sensitivity analysis and more.

Usage

alternate(
X)
f,
run_map,
return_raw = TRUE,
error_funs = NULL,
error_args = NULL

)

alternate_model(run_map, x, f)

Arguments
X A cfp_pfres or cfp_fgres model result.
f A function taking in a soilphys object and recalculates the relevant columns. See
complete_soilphys().
run_map A data.frame created by run_map () with the necessary information how the data
is to be changed with each distinct run_id.
return_raw Should the models be returned as is, or after applying any error_funs. Default
is TRUE - exporting the models.
error_funs A list of functions to be applied after flux calculation if return_raw == FALSE.
This can be used to output not the models but quality parameters instead. Output
must contain the column RMSE.
error_args A list of additional function arguments to be passed to any of the error_funs.
Must match the length of error_funs
Details

alternate_model() is used internally to change and rerun one model, but can also be used to
update a model with a given unique run_map, e.g. by filtering the best run_id from the original
run_map.

4 base_dat

Value

A list of type cfp_altres(), each entry an updated model.

Examples

PROFLUX <- ConFluxPro::base_dat |>
filter(site == "site_a") |> # use only 'site_a' for example
pro_flux()

Create a cfp_run_map where TPS is changed between 90 % and 110 %
of the original value for 2 runs.
my_run_map <-
cfp_run_map(
PROFLUX,
list("TPS" = ¢(0.9, 1.1)),
"factor",
n_runs = 2)

run the new models by providing a function ~f~

that updates the soilphys data.frame.

alternate(
X = PROFLUX,
f = \(x) complete_soilphys(x, "a+AFPS*b", quiet = TRUE),
run_map = my_run_map)

base_dat Example cfp_dat object

Description

An example cfp_dat () object that combines all other example data.

Usage

base_dat

Format

A cfp_dat() object as a list with

profiles The profiles of the data.
gasdata The gasdata object.
soilphys The soilphys object.

layers_map The layers_map object.

bootstrap_error

bootstrap_error Estimate model uncertainty

Description

Estimate model uncertainty

Usage

bootstrap_error(

)

X,

n_samples = 50,

sd_x_ppm = NULL,
n_replicates = NULL,
sample_from = "gasdata”,
rep_cols = NULL

S3 method for class 'cfp_altres'
bootstrap_error(

)

X,
n_samples = 50,

sd_x_ppm = NULL,
n_replicates = NULL,
sample_from = "gasdata”,
rep_cols = NULL

S3 method for class 'cfp_dat'
bootstrap_error(

)

X,
n_samples = 50,

sd_x_ppm = NULL,
n_replicates = NULL,
sample_from = "gasdata”,
rep_cols = NULL

S3 method for class 'cfp_fgmod'
bootstrap_error(

X,

n_samples = 50,

sd_x_ppm = NULL,
n_replicates = NULL,
sample_from = "gasdata”,
rep_cols = NULL

6 bootstrap_error

S3 method for class 'cfp_pfmod'
bootstrap_error(
X7
n_samples = 50,
sd_x_ppm = NULL,
n_replicates = NULL,
sample_from = "gasdata”,
rep_cols = NULL

)

make_bootstrap_model(
X,
n_samples = 50,
sd_x_ppm = NULL,
n_replicates = NULL,
sample_from = "gasdata”,
rep_cols = NULL

)

S3 method for class 'cfp_pfmod'
make_bootstrap_model (
X!
n_samples = 50,
sd_x_ppm = NULL,
n_replicates = NULL,
sample_from = "gasdata”,
rep_cols = NULL

)

calculate_bootstrap_error(x, y)

S3 method for class 'cfp_pfmod'
calculate_bootstrap_error(x, y)

Arguments
X A cfp_pfres model result from a call to pro_flux().
n_samples The number of samples to take in the bootstrapping.
sd_x_ppm An optional estimate of the standard deviation of x_ppm. Can be either

* asingle value applied equally to all

* a data.frame with a column of the same name that maps a value to every
observation depth. See depth_structure() for an easy way to create it.

* be provided as its own column already present in x$gasdata.
n_replicates The number of replicates to be generated if sd_x_ppm is set.

sample_from From which dataset to sample the bootstrapping dataset. Can either be 'gasdata’
or 'soilphys' or 'both'.

bootstrap_error 7

rep_cols The id_cols that represent repetitions. If removed, the repetitions in soilphys of
each profile must match in their structure exactly.
y The result of the bootstrap model.
Value

x with added columns DELTA_flux and DELTA_prod as an estimate of the error of of the corre-
sponding columns in the same units.

General procedure

bootstrap_error() is mostly a wrapper around two functions that can also be run separately.

In make_bootstrap_model(), for sample_from= "gasdata" the gasdata concentration data is
resampled for every depth and profile a total number of n_samples. This is done by randomly
sampling the observations at each depth without changing the number of observations but while
allowing replacing. If rep_cols are given, these columns are removed from the id_cols and the
resulting profiles combined as one.

For sample_from = "soilphys”, the soilphys data is combined using the rep_cols as repetitions.
Among every remaining profile and depth, one observation across all repetitions is chosen for each
of n_samples. sample_from = "both" applies both methods above. Each newly sampled profile is
identifiable by the added bootstrap_id column which is also added to id_cols.

After this new model is run again, the bootstap error is calculated in calculate_bootstrap_error().
This is the standard deviation of the production and flux parameters across all bootstrapped model
runs and is calculated for each profile and layer of the original model, or for each distinct profile in
the new model without rep_cols. These are returned together with the mean values of prod, flux
and F@ across all runs in the PROFLUX data.frame and can thereby be extracted by efflux() and
production().

Artificial observations in gasdata

If there are not enough observations per depth (e.g.) because there is only one measurement per
depth, it is possible to create artificial observations by providing n_replicates and sd_x_ppm.
Here, every depth of every profile is first averaged to its mean (redundant if there is only one
observation). Then, a random dataset of n_replicates observations is generated that is normally
distributed around the mean with a standard deviation (in ppm) of sd_x_ppm. These observations
are then resampled as described above. Note that this error should be representative of the sampling
error in the field and not the measurement error of the measurement device, which is much lower.

Examples

PROFLUX <- pro_flux(ConFluxPro: :base_dat)
PROFLUX_BSE <- bootstrap_error (PROFLUX)
efflux (PROFLUX_BSE)

PROFLUX_BSE <- bootstrap_error(PROFLUX, n_replicates = 5, sd_x_ppm = 25)
efflux (PROFLUX_BSE)

make_bootstrap_model (PROFLUX) # internal

8 cfp_dat

cfp_altapply Apply a function over a list of models

Description

Apply a function to a list of cfp_pfres pr cfp_fgres objects stored in an cfp_altres object. This can
be used to summarise alternate() results.

Usage
cfp_altapply(X, FUN, ...)
Arguments

X Either a cfp_altres object or a list.

FUN the function to be applied to each element of X: see ‘Details’. In the case of
functions like +, %*%, the function name must be backquoted or quoted.
optional arguments to FUN.

Value

data.frame with the results of FUN bound together with added column run_id as identifier of the
original list elements.

Examples

PROFLUX <- ConFluxPro::base_dat |> pro_flux()
model_list <- list('1' = PROFLUX, '2' = PROFLUX)

cfp_altapply(model_list, efflux)

cfp_dat Model input data

Description

cfp_dat is the essential object class that binds all necessary input data to run a ConFluxPro model.
It automatically combines the different datasets and checks them for validity. It may split soilphys
layers to correspond with layers_map and gasdata depths.

cfp_dat 9
Usage

cfp_dat(gasdata, soilphys, layers_map)

as_cfp_dat(x)

S3 method for class 'cfp_dat'
as_cfp_dat(x)

Arguments
gasdata A cfp_gasdata object created by running cfp_gasdata().
soilphys A cfp_soilphys object created by running cfp_soilphys().
layers_map A cfp_layers_map object created by running cfp_layers_map.
X An object of class cfp_dat

Value

A cfp_dat object with the following parameters:

gasdata The gasdata object with added column "gd_id" that is unique for each profile.

soilphys The soilphys object with added columns "sp_id" that is unique for each profile, "step_id"
indicating the position of each step from the bottom up, "height" in m of each layer, "pmap"
indicating which layer it belongs to from the bottom up. Potentially, some original steps were
split to account for the depths within gasdata or layers_map.

layers_map The layers_map object with added column "group_id" indicating each unique group
of the same layer parameterization set by layers_map.

profiles A data.frame where each row indicates one unique profile that is characterised by all
id_cols present in the original input as well as the corresponding "gd_id", "sp_id", and
"group_id". Each row has a unique identifier "prof_id".

id_cols A character vector of all columns that identify a profile uniquely.

See Also

Other data formats: cfp_gasdata(), cfp_layered_profile(), cfp_layers_map(), cfp_profile(),
cfp_soilphys()

Examples

gasdata <- cfp_gasdata(
ConFluxPro: :gasdata,
id_cols = c("site", "Date"))
soilphys <- cfp_soilphys(
ConFluxPro: :soilphys,
id_cols = c("site", "Date"))
layers_map <-
cfp_layers_map(
ConFluxPro: :layers_map,
gas = "C02",

10

lowlim = @,
highlim = 1000,
id_cols = "site")

base_dat <- cfp_dat(gasdata, soilphys, layers_map)

filter similar to dplyr::fliter
filter(base_dat, site == "site_a")
filter(base_dat, prof_id %in% 1:5)

coersion from derived objects
PROFLUX <- pro_flux(base_dat)

as_cfp_dat (PROFLUX)

cfp_fgmod

cfp_fgmod

Model frame for fg_flux

Description

An S3 class for fg_flux() models. The class inherits from cfp_dat and adds any model specific

parameters.
Usage
cfp_fgmod(
X y
gases = unique_gases(x),
modes = "LL",
param = c("c_air”, "DS"),
funs = c("arith”, "harm")
)
Arguments
X A cfp_dat object with all the necessary input datasets.
gases (character) A character vector defining the gases for which fluxes shall be cal-
culated.
modes (character) A character vector specifying mode(s) for dedz calculation. Can be
HLLII’IILS”’”EFII-

LL local linear approach: within each layer a linear model is evaluated of con-

centration over the depth.

LS linear spline approach: A linear spline is fitted over the complete profile

with nodes at the layer intersections.

EF exponential fit approach: An exponential function of form y=a+b*x”c is fit

of concentration against depth. Using the first derivative of that function
the concentration gradient is evaluated for each layer.

cfp_fgres 11

DA exponential fit approach: An exponential function of form y=a+bx (1-exp(-a*x))
is fit of concentration against depth. Using the first derivative of that func-
tion the concentration gradient is evaluated for each layer. From Davidson

(2006).
param (character) A vector containing the the parameters of soilphys, for which means
should be calculated, must contain "c_air" and "DS", more parameters may help
interpretation.
funs (character) A vector defining the type of mean to be used for each parameter in

param. One of "arith" or "harm".

Value

A cfp_fgmod object. This inherits from cfp_dat() and adds model specific parameters.

References

DAVIDSON, E. A, SAVAGE, K. E., TRUMBORE, S. E., & BORKEN, W. (2006). Vertical parti-
tioning of CO2 production within a temperate forest soil. In Global Change Biology (Vol. 12, Issue
6, pp. 944-956). Wiley. https://doi.org/10.1111/j.1365-2486.2005.01142.x

See Also

Other model frames: cfp_altres(), cfp_fgres(), cfp_pfmod(), cfp_pfres()

Examples
cfp_fgmod(ConFluxPro: :base_dat)
coercion from other object types (internal)

fg_flux(ConFluxPro: :base_dat) |>
as_cfp_fgmod()

cfp_fgres Model result of fg_flux

Description
A function to create an object of class cfp_fgres. This is the central result class generated by running
fg_flux(). Intended for internal use only.

Usage
cfp_fgres(x, y)

Arguments

X A valid cfp_fgmod object
y The corresponding FLUX data. frame.

12 cfp_gasdata

Value

A cfp_fgres object. This inherits from cfp_fgmod().

See Also

Other model frames: cfp_altres(), cfp_fgmod(), cfp_pfmod(), cfp_pfres()

Examples

FLUX <- fg_flux(ConFluxPro::base_dat)

cfp_fgres(
cfp_fgmod(ConFluxPro: :base_dat),
FLUX$FLUX
)
cfp_gasdata Soil gas concentration data
Description

Create a cfp_gasdata object. This is a data.frame containing gas concentration data for one or
multiple soil profiles. Each soil profile is uniquely identified by columns in the data.frame specified
by the id_cols attribute.

Usage
cfp_gasdata(x, ...)

S3 method for class 'data.frame'
cfp_gasdata(x, id_cols, ...)

S3 method for class 'cfp_dat'

cfp_gasdata(x, ...)
Arguments
X A data. frame with the following columns:

gas The gas of that observation.

depth (cm) The depth of the observation.

x_ppm (ppm) The concentration in ppm.

any of id_cols All id_cols that identify one profile uniquely.
not used

id_cols Column names in data.frame that uniquely identify each profile.

cfp_layered_profile 13

Value

A cfp_gasdata object.

See Also

Other data formats: cfp_dat(), cfp_layered_profile(), cfp_layers_map(), cfp_profile(),
cfp_soilphys()

Examples

cfp_gasdata(

ConFluxPro: :gasdata,

id_cols = c("site", "Date"))
Also used to extract the gasdata object from cfp_dat
cfp_gasdata(ConFluxPro: :base_dat)

cfp_layered_profile Object for layered soil profiles

Description
A subclass of cfp_profile() where each profile consists of layers that are defined by their upper
and lower boundary without gaps or duplicates.

Usage

cfp_layered_profile(x, id_cols = NULL)

Arguments

X A data. frame with columns upper and lower.

id_cols Column names in data.frame that uniquely identify each profile.
Details

upper and lower define the upper and lower bounds of each layer in cm. Higher values lay on top
of lower values.

Value
A cfp_layered_profile object. This is a [cfp_profile()] that is further subdivided into layers by
the columns upper and lower.

See Also

Other data formats: cfp_dat(), cfp_gasdata(), cfp_layers_map(), cfp_profile(), cfp_soilphys()

14 cfp_layers_map

Examples

df <- data.frame(
site = rep(c("site_a"”, "site_b"), each = 2),
upper = c(10, 0, 7, 0),
lower = c(0, -100, 0, -100),
variable = 1:4)

cfp_layered_profile(df, id_cols = "site")

cfp_layers_map Model layers

Description
A function to create a cfp_layers_map object that defines the layers of both fg_f1lux() and pro_flux()
models.

Usage
cfp_layers_map(x, ...)

S3 method for class 'cfp_dat'
cfp_layers_map(x, ...)

S3 method for class 'data.frame'
cfp_layers_map(

X,
id_cols,
gas = NULL,

lowlim = NULL,
highlim = NULL,
layer_couple = 0,

Arguments

X (data.frame) That defines the layers for which the production or flux is modeled.
Note that some parameters can also be provided directly to the function call
instead (see Details).

e id_cols the relevant id_cols (see below)

* gas, the gas that is modelled.

* upper, lower the upper and lower boundaries of each layer

e lowlim, highlim as the lower and upper limits of the production rate to be
modeled in p mol m—3

* the parameter layer_couple, that indicates how strongly the layer should
be linked to the one below it (O for no coupling)

cfp_layers_map 15

not used

id_cols Column names in data.frame that uniquely identify each profile.

gas (character vector) of gas names to be added to x which is then repeated for each
gas.

lowlim (numeric vector) the same length as gas with the lower limit of possible produc-

tion allowed in pro_f1lux() models.

highlim (numeric vector) the same length as gas with the upper limit of possible produc-
tion allowed in pro_flux() models.

layer_couple [Experimental] (numeric_vector) A vector the same length as gas that indicates
how strongly the layer should be linked to the one below it (0 for no coupling,
the default).

Value

A cfp_layered_profile() data.frame with the columns described above as well as layer and
pmap columns that identify each layer with an integer (ascending from bottom to top).

Add lowlim and highlim for multiple gases

Sometimes it is practical to model different gases with different limits. For example, it is a reason-
able assumption that CO2 is not consumed in relevant amounts in most soils, whereas CH4 may
be both produced or consumed. Therefore we may want to limit production rates of CO2 to only
positive values, whereas allowing for negative CH4 production rates (i.e. consumption) as well.

To make this setup easy, you can provide a gas vector to the function together with highlim and
lowlim vectors of the same length. The provided layers_map data.frame will then be replicated
for each gas with the respective values of the production limits provided.

See Also
Other data formats: cfp_dat(), cfp_gasdata(), cfp_layered_profile(), cfp_profile(), cfp_soilphys()

Examples

cfp_layers_map(
ConFluxPro: :layers_map,
gas = "C02",
lowlim = @,
highlim = 1000,
id_cols = "site")

add multiple gases at once
cfp_layers_map(
ConFluxPro: :layers_map,
id_cols = "site",
gas = c("C02", "CH4"),
lowlim = c(@, -1000),
highlim = c(1000, 1000))

Extract from an existing cfp_dat
cfp_layers_map(ConFluxPro: :base_dat)

16 cfp_pfmod

cfp_parameter Get parameter descriptions and units

Description

Function to access parameter descriptions and units used in ConFluxPro

Usage
cfp_parameter(x = NULL)

Arguments
X Any object or data.frame to match the parameters to, or a character vector of
parameter names.
Value

A data. frame() with the name, description and unit of the parameter

Examples

#list parameters within an object
cfp_parameter (soilphys)
cfp_parameter(gasdata)

#list all paramters
cfp_parameter()

cfp_pfmod Model frame for pro_flux

Description

An S3 class for pro_flux() models. The class inherits from cfp_dat and adds any model specific
parameters.

Usage

cfp_pfmod(
X7
zero_flux = TRUE,
zero_limits = c(-Inf, Inf),
DSD@_optim = FALSE,
evenness_factor = 0,
known_flux_factor = 0

cfp_pftres 17

Arguments
X A cfp_dat object with all the necessary input datasets.
zero_flux (logical) Applies the zero-flux boundary condition? If FALSE, F@ is optimized
alongside the production rates.
zero_limits (numeric vector) a vector of length 2 defining the lower and upper limit of the
lowest flux if zero_flux = FALSE.
DSD@_optim [Deprecated]

evenness_factor
[Experimental](numeric) A user defined factor used to penalise strong differ-
ences between the optimised production rates. This must be identified by trial-
and-error and can help prevent that production rates are simply set to zero basi-
cally the lower a production is relative to the the maximum of the absolute of all
productions, the higher it is penalised. The evenness_factor then defines the
weight of this penalty in the optimisation algorithm prod_optim.
known_flux_factor
[Deprecated]

Value

A cfp_pfmod object that inherits from cfp_dat()

See Also

Other model frames: cfp_altres(), cfp_fgmod(), cfp_fgres(), cfp_pfres()

Examples

cfp_pfmod(ConFluxPro: :base_dat)

coercion from other object types (internal)
pro_flux(ConFluxPro: :base_dat) |>
as_cfp_pfmod()

cfp_pfres Model result of pro_flux

Description
A function to create an object of class cfp_pfres. This is the central result class generated by running
pro_flux(). Intended for internal use only.

Usage
cfp_pfres(x, y)

18 cfp_profile

Arguments

X A valid cfp_pfmod object

y The corresponding PROFULX data. frame.
Value

A cfp_pfres object. This inherits from cfp_pfmod().

See Also
Other model frames: cfp_altres(), cfp_fgmod(), cfp_fgres(), cfp_pfmod()

Examples

PROFLUX <- pro_flux(ConFluxPro: :base_dat)

cfp_pfres(
cfp_pfmod(ConFluxPro: :base_dat),
PROFLUX$PROFLUX
)
cfp_profile Object for soil profiles
Description

A central S3 class that defines a data. frame where columns given in id_cols define distinct soil
profiles.

Usage
cfp_profile(x, id_cols = NULL)

Arguments

X A data.frame

id_cols Column names in data.frame that uniquely identify each profile.
Value

A cfp_profile object. This is a data. frame with the id_cols attribute.

See Also

Other data formats: cfp_dat(), cfp_gasdata(), cfp_layered_profile(), cfp_layers_map(),
cfp_soilphys()

cfp_run_map 19

Examples

df <- data.frame(

site = rep(c("site_a", "site_b"), each = 2),
variable = 1:4)

cfp_profile(df, id_cols = "site")

multiple id_cols

df <- data.frame(
site = rep(c("site_a"”, "site_b"), each = 4),

replicate = rep(c(1,2), times = 4),
variable = 1:8)

cfp_profile(df, id_cols = c("site"”, "replicate"))

cfp_run_map Create a run plan for parameter variation

Description

An S3 class cfp_run_map to be used in alternate(). Either create a new run map from a cfp_pfres or
cfp_fgres model or extract an existing run_map from an cfp_altres object.

Usage
cfp_run_map(
X ’
params = list(),
type = NULL,

method = NULL,

n_runs = NULL,
layers_different = FALSE,
layers_from = "layers_map",
layers_altmap = NULL,
topheight_adjust = FALSE

)
Arguments
X Either a cfp_pfres or cfp_fgres model result.
params A named list of numeric vectors. Names indicate column names in soilphys,
vectors either distinct values (method permutation) or limits (method random).
type A vector of length param indicating what the values in params represent. One

of

abs Absolute values that are applied as-is.
factor Factors to be multiplied with the original values.

20

method

n_runs

cfp_soilphys

addition Factors to be added to the original values.

Either 'random’, where a random value is chosen within the bounds set in params
or ’permutation’, where every permutation of the values in params is added.

Integer value of the number of alterations to be done for method = 'random’.

layers_different

layers_from

layers_altmap

Should layers from layers_map be changed individually? If TRUE this allows for
different changes at different depths.

(character) If layers_different is TRUE, from which source should the layers be
created? One of:

layers_map (default) Use the layers that are defined in layers_map.

soilphys Use the layers as defined in soilphys

layers_altmap Use the layers as defined in the provided layers_altmap object.

An optional layers_map created using layers_map() that defines the layers to be
used if layers_different = TRUE.

topheight_adjust

Value

(logical) If the proposed change in topheight is larger than the highest layer in
soilphys, should the limits be automatically adjusted per id_cols individually?
Default is FALSE, which leads to an error in that case.

An object of type cfp_run_map that can be used within alternate.

Examples

PROFLUX <- ConFluxPro::base_dat |> pro_flux()
Create a cfp_run_map where TPS is changed between 90 % and 110 %
of the original value for 50 runs.

cfp_run_map(
PROFLUX,

1ist("TPS” = c(0.9, 1.1)),

"factor”,
n_runs = 50)

cfp_soilphys

Soil physical parameters data

Description

Create a cfp_soilphys object. This is a data.frame containing layered data of soil physical prop-
erties, at the minimum of the air density c_air and diffusion coefficient DS for one or multiple
soil profiles. Each soil profile is uniquely identified by columns in the data.frame specified by the
id_cols attribute. Each profile is further subdivided into layers by columns upper and lower (see
cfp_layered_profile).

cfp_soilphys 21

Usage
cfp_soilphys(x, ...)

S3 method for class 'cfp_dat'
cfp_soilphys(x, ...)

S3 method for class 'data.frame'

cfp_soilphys(x, id_cols, ...)
Arguments
X A data.frame with (at least) the following columns:

upper (cm) The upper bound of each step.

lower (cm) The lower bound of each step.

gas The gas of that step.

DS (m2s~1) The specific diffusion coefficient of that gas in that step.
c_air (molm~3) The number density of air in that step.

any of id_cols All id_cols that identify one profile uniquely.
Internal, must be empty.

id_cols Column names in data.frame that uniquely identify each profile.

Value

A cfp_soilphys object.

See Also

Other data formats: cfp_dat(), cfp_gasdata(), cfp_layered_profile(), cfp_layers_map(),
cfp_profile()

Examples

cfp_soilphys(
ConFluxPro: :soilphys,
id_cols = c("site”, "Date”, "gas")
)
Also used to extract an soilphys object from cfp_dat
cfp_soilphys(ConFluxPro: :base_dat)

22 combine_models

check_soilphys Check for complete and correct soil physical parameters

Description

This function analyses the soilphys dataframe before the flux calculation. It presents a warning,
if there are variables missing and also looks for suspicious patterns that suggest an error in the
interpolation made by discretize_depth. Mainly checks if certain columns are present and if they
are missing, if they can be calculated from the data present. Looks for the following columns by
default: "upper”,"lower","TPS","SWC","AFPS","t","p","DSD0","D0","DS"

Usage

check_soilphys(df, extra_vars = c(), id_cols)

Arguments
df (dataframe) the soilphys dataframe
extra_vars (character vector) column names of additional variables to be checked.
id_cols (character vector) the columns that, together, identify a site uniquely (e.g. site,
repetition)
Value

data frame of ’suspicious’ parameter/depth combinations, where all values are NA.

See Also

Other soilphys: complete_soilphys(), discretize_depth(), soilphys_layered()

Examples

check_soilphys(ConFluxPro: :soilphys, id_cols = c("site”, "Date"))

combine_models Combine models

Description

Combinea list of multiple models or cfp_dat() objects into a single object.

complete_soilphys 23
Usage
combine_models(x)

S3 method for class 'cfp_altres'
combine_models(x)

S3 method for class 'list'
combine_models(x)

combine_models_by_reference(x_ref, x)

Arguments

X A list of models, must inherit from cfp_dat ()

x_ref Reference element of x that controls the return class and attributes.
Value

An object of the same type as the first object in x.

Examples
mod1 <- filter(base_dat, site == "site_a")
mod2 <- filter(base_dat, site == "site_b")

combine_models(list(mod1, mod2))

use a reference model for coercion
combine_models_by_reference(modl, list(mod1, mod2))

complete_soilphys (Re-)calculate soil physical parameters

Description

This function completes the soilphys dataset by calculating different parameters if necessary, as
long as all required parameters are available. Diffusion coefficients, as well as the air density are
calculated if missing.

Usage
complete_soilphys(
soilphys,
DSDO_formula = NULL,
gases = NULL,

overwrite = TRUE,
quiet = FALSE

24 complete_soilphys

Arguments

soilphys (dataframe) the soilphys dataframe

DSD@_formula (character) A character vector defining the way DSDO should be calculated.
Must refer to existing columns in soilphys. See examples below.

gases (character) A character vector defining the gases for which to calculate DO and
DS.
overwrite (logical) If true, already existing columns are overwritten.
quiet (logical) Suppress messages.
Value

A data.frame() with all necessary columns for cfp_soilphys.

See Also

DO_massman

Other soilphys: check_soilphys(), discretize_depth(), soilphys_layered()

Examples

soilphys_barebones <- ConFluxPro::soilphys |>
dplyr::select(
c("site",

"Date”,

"upper”,

"lower",

"depth”,

"t”,

noan

p ’
"TPS”,
IISWC n s
nan
b
)

complete_soilphys(
soilphys_barebones,
DSD@_formula = "a*AFPS*b",
gases = "C02")

DO _massman 25

DO_massman Calculate DO

Description
This function calculates the free-air diffusion coefficients of different gases for a given temperature
and pressure.

Usage

D0_massman(gas, t, p)

Arguments
gas (character) One of "CO2","CH4","N20","02","N2"
t (numeric) temperature in °C
p (numeric) pressure in hpa

Value

A numeric vector of DO in m”2/s

References

Massman, W. J. A review of the molecular diffusivities of H20, CO2, CH4, CO, 03, SO2, NH3,
N20, NO, and NO2 in air, O2 and N2 near STP. Atmospheric Environment 1998, 32(6), 1111-1127

Examples

D@_massman("C02", 10, 1013)

deepflux Extract flux rates from deep soil

Description
Extract the incoming and outgoing flux from below the deepest layer of a pro_flux() model. This
returns zero, if zero_f1ux=TRUE.

Usage
deepflux(x, ...)

26 depth_structure

Arguments
X A valid cfp_pfres() object.
Further parameters passed on to efflux() in case of cfp_fgres.
Details

FO represents the flux below the lowest layer defined in the cfp_pfres() model

Value

data.frame with FO (mol/m?/s)

Examples

PROFLUX <- ConFluxPro::base_dat |> pro_flux()

deepflux (PROFLUX)

depth_structure Unique layers depths

Description

Get the unique layers or depths, i.e. the backbone of an object given a set of identifying columns.

Usage
depth_structure(x, id_cols = NULL, ...)

S3 method for class 'cfp_layered_profile'
depth_structure(x, id_cols = NULL, ...)

S3 method for class 'cfp_profile’
depth_structure(x, id_cols = NULL, ...)

S3 method for class 'cfp_dat'

depth_structure(x, id_cols = NULL, structure_from = NULL, ...)
Arguments
X An object to get general structure of.
id_cols The columns that identify each set of depth structures to extract (e.g. a site
identifier).

non

internal One of "gasdata” "soilphys"” or "layers_map".

structure_from From which element should the structure be returned?

discretize_depth 27

Value

A cfp_profile with columns depth, or upper and lower.

Examples

depth_structure(cfp_soilphys(ConFluxPro: :base_dat))
depth_structure(cfp_gasdata(ConFluxPro: :base_dat))

discretize_depth Interpolate over depth to layered profile

Description

Interpolate and discretize data into a layered structure. The output is a data.frame where each profile
is separated into layers that intersect at depths defined in the function call. See cfp_layered_profile().

There are different interpolation methods implemented, which might be more practical for different
parameters or tasks.

* A 'linear' interpolation for continuous parameters, (e.g. soil temperature).

* The 'boundary' interpolation is only suitable for data that is already layered. It selects the
value from the old layer that in which the new layer will lay in.

* A 'linspline’ interpolation fits a linear spline model to the data with knots defined in knots

* 'nearest’' finds the closest value to the new layer. You can define whether the closest value
should be nearest to the top 1, or bottom @ of the layer using int_depth

* 'harmonic' is similar to a linear interpolation but it uses the harmonic mean harm() using
the distance in depth to each value as weights.

Multiple variables can be discretized at the same time by supplying multiple column names in
param. It is also possible to use different method and controlling parameters int_depth and knots
for each param. Just provide a list of settings the same length as param. If only one value is given,
but multiple param the settings are reused for each parameter.

Usage

discretize_depth(
df,
param,
method,
depth_target,
boundary_nearest = FALSE,
boundary_average = "none”,
int_depth = 0.5,
knots = NULL,

28

##
di

)

##
di

S3 method for class 'cfp_profile’
scretize_depth(
df,

param,
method,
depth_target,

boundary_nearest = FALSE,
boundary_average = "none",
int_depth = 0.5,

knots = NULL,

S3 method for class 'data.frame'
scretize_depth(
df,

param,
method,
depth_target,

boundary_nearest = FALSE,
boundary_average = "none”,
int_depth = 0.5,

discretize_depth

knots = NULL,

id_cols = NULL,

Arguments

df

param

method

depth_target

(dataframe) The dataframe containing the parameters to be interpolated, as well
as the columns "depth", "upper" and "lower".

(character vector) The column names name of the parameters to be interpolated.

(character vector) a character (-vector) specifying the methods to be used for
interpolation. Must be in the same order as param. One of

e linear

* boundary

* linspline

* nearest

¢ harmonic
(numeric vector or data frame) specifying the new layers. Must include n+1
depths for n target layers.

If the target layers are different for id_cols, enter a data.frame instead. This data
frame must have a "depth" column, as well as well as all id_cols needed that
must be at least a subset of the id_cols of the original data.

discretize_depth 29

boundary_nearest
(logical) = TRUE/FALSE if it is TRUE then for target depth steps (partially) out-
side of the parameter boundaries, the nearest neighbor is returned, else returns
NA. Default is FALSE.

boundary_average
("character) Defines what happens if the new layer contains multiple old layers.
one of

none = the default

the new layer is set to NA
arith the new layer is calculated as the arithmetic mean of the old
harm the new layer is calculated as the harmonic mean of the old

int_depth (numeric vector) = value between 0 and 1 for 1 = interpolation takes the top of
each depth step, 0.5 = middle and O= bottom. Default = 0.5

knots (numeric vector) = the depths at which knots for the ’linspline’ method are to be
placed. If this differs for the parameters, a list of numeric vectors with the same
length as "param" can be provided. Cannot differ between id_cols.

Internal, must be empty.

id_cols Column names in data.frame that uniquely identify each profile.

Value

A cfp_layered_profile() data.frame with the variables upper and lower defining the layers
derived from depth_target. The column depth is the middle of each layer. And all variables from
param

See Also

Other soilphys: check_soilphys(), complete_soilphys(), soilphys_layered()

Examples

data("soiltemp”)
library(dplyr)

dt <- data.frame(
site = rep(c("site_a", "site_b"), each = 12),
depth = c(5, seq(0,-100,-10), 7, seq(90,-100,-10)))

discretize_depth(df = soiltemp,
param = "t",
method = "linear”,
depth_target = dt,
id_cols = ¢(
"site”,"Date"))

30 DSDO

DSD@ Calculate DSDO

Description

Different functions to estimate soil diffusivity from the air-filled pore space.
Usage

DSDO_millington_quirk (AFPS, TPS = NULL, tortuosity = NULL)

DSD@_moldrup(AFPS, AFPS_100, b_campbell)

DSDO_currie(AFPS, a_currie = 1.9, b_currie = 1.4)

DSDO_linear (AFPS, a_lin, b_lin)

Arguments
AFPS The air-filled porosity.
TPS Total pore space
tortuosity the tortuosity of the soil
AFPS_100 Air filled porosity at -100cm soil water matric head.
b_campbell Campbell (1974) PSD index

a_currie, b_currie
fit parameter of Currie-style models

a_lin, b_lin linear model coefficients
Details
* DSD@_millington_quirk() is of the form Ds/Dy = = - € where E is the tortuosity factor
(tortuosity) calulcated as = = 5(1;3) ; € is the air-filled pore space (AFPS) and @ is the

porosity (TPS). From Millington & Quirk (1961).

3
* DSD@_moldrup() is of the form D,/ Dy = (2 - €355 + 0.04 - €109) (61500)(2+ Peampbell) where

€100 i the air-filled pore space at a matric potential head of -100 cm and begmpber is the slope
of the water retention curve. From Moldrup et al. (2000).

* DSD@_currie() is of the form D, /Dy = a-€” where a and b are fit parameter of an exponential
model. From Currie (1960) with default values (a=1.9; b=1.4)from Troeh (1982).

 DSD@_linear() is a linear model of form D,/Dg = a - € + b.

Value

A numeric vector of DSDO.

efflux 31

References

Millington, R. J., & Quirk, J. P. (1961). Permeability of porous solids. In Transactions of the Fara-
day Society (Vol. 57, p. 1200). Royal Society of Chemistry (RSC). https://doi.org/10.1039/tf9615701200

Moldrup, P, Olesen, T., Schjgnning, P., Yamaguchi, T., & Rolston, D. E. (2000). Predicting the Gas
Diffusion Coefficient in Undisturbed Soil from Soil Water Characteristics. In Soil Science Society
of America Journal (Vol. 64, Issue 1, pp. 94—100). Wiley. https://doi.org/10.2136/sssa2j2000.64194x

Currie, J. A. (1960). Gaseous diffusion in porous media. Part 2. - Dry granular materials. In British
Journal of Applied Physics (Vol. 11, Issue 8, pp. 318-324). IOP Publishing. https://doi.org/10.1088/0508-
3443/11/8/303

Troeh, F. R., Jabro, J. D., & Kirkham, D. (1982). Gaseous diffusion equations for porous mate-
rials. In Geoderma (Vol. 27, Issue 3, pp. 239-253). Elsevier BV. https://doi.org/10.1016/0016-
7061(82)90033-7

Examples

DSDO_millington_quirk(@.2, 0.6)
DSD@_moldrup(@.2, 0.6, 1)
DSDO_currie(0.2)

DSDO_linear(0.2, a_lin = 1.4, b_lin = @)

efflux Extract efflux rates

Description

Calculate or extract the soil/atmosphere efflux from cfp_pfres or cfp_fgres model results.

Usage
efflux(x, ...)

S3 method for class 'cfp_pfres'
efflux(x, ...)

S3 method for class 'cfp_fgres'
efflux(x, ..., method = "1m", layers = NULL)

S3 method for class 'cfp_altres'
efflux(x, ...)
Arguments

X A cfp_pfres or cfp_fgres model result, or a cfp_altres.

Arguments passed to methods.

32 error_concentration

method Method(s) used to interpolate the efflux at the top of the soil from partial fluxes
within the soil. One of
top Use the flux in the topmost model layer.

Im A linear model where each partial flux is centered in the respective layer and
the model is evaluated at the top of the soil.

lex Linearly extrapolate using fluxes of two layers in the soil.

layers Vector of two integers selecting the layers for the 1ex method. Layers are in-
dexed from 1 (topmost) to the number of layers used in the flux calculation.

Value

A data. frame with one row for each combination of id_cols and the column efflux in molm 2s~1.

Examples

my_dat <- ConFluxPro::base_dat |>

filter(Date < "2021-03-01") #subset to speed up example
PROFLUX <- pro_flux(my_dat)
FLUX <- fg_flux(my_dat)

efflux (PROFLUX)
efflux(FLUX)

error_concentration Estimate model error

Description
A set of functions that can be called on an cfp_pfres object (the result of a call to pro_flux) to assess
the quality of the model.

Usage

error_concentration(x, param_cols = NULL, normer = "sd")

S3 method for class 'cfp_pfres'
error_concentration(x, param_cols = NULL, normer = "sd")

S3 method for class 'cfp_fgres'
error_concentration(x, param_cols = NULL, normer = "sd")

S3 method for class 'cfp_altres'
error_concentration(x, param_cols = NULL, normer = "sd")

error_efflux(x, param_cols, EFFLUX, normer = "sd", ...)

error_concentration 33

S3 method for class 'cfp_pfres'
error_efflux(x, param_cols, EFFLUX, normer = "sd", ...)

S3 method for class 'cfp_fgres'
error_efflux(x, param_cols, EFFLUX, normer = "sd", ...)

S3 method for class 'cfp_altres'

error_efflux(x, param_cols, EFFLUX, normer = "sd", ...)
Arguments
X A cfp_pfres object, that is returned by a call to pro_flux()
param_cols The columns that, together, define different parameters (e.g. different gases) for

which NRMSEs should be calculated separately (e.g. "gas"). Defaults to the
id_cols of layers_map. If no such distinction is wished, set to character()

normer a character string defining the type of normalization to be applied. Can be one
of
mean the arithmetic mean of a
sd the standard deviation of a (default).
range the difference between the range of a
IQR the difference between the interquantile range of a

EFFLUX A data.frame with (at most) one value of efflux per profile of x. Must contain
any id_cols of x needed.

Further arguments passed to efflux

Details

For error_concentration, the way the error parameter is calculated for cfp_fgres and cfp_pfres ob-
jects is entirely different and should not be used in comparison between the two. NRMSE of
cfp_pfres objects are calculated as the mean of depth-wise NRMSEs of modelled versus input gas
concentrations. 'NRMSE’s of cfp_fgres objects simply calculate the mean of (dcdz_sd / dcdz_ppm)
per group described in param_cols.

Value

The calculated error estimate for a single model, a list of models (cfp_altres) and for each parameter
combination in param_cols

Examples

PROFLUX <- pro_flux(base_dat)

error_concentration(PROFLUX)
error_efflux(
PROFLUX,
EFFLUX = data.frame(efflux = 1),
param_cols = c("site"))

34

evaluate_models

evaluate_models Evaluate model runs for calibration

Description

Evaluate the model runs produced by a call to alternate() with user-defined error functions.

Usage

evaluate_models(

)

X,

eval_funs = NULL,

eval_weights = 1,

param_cols,

eval_cols,

n_best = NULL,

f_best = 0.01,

scaling_fun = scale_min_median,

S3 method for class 'cfp_altres'
evaluate_models(

X)

eval_funs = NULL,

eval_weights = 1,

param_cols = cfp_id_cols(cfp_layers_map(cfp_og_model(x))),
eval_cols = NULL,

n_best = NULL,

f_best = 0.01,

scaling_fun = scale_min_median,

Arguments

X

eval_funs

eval_weights

param_cols

A cfp_altres object, as returned by alternate().

x and param_cols that are passed from this function.

A named list of evaluation functions. Each function must accept the arguments

A vector of weights the same length of eval_funs or one. Alternatively a

data. frame() that specifies the weight for any wished error_parameter (names
of eval_funs) and param_cols combinations. Provide the weights as a numeric

in the parameter_weight column.

The columns that, together, define different parameters (e.g. different gases) for

which NRMSEs should be calculated separately (e.g. "gas"). Defaults to the
id_cols of layers_map. If no such distinction is wished, set to character ()

extractors 35

eval_cols A character vector of columns for which the model error should be returned
separately. Must be a subset of param_cols and defaults to the complete set.

n_best An integer number of runs to select as the best runs.

f_best A numeric between O to 1 as the fraction of runs to select as the best. Defaults
to 0.01.

scaling_fun A scaling function. Defaults to min-median scaling.

Any arguments that need to be passed to the error_funs. Note that all matching
arguments will be applied to each function!

Value

A list with components best_runs the runs with the lowest model error (ME), model_error the

model error for all runs, models_evaluated the raw values returned by error_funs and best_runs_runmap,
a cfp_run_map() which can be used to rerun the best_runs model configurations. Note, that for
best_runs_runmap the value of run_id is remapped to values 1:n_best.

Examples

PROFLUX <- pro_flux(base_dat |> filter(site == "site_a"))

run_map <-
cfp_run_map(
PROFLUX,
params = list(TPS = c(0.9, 1.1)),
type = "factor”,
n_runs = 5)

PF_alt <- alternate(
PROFLUX,
\(x) complete_soilphys(x, DSD@_formula = "a*xAFPS*b", quiet = TRUE),
run_map)

evaluate_models(

PF_alt,
eval_funs = 1list(”"NRMSE_conc"” = error_concentration)
)
extractors Extract elements from an object
Description

These functions extract components from different objects that can be created in ConFluxPro.

36 extractors
Usage
cfp_og_model (x)

S3 method for class 'cfp_altres'
cfp_og_model (x)

cfp_id_cols(x)
cfp_gases(x)
cfp_modes(x)
cfp_param(x)
cfp_funs(x)
cfp_zero_flux(x)
cfp_zero_limits(x)
cfp_DSD@_optim(x)
cfp_evenness_factor(x)
cfp_known_flux_factor(x)
cfp_runmap_type(x)
cfp_params_df (x)
cfp_n_runs(x)
cfp_layers_different(x)
cfp_layers_from(x)

cfp_layers_altmap(x)

Arguments

X An object from which to extract the information.

Value

The extracted component, e.g. a data. frame() or character().

Examples

my_data <- ConFluxPro::base_dat |>

extractors

filter(Date == "2021-01-01") # subset for example

from cfp_dat objects (and derivatives)
cfp_id_cols(my_data)

cfp_gasdata(my_data) |> head()
cfp_soilphys(my_data) |> head()
cfp_layers_map(my_data) |> head()
my_data$profiles |> head()

from cfp_pfmod or cfp_pfres objects
PROFLUX <- my_data |> pro_flux()
cfp_zero_flux (PROFLUX)
cfp_zero_limits(PROFLUX)
cfp_DSDO_optim(PROFLUX) #deprecated
cfp_evenness_factor (PROFLUX)
cfp_known_flux_factor (PROFLUX)
PROFLUX$PROFLUX |> head()

from cfp_fgmod or cfp_fgres objects
FLUX <- my_data |> fg_flux()

cfp_gases(FLUX)
cfp_modes (FLUX)
cfp_param(FLUX)
cfp_funs(FLUX)
FLUX$FLUX |> head()

from cfp_run_map
set.seed(42)
my_run_map <-
cfp_run_map(
PROFLUX,
list("TPS" = ¢(0.9, 1.1)),
"factor",
n_runs = 2)

cfp_params_df (my_run_map)
cfp_n_runs(my_run_map)
cfp_layers_from(my_run_map)
cfp_layers_different(my_run_map)
cfp_runmap_type (my_run_map)
cfp_layers_altmap(my_run_map)

#i## from cfp_altres
my_altres <-
alternate(

X = PROFLUX,

f = \(x) complete_soilphys(x, "a+AFPS*b",

run_map = my_run_map)

cfp_og_model (my_altres)
cfp_run_map(my_altres)

quiet

= faster runtime

TRUE),

37

38 fg flux

fg_flux Flux-gradient method

Description

fg_flux() implements different approaches to the flux-gradient method (FGM). It takes a valid
input dataset from cfp_dat() and calculates for each layer defined in cfp_layers_map().

Usage
fg_flux(x, ...)

S3 method for class 'cfp_dat'
fg_flux(x, ...)

S3 method for class 'cfp_fgres'
fg_flux(x, ...)

S3 method for class 'cfp_fgmod'
fg_flux(x, ...)

Arguments

X A cfp_dat object with all the necessary input datasets.
Arguments passed on to cfp_fgmod

gases (character) A character vector defining the gases for which fluxes shall
be calculated.
modes (character) A character vector specifying mode(s) for dcdz calculation.

Can be "LL","LS","EF".

LL local linear approach: within each layer a linear model is evaluated of
concentration over the depth.

LS linear spline approach: A linear spline is fitted over the complete profile
with nodes at the layer intersections.

EF exponential fit approach: An exponential function of form y=a+b*x"c
is fit of concentration against depth. Using the first derivative of that
function the concentration gradient is evaluated for each layer.

DA exponential fit approach: An exponential function of form y=a+b*(1-exp(-a*x))
is fit of concentration against depth. Using the first derivative of that
function the concentration gradient is evaluated for each layer. From
Davidson (2006).

param (character) A vector containing the the parameters of soilphys, for which
means should be calculated, must contain "c_air" and "DS", more parame-
ters may help interpretation.

funs (character) A vector defining the type of mean to be used for each param-
eter in param. One of "arith" or "harm".

filter 39

Details

The model result contains the original data, but adds the dataset FLUX, which contains the calculated
flux rates. You can use functions efflux and production to calculate different elements or access the
raw result with model_result$FLUX.

Value

A cfp_fgres model result.

References

DAVIDSON, E. A., SAVAGE, K. E., TRUMBORE, S. E., & BORKEN, W. (2006). Vertical parti-
tioning of CO2 production within a temperate forest soil. In Global Change Biology (Vol. 12, Issue
6, pp. 944-956). Wiley. https://doi.org/10.1111/j.1365-2486.2005.01142.x

See Also

Other flux models: pro_flux()

Examples

fg_flux(ConFluxPro: :base_dat)

filter Filter profiles

Description

Filter profiles by their id_cols or (where available) by their prof_id. This is built on dplyr::filter().

Usage

filter(.data, ..., .by = NULL, .preserve = FALSE)

S3 method for class 'cfp_dat'

filter(.data, ..., .preserve = FALSE)
Arguments
.data A cfp_dat() object or its derivatives.

<data-masking> Expressions that return a logical value, and are defined in
terms of the variables in .data. If multiple expressions are included, they are
combined with the & operator. Only rows for which all conditions evaluate to
TRUE are kept.

40 flux

.by [Experimental]
<tidy-select> Optionally, a selection of columns to group by for just this op-
eration, functioning as an alternative to group_by (). For details and examples,
see ?dplyr_by.

.preserve Relevant when the . data input is grouped. If . preserve = FALSE (the default),
the grouping structure is recalculated based on the resulting data, otherwise the
grouping is kept as is.

Value

A subset of the original data.

Examples
base_dat |>

filter(site == "site_a")

base_dat |>
filter(Date > "2022-03-01")

flux Re-run model

Description

A function to either run fg_flux() or pro_flux() models from valid cfp_fgmod or cfp_pfmod
objects.

Usage
flux(x)

Arguments

X A valid cfp_fgmod or cfp_pfmod object.

Value

Either a cfp_pfres or cfp_fgres model result.

Examples

FLUX <- ConFluxPro::base_dat |> fg_flux()
FLUX2 <- flux(FLUX)

all.equal (FLUX, FLUX2)

gasdata 41

gasdata Example soil CO2 concentrations

Description

A synthetic dataset of soil CO2 concentrations at two sites over a one-year period.

Usage

gasdata

Format
A tibble with 312 rows and 6 variables:

site name of the site

Date Date in the format "YYYY-MM-DD"
depth depth from mineral soil in cm
repetition id for which repetition in each depth
X_ppm concentration, in ppm

gas name of the gas

harm Harmonic mean

Description
This function calculates harmonic mean of a vector and can be used analogous to the base functions
mean() or median()

Usage

harm(x, w = 1, na.rm = FALSE)

Arguments
X (numeric vector)
w (numeric vector) optional vector of weights corresponding to x. Default is 1 for
all.
na.rm (logical) If TRUE, then NA values are omitted and the mean calculated with the
remaining values. If FALSE (default) then returns NA if x contains NA values.
Value

(numeric) harmonic mean of x

42 n_groups

Examples

harm(c(1:10))
harm(c(1:10),c(10:1))

layers_map Example cfp_layers_map object

Description

An example dataset for layers_map that devides each site into two layers.

Usage

layers_map

Format
A data.frame with 4 rows and 3 variables:
site name of the site

upper upper limit for layer in cm

lower lower limit for layer in cm

n_groups Get number of groups/profiles

Description

Get number of groups/profiles

Usage
n_groups(x)
n_profiles(x)

Arguments

X A cfp_dat object.

plot_profile 43

Value

An integer giving the number of groups of the object.

An integer giving the number of profiles of the object.

Examples

n_groups(base_dat)

n_profiles(base_dat)
n_profiles(cfp_soilphys(base_dat))

plot_profile Plot profiles

Description

Plot vertical soil profiles of ConFluxPro objects using ggplot. This is mainly intended for diagnostic
purposes and better understand the underlying data.

Supported objects:
cfp_pfres Displays TPS, SWC and AFPS, as well as production and measured and modelled gas
concentrations.

cfp_fgres Displays TPS, SWC and AFPS, as well as the measured concentration profile, and con-
centration gradients for each layer.

cfp_soilphys Displays TPS, SWC and AFPS, as well as values of Ds and Temperature.
cfp_gasdata Displays the concentration profile.

cfp_layers_map Displays the layer names, pmap and layer_couple, as well as the allowed produc-
tion range.

Usage

plot_profile(x)

Arguments
X A cfp_pfres, cfp_fgres model result, or a cfp_soilphys, cfp_gasdata or cfp_layers_map
object
Value

A ggplot2 plot with facets for each distinct profile. If more than 20 profiles are plotted a message is
sent because this can take a long time.

44 production

Examples

data_subset <- base_dat |>
filter(Date == "2021-02-01")

plot_profile(cfp_soilphys(data_subset))
plot_profile(cfp_gasdata(data_subset))
plot_profile(cfp_layers_map(data_subset))

production Extract production rates

Description

Easily extract the production of cfp_pfres() and cfp_fgres() models per layer defined in layers_map()
and calculate the relative contribution per layer.

Usage
production(x, ...)
Arguments
X A valid cfp_pfres() or cfp_fgres() object.
Further parameters passed on to efflux() in case of cfp_fgres.
Details

For a pro_flux() model, the extraction is straightforward and simply the product of the optimised
production rate (per volume) multiplied by the height of the layer.

For fg_flux(), the assumption is made that the production of the layer ¢ is the difference of the
flux in the layer above F;; and the layer below F;_;. The flux below the lowest layer is assumed
to be zero and the flux above the topmost layer is the efflux. This approach has some uncertainties
and it should be evaluated if it applies to your model.

If there are error estimates available from a call to bootstrap_error (), the errors are propagated

as follows:
Prodaps 1

A dre =|A l TG A da s e
prodre = |Acf fluz - rm g+ |Aprodass - T

Value

data.frame with prod_abs (mol/m?/s), efflux (mol/m?/s) and prod_rel where prod,.; =
ef flux/prodaps.

pro_flux 45

Examples

PROFLUX <- pro_flux(base_dat)

production(PROFLUX)

pro_flux Inverse model of production profiles

Description

This implements an inverse modeling approach which optimizes vertically resolved production (or
consumption) of the gases in question to fit a modeled concentration profile to observed data.

One boundary condition of this model is, that there is no incoming or outgoing flux at the bottom
of the lowest layer of the profile. If this boundary condition is not met, the flux must be optimised
as well. This can be set in zero_flux.

Usage

pro_flux(x, ...)

S3 method for class 'cfp_dat'
pro_flux(x, ...)

S3 method for class 'cfp_pfres'
pro_flux(x, ...)

S3 method for class 'cfp_pfmod'
pro_flux(x, ...)

Arguments

X A cfp_dat object with all the necessary input datasets.
Arguments passed on to cfp_pfmod

zero_flux (logical) Applies the zero-flux boundary condition? If FALSE, F@ is
optimized alongside the production rates.

zero_limits (numeric vector) a vector of length 2 defining the lower and upper
limit of the lowest flux if zero_flux = FALSE.

DSD@_optim [Deprecated]

evenness_factor [Experimental](numeric) A user defined factor used to pe-
nalise strong differences between the optimised production rates. This must
be identified by trial-and-error and can help prevent that production rates
are simply set to zero basically the lower a production is relative to the the
maximum of the absolute of all productions, the higher it is penalised. The
evenness_factor then defines the weight of this penalty in the optimisa-
tion algorithm prod_optim.

46

Value

A cfp_pfres() model result.

See Also

Other flux models: fg_flux()

Examples

soilphys <-

cfp_soilphys(
ConFluxPro: :soilphys,
id_cols = c("site"”, "Date")

)

gasdata <-

cfp_gasdata(
ConFluxPro: :gasdata,
id_cols = c("site"”, "Date")

Imap <-

cfp_layers_map(
ConFluxPro: :layers_map,
gas = "C02",
lowlim = @,
highlim = 1000,
id_cols = "site"

PROFLUX <-
cfp_dat(gasdata,
soilphys,
Imap) |>
pro_flux()

rmse

rmse (Normalized) root mean square error

Description

(Normalized) root mean square error

Calculate the (normalized) root-mean-square-error of two vectors.

run_map 47

Usage
rmse(a, b)
nrmse(a, b, normer = "sd")
Arguments
a, b numeric vectors of same length to be compared
normer a character string defining the type of normalization to be applied. Can be one
of
mean the arithmetic mean of a
sd the standard deviation of a (default).
range the difference between the range of a
IQR the difference between the interquantile range of a
Value

The (normalised) rmse of the provided vector.

Examples

set.seed(42)
a<-c(1, 2, 3, 4
b <- a * rnorm(4, 1, 0.1)

rmse(a, b)
nrmse(a, b, normer = "sd")
nrmse(a, b, normer = "mean")
run_map run_map
Description
[Deprecated]

run_map() was deprecated in favor of cfp_run_map for consistency.

Create a cfp_run_map for model alteration in alternate()

Usage
run_map(
X’
params = list(),
type = NULL,

method = NULL,

48

run_map

n_runs = NULL,
layers_different = FALSE,
layers_from = "layers_map",
layers_altmap = NULL,
topheight_adjust = FALSE

Arguments

X

params

type

method

n_runs

Either a cfp_pfres or cfp_fgres model result.

A named list of numeric vectors. Names indicate column names in soilphys,
vectors either distinct values (method permutation) or limits (method random).

A vector of length param indicating what the values in params represent. One
of

abs Absolute values that are applied as-is.
factor Factors to be multiplied with the original values.
addition Factors to be added to the original values.

Either 'random’, where a random value is chosen within the bounds set in params
or ‘permutation’, where every permutation of the values in params is added.

Integer value of the number of alterations to be done for method = "random’.

layers_different

layers_from

layers_altmap

Should layers from layers_map be changed individually? If TRUE this allows for
different changes at different depths.

(character) If layers_different is TRUE, from which source should the layers be
created? One of:

layers_map (default) Use the layers that are defined in layers_map.

soilphys Use the layers as defined in soilphys

layers_altmap Use the layers as defined in the provided layers_altmap object.

An optional layers_map created using layers_map() that defines the layers to be
used if layers_different = TRUE.

topheight_adjust

Value

(logical) If the proposed change in topheight is larger than the highest layer in
soilphys, should the limits be automatically adjusted per id_cols individually?
Default is FALSE, which leads to an error in that case.

An object of type cfp_run_map that can be used within alternate.

Examples

PROFLUX <- ConFluxPro::base_dat |> pro_flux()
Create a cfp_run_map where TPS is changed between 90 % and 110 %
of the original value for 50 runs.

cfp_run_map(
PROFLUX,

scale_min_median

list("TPS" = ¢(0.9, 1.1)),
"factor",
n_runs = 50)

49

scale_min_median Scale a vector by its min and median

Description

Scale a vector between its minimum and median.

Usage

scale_min_median(x)

Arguments

X a numeric vector

Value

x scaled between min and median of x.

Examples

scale_min_median(1:10)

season Get season of a date-time

Description

A simple function to return a character (-vector) of the season from a Date (-vector). Months:

spring 3-5
summer 6-8
fall 9-11

winter 12-2

Usage

season(d)

50 sobol calc_indices

Arguments

d (Date) Any date object

Value

A character vector the same length as d

Examples

season(as.Date(c("1955-01-15","1985-06-15","2015-10-15")))

sobol_calc_indices Calculate sobol indices

Description

[Experimental]

From any result parameter and its corresponding cfp_run_map calculate first-order and total sobol
indices using the Azzini (2021) method.

Usage

sobol_calc_indices(Y, effect_cols, id_cols = character(), run_map)

Arguments
Y A data.frame with the desired effect parameter(s) of the model output, e.g.
efflux(). The output should come from a list of model results produced by a
call to alternate() with a valid cfp_run_map produced by sobol_run_map().
effect_cols character vector of the column names in Y for which sobol indices should be
calculated, e.g. 'efflux'.
id_cols character vector of column names in Y specifying grouping variables. Indices
are then calculated for each group individually.
run_map The cfp_run_map used for the calculation of Y produced by a call to sobol_run_map().
Details

This implements the approach outlined in Azzini et al (2021).

sobol_run_map 51

Value
A data. frame with the following columns

. Any id_cols specified
param_id, param, pmap Parameter identificators from the cfp_run_map used.
effect_param The parameter for which the effect was calculated.
Vt, Vi, VY Internal parameters for the indice calculation.
Si First order sobol indice.

ST Total order sobol indice.

References

Azzini, Ivano; Mara, Thierry A.; Rosati, Rossana: Comparison of two sets of Monte Carlo esti-
mators of Sobol’ indices, Environmental Modelling & Software, Volume 144, 2021, 105167, ISSN
1364-8152, https://doi.org/10.1016/j.envsoft.2021.105167

See Also

Other sobol: sobol_run_map()

Examples

PROFLUX <- pro_flux(base_dat)

sobol_map <- sobol_run_map(PROFLUX,
params = list("TPS" = c(0.9, 1.1),

"t" = ¢(0.9, 1.1)),
type = c("factor”, "factor"),
n_runs = 10)

PF_sobol <-

alternate(
PROFLUX,
\(x) complete_soilphys(x, DSD@_formula = "a*AFPS*b", quiet = TRUE),
sobol_map)

sobol_calc_indices(efflux(PF_sobol), "efflux"”, c("site"), sobol_map)

sobol_run_map Create a run plan for sobol indice calculation

Description

[Experimental]

Modify an existing cfp_run_map for sobol indice estimation or create a new one from scratch.

52

Usage

sobol_run_map

sobol_run_map(x, ...)

S3 method for class 'cfp_dat'
sobol_run_map(x, ...)

S3 method for class 'cfp_run_map'

sobol_run_map(x, ...)
Arguments
X Either an object of class cfp_run_map created by a call to cfp_run_map() with

Value

method = 'random', or a cfp_pfres or cfp_fgres model result.
Arguments passed on to run_map

params A named list of numeric vectors. Names indicate column names in soil-
phys, vectors either distinct values (method permutation) or limits (method
random).

type A vector of length param indicating what the values in params represent.
One of

abs Absolute values that are applied as-is.
factor Factors to be multiplied with the original values.
addition Factors to be added to the original values.

method Either 'random’, where a random value is chosen within the bounds
set in params or ’permutation’, where every permutation of the values in
params is added.

n_runs Integer value of the number of alterations to be done for method = ’ran-

s

dom’.
layers_different Should layers from layers_map be changed individually?
If TRUE this allows for different changes at different depths.
layers_from (character) If layers_different is TRUE, from which source should
the layers be created? One of:
layers_map (default) Use the layers that are defined in layers_map.
soilphys Use the layers as defined in soilphys
layers_altmap Use the layers as defined in the provided layers_altmap ob-
ject.
layers_altmap An optional layers_map created using layers_map() that de-
fines the layers to be used if layers_different = TRUE.

topheight_adjust (logical) If the proposed change in topheight is larger than
the highest layer in soilphys, should the limits be automatically adjusted
per id_cols individually? Default is FALSE, which leads to an error in that
case.

A cfp_run_map to be used in alternate for sensitivity analysis.

soildiff 53

See Also

Other sobol: sobol_calc_indices()

Examples
PROFLUX <- pro_flux(base_dat)

sobol_run_map (PROFLUX,

params = list("TPS" = c(0.9, 1.1),
"t" = ¢(0.9, 1.1)),

type = c("factor”, "factor”),

n_runs = 10)

soildiff Example soil diffusion models

Description

A synthetic dataset of soil total pore space and diffusion models after the general formula a* AFPS”b.

Usage

soildiff

Format

A tibble with 8 rows and 6 variables:

site name of the site

upper upper limit for layer in cm

lower lower limit for layer in cm

TPS total pore space as fraction of volume
a diffusion-model fit parameter a

b diffusion-model fit parameter b

54 soiltemp

soilphys Example cfp_soilphys object

Description

An example dataset for soilphys based on the sets soiltemp, soilwater and soildiff

Usage

soilphys

Format

A tibble with 120 rows and 4 variables:

site name of the site
Date Date in the format "YYYY-MM-DD"
depth depth in cm

t temperature in °C

soiltemp Example soil temperature

Description

A synthetic dataset of soil temperature at discrete depths. The dates correspond to gasdata.

Usage

soiltemp

Format

A tibble with 120 rows and 4 variables:

site name of the site
Date Date in the format "YYYY-MM-DD"
depth depth in cm

t temperature in °C

soilwater 55

soilwater Example soil water content

Description

A synthetic dataset of soil water content in a layered structure. The dates correspond to gasdata.

Usage

soilwater

Format
A tibble with 180 rows and 5 variables:

site name of the site

Date Date in the format "YYYY-MM-DD"
upper upper limit for layer in cm

lower lower limit for layer in cm

SWC soil water content as fraction of volume

unique_gases Get the unique gases of an object

Description

Get the gases from a CFP object.

Usage

unique_gases(x)

Arguments

X the object to extract the gases from.

Value

A character vector of gases in that object.

Examples
unique_gases(base_dat)
data.frame(gas = c("C02", "CH4")) |>

cfp_profile(id_cols = "gas") |>
unique_gases()

Index

+ data formats
cfp_dat, 8
cfp_gasdata, 12
cfp_layered_profile, 13
cfp_layers_map, 14
cfp_profile, 18
cfp_soilphys, 20

+ datasets
base_dat, 4
gasdata, 41
layers_map, 42
soildiff, 53
soilphys, 54
soiltemp, 54
soilwater, 55

* flux models
fg_flux, 38
pro_flux, 45

+x model frames
cfp_fgmod, 10
cfp_fgres, 11
cfp_pfmod, 16
cfp_pfres, 17

* sobol
sobol_calc_indices, 50
sobol_run_map, 51

* soilphys
check_soilphys, 22
complete_soilphys, 23
discretize_depth, 27

?dplyr_by, 40

alternate, 3, 20, 48, 50, 52
alternate(), 34

alternate_model (alternate), 3

alternate_model(), 3
as_cfp_dat (cfp_dat), 8

base_dat, 4
bootstrap_error, 5

bootstrap_error(), 7, 44

calculate_bootstrap_error
(bootstrap_error), 5
calculate_bootstrap_error(), 7
cfp_altapply, 8
cfp_altres, 11, 12,17, 18, 31, 33, 34
cfp_altres(), 4
cfp_dat, 8, 13,15, 18, 21
cfp_dat(),4,11,17,22, 23,39
cfp_DSD@_optim (extractors), 35
cfp_evenness_factor (extractors), 35
cfp_fgmod, 10, 12, 17, 18, 38
cfp_fgmod(), 12
cfp_fgres, 11,11, 17-19, 31, 39, 40, 48
cfp_fgres(), 3
cfp_funs (extractors), 35
cfp_gasdata, 9, 12,12, 13, 15, 18, 21
cfp_gases (extractors), 35
cfp_id_cols (extractors), 35
cfp_known_flux_factor (extractors), 35
cfp_layered_profile, 9, 13, 13, 15, 18, 20,
21
cfp_layered_profile(), 15, 27,29
cfp_layers_altmap (extractors), 35
cfp_layers_different (extractors), 35
cfp_layers_from(extractors), 35
cfp_layers_map, 9, 13,14, 18, 21
cfp_modes (extractors), 35
cfp_n_runs (extractors), 35
cfp_og_model (extractors), 35
cfp_param (extractors), 35
cfp_parameter, 16
cfp_params_df (extractors), 35
cfp_pfmod, 11, 12, 16, 18, 45
cfp_pfmod(), I8
cfp_pfres, 11, 12, 17,17, 19, 31, 40, 48
cfp_pfres(), 3,46
cfp_profile, 9, 13, 15,18, 21,27
cfp_run_map, 19, 47, 52

INDEX

cfp_run_map(), 35
cfp_runmap_type (extractors), 35
cfp_soilphys, 9, 13, 15, 18, 20, 20, 24
cfp_zero_flux (extractors), 35
cfp_zero_limits (extractors), 35
check_soilphys, 22, 24, 29
combine_models, 22
combine_models_by_reference
(combine_models), 22
complete_soilphys, 22, 23, 29
complete_soilphys(), 3

D@_massman, 25

deepflux, 25
depth_structure, 26
depth_structure(), 6
discretize_depth, 22, 24, 27
dplyr::filter(), 39

DSDe, 30

DSD@_currie (DSDO), 30
DSDO_currie(), 30
DSD@_linear (DSD@), 30
DSD@_linear(), 30
DSD@_millington_quirk (DSD®@), 30
DSD@_millington_quirk(), 30
DSD@_moldrup (DSDO), 30
DSD@_moldrup(), 30

efflux, 31, 33, 39
efflux(),”7
error_concentration, 32

error_efflux (error_concentration), 32
error_funs (error_concentration), 32

evaluate_models, 34
extractors, 35

fg_flux, 38, 46
fg_flux(), 14
filter, 39
flux, 40

gasdata, 4, 41
group_by(), 40

harm, 41
harm(), 27

layers_map, 4, 42

57

make_bootstrap_model (bootstrap_error),

5
make_bootstrap_model(), 7

n_groups, 42
n_profiles (n_groups), 42
nrmse (rmse), 46

plot_profile, 43
pro_flux, 39, 45
pro_flux(), 6, 14, 15
prod_optim, 17,45
production, 39, 44
production(), 7

rmse, 46
run_map, 47, 52
run_map(), 3

scale_min_median, 49
season, 49
sobol_calc_indices, 50, 53
sobol_run_map, 50, 51, 51
soildiff, 53

soilphys, 4, 54
soilphys_layered, 22, 24, 29
soiltemp, 54

soilwater, 55

unique_gases, 55

	alternate
	base_dat
	bootstrap_error
	cfp_altapply
	cfp_dat
	cfp_fgmod
	cfp_fgres
	cfp_gasdata
	cfp_layered_profile
	cfp_layers_map
	cfp_parameter
	cfp_pfmod
	cfp_pfres
	cfp_profile
	cfp_run_map
	cfp_soilphys
	check_soilphys
	combine_models
	complete_soilphys
	D0_massman
	deepflux
	depth_structure
	discretize_depth
	DSD0
	efflux
	error_concentration
	evaluate_models
	extractors
	fg_flux
	filter
	flux
	gasdata
	harm
	layers_map
	n_groups
	plot_profile
	production
	pro_flux
	rmse
	run_map
	scale_min_median
	season
	sobol_calc_indices
	sobol_run_map
	soildiff
	soilphys
	soiltemp
	soilwater
	unique_gases
	Index

