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AP_affinity_propagation
Affinity propagation clustering

Description

Affinity propagation clustering

Usage

AP_affinity_propagation(
data,
p,
maxits = 1000,
convits = 100,
dampfact = 0.9,
details = FALSE,
nonoise = 0,

time = FALSE
)
Arguments

data a matrix. Either a similarity matrix (where number of rows equal to number of
columns) or a 3-dimensional matrix where the 1st, 2nd and 3rd column corre-
spond to (i-index, j-index, value) triplet of a similarity matrix.

p anumeric vector of size 1 or size equal to the number of rows of the input matrix.
See the details section for more information.

maxits a numeric value specifying the maximum number of iterations (defaults to 1000)

convits a numeric value. If the estimated exemplars stay fixed for convits iterations, the
affinity propagation algorithm terminates early (defaults to 100)

dampfact a float number specifying the update equation damping level in [0.5, 1). Higher
values correspond to heavy damping, which may be needed if oscillations occur
(defaults to 0.9)

details a boolean specifying if details should be printed in the console

nonoise a float number. The affinity propagation algorithm adds a small amount of noise

to data to prevent degenerate cases; this disables that.

time a boolean. If TRUE then the elapsed time will be printed in the console.



4 AP_affinity_propagation

Details

The affinity propagation algorithm automatically determines the number of clusters based on the
input preference p, a real-valued N-vector. p(i) indicates the preference that data point i be chosen
as an exemplar. Often a good choice is to set all preferences to median(data). The number of
clusters identified can be adjusted by changing this value accordingly. If p is a scalar, assumes all
preferences are that shared value.

The number of clusters eventually emerges by iteratively passing messages between data points to
update two matrices, A and R (Frey and Dueck 2007). The "responsibility" matrix R has values
(i, k) that quantify how well suited point k is to serve as the exemplar for point i relative to other
candidate exemplars for point i. The "availability” matrix A contains values a(i, k) representing
how "appropriate” point k would be as an exemplar for point i, taking into account other points’
preferences for point k as an exemplar. Both matrices R and A are initialized with all zeros. The AP
algorithm then performs updates iteratively over the two matrices. First, "Responsibilities" r(i, k)
are sent from data points to candidate exemplars to indicate how strongly each data point favors the
candidate exemplar over other candidate exemplars. "Availabilities" a(i, k) then are sent from candi-
date exemplars to data points to indicate the degree to which each candidate exemplar is available to
be a cluster center for the data point. In this case, the responsibilities and availabilities are messages
that provide evidence about whether each data point should be an exemplar and, if not, to what
exemplar that data point should be assigned. For each iteration in the message-passing procedure,
the sum of r(k; k) + a(k; k) can be used to identify exemplars. After the messages have converged,
two ways exist to identify exemplars. In the first approach, for data point i, if r(i, i) + a(i, i) > 0,
then data point i is an exemplar. In the second approach, for data point i, if r(i, 1) + a(i, 1) > r(i, j) +
a(i, j) for all i not equal to j, then data point i is an exemplar. The entire procedure terminates after
it reaches a predefined number of iterations or if the determined clusters have remained constant for
a certain number of iterations... ( https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5650075/ — See
chapter 2 )

Excluding the main diagonal of the similarity matrix when calculating the median as preference
(’p’) value can be considered as another option too.

References

https://www.psi.toronto.edu/index.php?q=affinity
https://www.psi.toronto.edu/affinitypropagation/faq.html
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5650075/ ( SEE chapter 2 )

Examples

set.seed(1)
dat = matrix(sample(1:255, 2500, replace = TRUE), 100, 25)

smt = 1.0 - distance_matrix(dat, method = 'euclidean', upper = TRUE, diagonal = TRUE)
diag(smt) = 0.0

ap = AP_affinity_propagation(smt, p = median(as.vector(smt)))

str(ap)
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AP_preferenceRange Affinity propagation preference range

Description

Affinity propagation preference range

Usage

AP_preferenceRange(data, method = "bound”, threads = 1)

Arguments
data a matrix. Either a similarity matrix (where number of rows equal to number of
columns) or a 3-dimensional matrix where the 1st, 2nd and 3rd column corre-
spond to (i-index, j-index, value) triplet of a similarity matrix.
method a character string specifying the preference range method to use. One of "exact’,
’bound’. See the details section for more information.
threads an integer specifying the number of cores to run in parallel ( applies only if
method is set to ’exact’ which is more computationally intensive )
Details

Given a set of similarities, data, this function computes a lower bound, pmin, on the value for the
preference where the optimal number of clusters (exemplars) changes from 1 to 2, and the exact
value of the preference, pmax, where the optimal number of clusters changes from n-1 to n. For N
data points, there may be as many as N*2-N pair-wise similarities (note that the similarity of data
point i to k need not be equal to the similarity of data point k to i). These may be passed in an NxN
matrix of similarities, data, where data(i,k) is the similarity of point i to point k. In fact, only a
smaller number of relevant similarities need to be provided, in which case the others are assumed
to be -Inf. M similarity values are known, can be passed in an Mx3 matrix data, where each row
of data contains a pair of data point indices and a corresponding similarity value: data(j,3) is the
similarity of data point data(j,1) to data point data(j,2).

A single-cluster solution may not exist, in which case pmin is set to NaN. The AP_preferenceRange
uses one of the methods below to compute pmin and pmax:

exact : Computes the exact values for pmin and pmax (Warning: This can be quite slow) bound :
Computes the exact value for pmax, but estimates pmin using a bound (default)

References

https://www.psi.toronto.edu/affinitypropagation/preferenceRange.m
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Examples

set.seed(1)
dat = matrix(sample(1:255, 2500, replace = TRUE), 100, 25)

smt = 1.0 - distance_matrix(dat, method = 'euclidean', upper = TRUE, diagonal = TRUE)
diag(smt) = 0.0

ap_range = AP_preferenceRange(smt, method = "bound")
center_scale Function to scale and/or center the data
Description

Function to scale and/or center the data

Usage

center_scale(data, mean_center = TRUE, sd_scale = TRUE)

Arguments

data matrix or data frame

mean_center either TRUE or FALSE. If mean_center is TRUE then the mean of each column
will be subtracted

sd_scale either TRUE or FALSE. See the details section for more information

Details

If sd_scale is TRUE and mean_center is TRUE then each column will be divided by the standard
deviation. If sd_scale is TRUE and mean_center is FALSE then each column will be divided by
sqrt( sum(x”*2) / (n-1) ). In case of missing values the function raises an error. In case that the
standard deviation equals zero then the standard deviation will be replaced with 1.0, so that NaN’s
can be avoided by division

Value

a matrix
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Examples

data(dietary_survey_IBS)

dat = dietary_survey_IBS[, -ncol(dietary_survey_IBS)]

dat = center_scale(dat, mean_center = TRUE, sd_scale = TRUE)
Clara_Medoids Clustering large applications
Description

Clustering large applications

Usage

Clara_Medoids(
data,
clusters,
samples,
sample_size,
distance_metric = "euclidean”,
minkowski_p = 1,
threads = 1,

swap_phase = TRUE,
fuzzy = FALSE,
verbose = FALSE,

seed = 1
)
Arguments
data matrix or data frame
clusters the number of clusters
samples number of samples to draw from the data set
sample_size fraction of data to draw in each sample iteration. It should be a float number

greater than 0.0 and less or equal to 1.0

distance_metric
a string specifying the distance method. One of, euclidean, manhattan, cheby-
shev, canberra, braycurtis, pearson_correlation, simple_matching_coefficient,
minkowski, hamming, jaccard_coefficient, Rao_coefficient, mahalanobis, cosine

minkowski_p anumeric value specifying the minkowski parameter in case that distance_metric
= "minkowski"



threads

swap_phase

fuzzy

verbose

seed

Details

Clara_Medoids

an integer specifying the number of cores to run in parallel. Openmp will be
utilized to parallelize the number of the different sample draws

either TRUE or FALSE. If TRUE then both phases (’build’ and ’swap’) will take
place. The swap_phase’ is considered more computationally intensive.

either TRUE or FALSE. If TRUE, then probabilities for each cluster will be
returned based on the distance between observations and medoids

either TRUE or FALSE, indicating whether progress is printed during clustering

integer value for random number generator (RNG)

The Clara_Medoids function is implemented in the same way as the "clara’ (clustering large applica-
tions) algorithm (Kaufman and Rousseeuw(1990)). In the *Clara_Medoids’ the ’Cluster_Medoids’
function will be applied to each sample draw.

Value

a list with the following attributes : medoids, medoid_indices, sample_indices, best_dissimilarity,
clusters, fuzzy_probs (if fuzzy = TRUE), clustering_stats, dissimilarity_matrix, silhouette_matrix

Author(s)

Lampros Mouselimis

References

Anja Struyf, Mia Hubert, Peter J. Rousseeuw, (Feb. 1997), Clustering in an Object-Oriented Envi-
ronment, Journal of Statistical Software, Vol 1, Issue 4

Examples

data(dietary_survey_IBS)

dat = dietary_survey_IBS[, -ncol(dietary_survey_IBS)]

dat = center_scale(dat)

clm = Clara_Medoids(dat, clusters = 3, samples = 5, sample_size = 0.2, swap_phase = TRUE)
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Cluster_Medoids Partitioning around medoids

Description

Partitioning around medoids

Usage
Cluster_Medoids(
data,
clusters,
distance_metric = "euclidean”,
minkowski_p = 1,
threads = 1,

swap_phase = TRUE,
fuzzy = FALSE,
verbose = FALSE,

seed = 1
)
Arguments
data matrix or data frame. The data parameter can be also a dissimilarity matrix,
where the main diagonal equals 0.0 and the number of rows equals the number
of columns
clusters the number of clusters

distance_metric
a string specifying the distance method. One of, euclidean, manhattan, cheby-
shev, canberra, braycurtis, pearson_correlation, simple_matching_coefficient,
minkowski, hamming, jaccard_coefficient, Rao_coefficient, mahalanobis, cosine

minkowski_p anumeric value specifying the minkowski parameter in case that distance_metric
= "minkowski"

threads an integer specifying the number of cores to run in parallel

swap_phase either TRUE or FALSE. If TRUE then both phases (’build’ and ’swap’) will take
place. The ’swap_phase’ is considered more computationally intensive.

fuzzy either TRUE or FALSE. If TRUE, then probabilities for each cluster will be
returned based on the distance between observations and medoids

verbose either TRUE or FALSE, indicating whether progress is printed during clustering

seed ‘r lifecycle::badge("deprecated")‘ ‘seed‘ (integer value for random number gen-

erator (RNG)) is no longer supported and will be removed in version 1.4.0
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Details

Due to the fact that I didn’t have access to the book 'Finding Groups in Data, Kaufman and
Rousseeuw, 1990’ (which includes the exact algorithm) I implemented the ’Cluster_Medoids’ func-
tion based on the paper ’Clustering in an Object-Oriented Environment’ (see ’References’). There-
fore, the *Cluster_Medoids’ function is an approximate implementation and not an exact one. Fur-
thermore, in comparison to k-means clustering, the function ’Cluster_Medoids’ is more robust,
because it minimizes the sum of unsquared dissimilarities. Moreover, it doesn’t need initial guesses
for the cluster centers.

Value

a list with the following attributes: medoids, medoid_indices, best_dissimilarity, dissimilarity_matrix,
clusters, fuzzy_probs (if fuzzy = TRUE), silhouette_matrix, clustering_stats

Author(s)

Lampros Mouselimis

References

Anja Struyf, Mia Hubert, Peter J. Rousseeuw, (Feb. 1997), Clustering in an Object-Oriented Envi-
ronment, Journal of Statistical Software, Vol 1, Issue 4

Examples

data(dietary_survey_IBS)

dat = dietary_survey_IBS[, -ncol(dietary_survey_IBS)]

dat

center_scale(dat)

cm = Cluster_Medoids(dat, clusters = 3, distance_metric = 'euclidean', swap_phase = TRUE)

cost_clusters_from_dissim_medoids
Compute the cost and clusters based on an input dissimilarity matrix
and medoids

Description

Compute the cost and clusters based on an input dissimilarity matrix and medoids

Usage

cost_clusters_from_dissim_medoids(data, medoids)
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Arguments
data a dissimilarity matrix, where the main diagonal equals 0.0 and the number of
rows equals the number of columns
medoids a vector of output medoids of the *Cluster_Medoids’, *’Clara_Medoids’ or any
other ’partition around medoids’ function
Value

a list object that includes the cost and the clusters

Author(s)

Lampros Mouselimis

Examples

data(dietary_survey_IBS)
dat = dietary_survey_IBS[, -ncol(dietary_survey_IBS)]
dat = center_scale(dat)

cm = Cluster_Medoids(dat, clusters = 3, distance_metric = 'euclidean', swap_phase = TRUE)
res = cost_clusters_from_dissim_medoids(data = cm$dissimilarity_matrix, medoids = cm$medoid_indices)

# cm$best_dissimilarity == res$cost
# table(cm$clusters, res$clusters)

dietary_survey_IBS Synthetic data using a dietary survey of patients with irritable bowel
syndrome (IBS)

Description

The data are based on the article "A dietary survey of patients with irritable bowel syndrome". The
mean and standard deviation of the table 1 (Foods perceived as causing or worsening irritable bowel
syndrome symptoms in the IBS group and digestive symptoms in the healthy comparative group)
were used to generate the synthetic data.

Usage

data(dietary_survey_IBS)

Format

A data frame with 400 Instances and 43 attributes (including the class attribute, "class")
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Details

The predictors are: bread, wheat, pasta, breakfast_cereal, yeast, spicy_food, curry, chinese_takeaway,

chilli, cabbage, onion, garlic, potatoes, pepper, vegetables_unspecified, tomato, beans_and_pulses,
mushroom, fatty_foods_unspecified, sauces, chocolate, fries, crisps, desserts, eggs, red_meat, pro-
cessed_meat, pork, chicken, fish_shellfish, dairy_products_unspecified, cheese, cream, milk, fruit_unspecified,
nuts_and_seeds, orange, apple, banana, grapes, alcohol, caffeine

The response variable ("class") consists of two groups: healthy-group (class == 0) vs. the IBS-
patients (class == 1)

References

P. Hayes, C. Corish, E. O’Mahony, E. M. M. Quigley (May 2013). A dietary survey of patients with
irritable bowel syndrome. Journal of Human Nutrition and Dietetics.

Examples

data(dietary_survey_IBS)

X = dietary_survey_IBS[, -ncol(dietary_survey_IBS)]
y = dietary_survey_IBS[, ncol(dietary_survey_IBS)]
distance_matrix Distance matrix calculation
Description

Distance matrix calculation

Usage
distance_matrix(
data,
method = "euclidean”,

upper = FALSE,
diagonal = FALSE,
minkowski_p = 1,

threads = 1
)
Arguments
data matrix or data frame
method a string specifying the distance method. One of, euclidean, manhattan, cheby-

shev, canberra, braycurtis, pearson_correlation, simple_matching_coefficient,
minkowski, hamming, jaccard_coefficient, Rao_coefficient, mahalanobis, cosine
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upper

diagonal

minkowski_p

threads

Value

a matrix

Examples
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either TRUE or FALSE specifying if the upper triangle of the distance matrix
should be returned. If FALSE then the upper triangle will be filled with NA’s

either TRUE or FALSE specifying if the diagonal of the distance matrix should
be returned. If FALSE then the diagonal will be filled with NA’s

a numeric value specifying the minkowski parameter in case that method =
"minkowski"

the number of cores to run in parallel (if OpenMP is available)

data(dietary_survey_IBS)

dat = dietary_survey_IBS[, -ncol(dietary_survey_IBS)]

dat

distance_matrix(dat, method = 'euclidean', upper = TRUE, diagonal = TRUE)

external_validation external clustering validation

Description

external clustering validation

Usage

external_validation(

true_labels,

clusters,
method = "adjusted_rand_index",
summary_stats = FALSE
)
Arguments

true_labels

clusters

method

summary_stats

a numeric vector of length equal to the length of the clusters vector

anumeric vector ( the result of a clustering method ) of length equal to the length
of the true_labels

one of rand_index, adjusted_rand_index, jaccard_index, fowlkes_Mallows_index,
mirkin_metric, purity, entropy, nmi (normalized mutual information), var_info
(variation of information), and nvi (normalized variation of information)

besides the available methods the summary_stats parameter prints also the speci-
ficity, sensitivity, precision, recall and F-measure of the clusters
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Details

This function uses external validation methods to evaluate the clustering results

Value

if summary_stats is FALSE the function returns a float number, otherwise it returns also a summary
statistics table

Author(s)

Lampros Mouselimis
Examples

data(dietary_survey_IBS)

dat = dietary_survey_IBS[, -ncol(dietary_survey_IBS)]

X = center_scale(dat)

km = KMeans_rcpp(X, clusters = 2, num_init = 5, max_iters = 100, initializer = 'kmeans++')

res = external_validation(dietary_survey_IBS$class, km$clusters, method = "adjusted_rand_index")

GMM Gaussian Mixture Model clustering

Description

Gaussian Mixture Model clustering

Usage
GMM(
data,
gaussian_comps = 1,
dist_mode = "eucl_dist",
seed_mode = "random_subset”,
km_iter = 10,

em_iter = 5,

verbose = FALSE,

var_floor = 1e-10,

seed = 1,
full_covariance_matrices = FALSE
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Arguments

data matrix or data frame
gaussian_comps the number of gaussian mixture components

dist_mode the distance used during the seeding of initial means and k-means clustering.
One of, eucl_dist, maha_dist.

seed_mode how the initial means are seeded prior to running k-means and/or EM algo-
rithms. One of, static_subset, random_subset, static_spread, random_spread.

km_iter the number of iterations of the k-means algorithm

em_iter the number of iterations of the EM algorithm

verbose either TRUE or FALSE; enable or disable printing of progress during the k-
means and EM algorithms

var_floor the variance floor (smallest allowed value) for the diagonal covariances

seed integer value for random number generator (RNG)

full_covariance_matrices
a boolean. If FALSE "diagonal" covariance matrices (i.e. in each covariance
matrix, all entries outside the main diagonal are assumed to be zero) otherwise
"full" covariance matrices will be returned. Be aware in case of "full" covari-
ance matrices a cube (3-dimensional) rather than a matrix for the output "covari-
ance_matrices" value will be returned.

Details

This function is an R implementation of the *gmm_diag’ class of the Armadillo library. The
only exception is that user defined parameter settings are not supported, such as seed_mode =
’keep_existing’. For probabilistic applications, better model parameters are typically learned with
dist_mode set to maha_dist. For vector quantisation applications, model parameters should be
learned with dist_mode set to eucl_dist, and the number of EM iterations set to zero. In general,
a sufficient number of k-means and EM iterations is typically about 10. The number of train-
ing samples should be much larger than the number of Gaussians. Seeding the initial means with
static_spread and random_spread can be much more time consuming than with static_subset and
random_subset. The k-means and EM algorithms will run faster on multi-core machines when
OpenMP is enabled in your compiler (eg. -fopenmp in GCC)

Value

a list consisting of the centroids, covariance matrix ( where each row of the matrix represents a
diagonal covariance matrix), weights and the log-likelihoods for each gaussian component. In case
of Error it returns the error message and the possible causes.

References

http://arma.sourceforge.net/docs.html
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Examples

data(dietary_survey_IBS)

dat

as.matrix(dietary_survey_IBS[, -ncol(dietary_survey_IBS)])

dat = center_scale(dat)

gmm = GMM(dat, 2, "maha_dist”, "random_subset”, 10, 10)

KMeans_arma k-means using the Armadillo library

Description

k-means using the Armadillo library

Usage

KMeans_arma(
data,
clusters,
n_iter = 10,
seed_mode = "random_subset”,
verbose = FALSE,
CENTROIDS = NULL,

seed = 1
)
Arguments
data matrix or data frame
clusters the number of clusters
n_iter the number of clustering iterations (about 10 is typically sufficient)
seed_mode how the initial centroids are seeded. One of, keep_existing, static_subset, ran-
dom_subset, static_spread, random_spread.
verbose either TRUE or FALSE, indicating whether progress is printed during clustering
CENTROIDS a matrix of initial cluster centroids. The rows of the CENTROIDS matrix should

be equal to the number of clusters and the columns should be equal to the
columns of the data. CENTROIDS should be used in combination with seed_mode
"keep_existing’.

seed integer value for random number generator (RNG)
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Details

This function is an R implementation of the ’kmeans’ class of the Armadillo library. It is faster
than the KMeans_rcpp function but it lacks some features. For more info see the details section of
the KMeans_rcpp function. The number of columns should be larger than the number of clusters
or CENTROIDS. If the clustering fails, the means matrix is reset and a bool set to false is returned.
The clustering will run faster on multi-core machines when OpenMP is enabled in your compiler
(eg. -fopenmp in GCC)
Value

the centroids as a matrix. In case of Error it returns the error message, whereas in case of an empty
centroids-matrix it returns a warning-message.

References

http://arma.sourceforge.net/docs.html

Examples

data(dietary_survey_IBS)

dat = dietary_survey_IBS[, -ncol(dietary_survey_IBS)]

dat = center_scale(dat)

km = KMeans_arma(dat, clusters = 2, n_iter = 10, "random_subset”)

KMeans_rcpp k-means using RcppArmadillo

Description

k-means using RecppArmadillo

Usage

KMeans_rcpp(
data,
clusters,
num_init = 1,
max_iters = 100,
initializer = "kmeans++",
fuzzy = FALSE,
verbose = FALSE,
CENTROIDS = NULL,
tol = 1e-04,
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tol_optimal_init = 0.3,

seed = 1
)
Arguments

data matrix or data frame

clusters the number of clusters

num_init number of times the algorithm will be run with different centroid seeds

max_iters the maximum number of clustering iterations

initializer the method of initialization. One of, optimal_init, quantile_init, kmeans++ and
random. See details for more information

fuzzy either TRUE or FALSE. If TRUE, then prediction probabilities will be calcu-
lated using the distance between observations and centroids

verbose either TRUE or FALSE, indicating whether progress is printed during clustering.

CENTROIDS a matrix of initial cluster centroids. The rows of the CENTROIDS matrix should
be equal to the number of clusters and the columns should be equal to the
columns of the data.

tol a float number. If, in case of an iteration (iteration > 1 and iteration < max_iters)
’tol” is greater than the squared norm of the centroids, then kmeans has con-
verged

tol_optimal_init
tolerance value for the *optimal_init’ initializer. The higher this value is, the far
appart from each other the centroids are.

seed integer value for random number generator (RNG)

Details

This function has the following features in comparison to the KMeans_arma function:

Besides optimal_init, quantile_init, random and kmeans++ initilizations one can specify the cen-
troids using the CENTROIDS parameter.

The running time and convergence of the algorithm can be adjusted using the num_init, max_iters
and tol parameters.

If num_init > 1 then KMeans_rcpp returns the attributes of the best initialization using as criterion
the within-cluster-sum-of-squared-error.

initializers

optimal_init : this initializer adds rows of the data incrementally, while checking that they do not
already exist in the centroid-matrix [ experimental ]

quantile_init : initialization of centroids by using the cummulative distance between observations
and by removing potential duplicates [ experimental ]

kmeans++ : kmeans++ initialization. Reference : http://theory.stanford.edu/~sergei/papers/kMeansPP-
soda.pdf AND http://stackoverflow.com/questions/5466323/how-exactly-does-k-means-work

random : random selection of data rows as initial centroids
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Value

a list with the following attributes: clusters, fuzzy_clusters (if fuzzy = TRUE), centroids, total_SSE,
best_initialization, WCSS_per_cluster, obs_per_cluster, between.SS_DIV_total.SS

Author(s)

Lampros Mouselimis

Examples

data(dietary_survey_IBS)
dat = dietary_survey_IBS[, -ncol(dietary_survey_IBS)]

dat

center_scale(dat)

km = KMeans_rcpp(dat, clusters = 2, num_init =5, max_iters = 100, initializer = 'kmeans++')

MiniBatchKmeans Mini-batch-k-means using RcppArmadillo

Description

Mini-batch-k-means using RcppArmadillo

Usage
MiniBatchKmeans(
data,
clusters,
batch_size = 10,

num_init = 1,
max_iters = 100,
init_fraction = 1,
initializer = "kmeans++",
early_stop_iter = 10,
verbose = FALSE,
CENTROIDS = NULL,

tol = 1e-04,
tol_optimal_init = 9.3,
seed = 1
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Arguments
data matrix or data frame
clusters the number of clusters
batch_size the size of the mini batches
num_init number of times the algorithm will be run with different centroid seeds
max_iters the maximum number of clustering iterations

init_fraction percentage of data to use for the initialization centroids (applies if initializer is
kmeans++ or optimal_init). Should be a float number between 0.0 and 1.0.

initializer the method of initialization. One of, optimal_init, quantile_init, kmeans++ and
random. See details for more information
early_stop_iter

continue that many iterations after calculation of the best within-cluster-sum-of-
squared-error
verbose either TRUE or FALSE, indicating whether progress is printed during clustering

CENTROIDS a matrix of initial cluster centroids. The rows of the CENTROIDS matrix should
be equal to the number of clusters and the columns should be equal to the
columns of the data

tol a float number. If, in case of an iteration (iteration > 1 and iteration < max_iters)
’tol” is greater than the squared norm of the centroids, then kmeans has con-
verged

tol_optimal_init
tolerance value for the *optimal_init’ initializer. The higher this value is, the far
appart from each other the centroids are.

seed integer value for random number generator (RNG)

Details

This function performs k-means clustering using mini batches.

initializers

optimal_init : this initializer adds rows of the data incrementally, while checking that they do not
already exist in the centroid-matrix [ experimental ]

quantile_init : initialization of centroids by using the cummulative distance between observations
and by removing potential duplicates [ experimental ]

kmeans++ : kmeans++ initialization. Reference : http://theory.stanford.edu/~sergei/papers/kMeansPP-
soda.pdf AND http://stackoverflow.com/questions/5466323/how-exactly-does-k-means-work

random : random selection of data rows as initial centroids

Value

a list with the following attributes: centroids, WCSS_per_cluster, best_initialization, iters_per_initialization

Author(s)

Lampros Mouselimis
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References

http://www.eecs.tufts.edu/~dsculley/papers/fastkmeans.pdf, https://github.com/siddharth-agrawal/Mini-
Batch-K-Means

Examples
data(dietary_survey_IBS)

dat = dietary_survey_IBS[, -ncol(dietary_survey_IBS)]

dat

center_scale(dat)

MbatchKm = MiniBatchKmeans(dat, clusters = 2, batch_size = 20, num_init = 5, early_stop_iter = 10)

mushroom The mushroom data

Description

This data set includes descriptions of hypothetical samples corresponding to 23 species of gilled
mushrooms in the Agaricus and Lepiota Family (pp. 500-525). Each species is identified as defi-
nitely edible, definitely poisonous, or of unknown edibility and not recommended. This latter class
was combined with the poisonous one. The Guide clearly states that there is no simple rule for
determining the edibility of a mushroom; no rule like ’leaflets three, let it be’ for Poisonous Oak
and Ivy.

Usage

data(mushroom)

Format

A data frame with 8124 Instances and 23 attributes (including the class attribute, "class")

Details

The column names of the data (including the class) appear in the following order:
1. class: edible=e, poisonous=p

2. cap-shape: bell=b, conical=c, convex=x, flat=f, knobbed=k, sunken=s

3. cap-surface: fibrous=f, grooves=g, scaly=y, smooth=s

4. cap-color: brown=n, buff=b, cinnamon=c, gray=g, green=r, pink=p, purple=u, red=e, white=w,
yellow=y

5. bruises: bruises=t, no=f

6. odor: almond=a, anise=l, creosote=c, fishy=y, foul=f, musty=m, none=n, pungent=p, spicy=s
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7. gill-attachment: attached=a, descending=d, free=f, notched=n
8. gill-spacing: close=c, crowded=w, distant=d
9. gill-size: broad=b, narrow=n

10. gill-color: black=k, brown=n, buff=b, chocolate=h, gray=g, green=r, orange=o, pink=p, pur-
ple=u, red=e, white=w, yellow=y

11. stalk-shape: enlarging=e, tapering=t

12. stalk-root: bulbous=b, club=c, cup=u, equal=e, rhizomorphs=z, rooted=r, missing="?
13. stalk-surface-above-ring: fibrous=f, scaly=y, silky=k, smooth=s

14. stalk-surface-below-ring: fibrous=f, scaly=y, silky=k, smooth=s

15. stalk-color-above-ring: brown=n, buff=b, cinnamon=c, gray=g, orange=o, pink=p, red=e,
white=w, yellow=y

16. stalk-color-below-ring: brown=n, buff=b, cinnamon=c, gray=g, orange=o, pink=p, red=e,
white=w, yellow=y

17. veil-type: partial=p, universal=u
18. veil-color: brown=n, orange=0, white=w, yellow=y
19. ring-number: none=n, one=0, two=t

20. ring-type: cobwebby=c, evanescent=e, flaring=f, large=l, none=n, pendant=p, sheathing=s,
zone=z

21. spore-print-color: black=k, brown=n, buff=b, chocolate=h, green=r, orange=o0, purple=u, white=w,
yellow=y

22. population: abundant=a, clustered=c, numerous=n, scattered=s, several=v, solitary=y

23. habitat: grasses=g, leaves=l, meadows=m, paths=p, urban=u, waste=w, woods=d

References

Mushroom records drawn from The Audubon Society Field Guide to North American Mushrooms
(1981). G. H. Lincoff (Pres.), New York: Alfred A. Knopf

Donor: Jeff Schlimmer (Jeffrey.Schlimmer@a.gp.cs.cmu.edu)

download source: https://archive.ics.uci.edu/ml/datasets/Mushroom

Examples

data(mushroom)

X

mushroom[, -1]

mushroom[, 1]

<
1
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Optimal_Clusters_GMM

Optimal number of Clusters for the gaussian mixture models

Description

Optimal number of Clusters for the gaussian mixture models

Usage
Optimal_Clusters_GMM(
data,
max_clusters,
criterion = "AIC",
dist_mode = "eucl_dist",
seed_mode = "random_subset”,
km_iter = 10,

em_iter = 5,
verbose = FALSE,
var_floor = 1e-10,
plot_data = TRUE,

seed = 1

Arguments

data

max_clusters

criterion

dist_mode

seed_mode

km_iter
em_iter

verbose

var_floor

plot_data

seed

matrix or data frame

either a numeric value, a contiguous or non-continguous numeric vector speci-
fying the cluster search space

one of ’AIC’ or ’BIC’

the distance used during the seeding of initial means and k-means clustering.
One of, eucl_dist, maha_dist.

how the initial means are seeded prior to running k-means and/or EM algo-
rithms. One of, static_subset, random_subset, static_spread, random_spread.

the number of iterations of the k-means algorithm
the number of iterations of the EM algorithm

either TRUE or FALSE; enable or disable printing of progress during the k-
means and EM algorithms

the variance floor (smallest allowed value) for the diagonal covariances

either TRUE or FALSE indicating whether the results of the function should be
plotted

integer value for random number generator (RNG)
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Details

AIC : the Akaike information criterion
BIC : the Bayesian information criterion

In case that the max_clusters parameter is a contiguous or non-contiguous vector then plotting is
disabled. Therefore, plotting is enabled only if the max_clusters parameter is of length 1.

Value

a vector with either the AIC or BIC for each iteration. In case of Error it returns the error message
and the possible causes.

Author(s)

Lampros Mouselimis

Examples

data(dietary_survey_IBS)

dat

dietary_survey_IBS[, -ncol(dietary_survey_IBS)]

dat

center_scale(dat)

opt_gmm = Optimal_Clusters_GMM(dat, 10, criterion = "AIC", plot_data = FALSE)

search_space = c(2,5)

opt_gmm = Optimal_Clusters_GMM(dat, search_space, criterion = "AIC", plot_data = FALSE)

Optimal_Clusters_KMeans
Optimal number of Clusters for Kmeans or Mini-Batch-Kmeans

Description

Optimal number of Clusters for Kmeans or Mini-Batch-Kmeans
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Usage

Optimal_Clusters_KMeans(
data,
max_clusters,
criterion = "variance_explained”,
fK_threshold = .85,
num_init = 1,
max_iters = 200,
initializer = "kmeans++",
tol = 1e-04,
plot_clusters = TRUE,
verbose = FALSE,
tol_optimal_init = 0.3,

seed = 1,
mini_batch_params = NULL
)
Arguments
data matrix or data frame

max_clusters either a numeric value, a contiguous or non-continguous numeric vector speci-
fying the cluster search space

criterion one of variance_explained, WCSSE, dissimilarity, silhouette, distortion_fK, AIC,
BIC and Adjusted_Rsquared. See details for more information.

fK_threshold a float number used in the ’distortion_fK’ criterion

num_init number of times the algorithm will be run with different centroid seeds
max_iters the maximum number of clustering iterations
initializer the method of initialization. One of, optimal_init, quantile_init, kmeans++ and

random. See details for more information

tol a float number. If, in case of an iteration (iteration > 1 and iteration < max_iters)
’tol” is greater than the squared norm of the centroids, then kmeans has con-
verged

plot_clusters either TRUE or FALSE, indicating whether the results of the Optimal_Clusters_KMeans
function should be plotted

verbose either TRUE or FALSE, indicating whether progress is printed during clustering
tol_optimal_init
tolerance value for the *optimal_init’ initializer. The higher this value is, the far
appart from each other the centroids are.

seed integer value for random number generator (RNG)

mini_batch_params
either NULL or a list of the following parameters : batch_size, init_fraction,
early_stop_iter. If not NULL then the optimal number of clusters will be found
based on the Mini-Batch-Kmeans. See the details and examples sections for
more information.
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Details

criteria

variance_explained : the sum of the within-cluster-sum-of-squares-of-all-clusters divided by the
total sum of squares

WCSSE : the sum of the within-cluster-sum-of-squares-of-all-clusters

dissimilarity : the average intra-cluster-dissimilarity of all clusters (the distance metric defaults to
euclidean)

silhouette : the average silhouette width where first the average per cluster silhouette is computed
and then the global average (the distance metric defaults to euclidean). To compute the silhouette
width for each cluster separately see the ’silhouette_of_clusters()’ function

distortion_fK : this criterion is based on the following paper, ’Selection of K in K-means clustering’
(https://www.ee.columbia.edu/~dpwe/papers/PhamDNO05-kmeans.pdf)

AIC : the Akaike information criterion
BIC : the Bayesian information criterion
Adjusted_Rsquared : the adjusted R”2 statistic

initializers

optimal _init : this initializer adds rows of the data incrementally, while checking that they do not
already exist in the centroid-matrix [ experimental ]

quantile_init : initialization of centroids by using the cummulative distance between observations
and by removing potential duplicates [ experimental ]

kmeans++ : kmeans++ initialization. Reference : http://theory.stanford.edu/~sergei/papers/kMeansPP-
soda.pdf AND http://stackoverflow.com/questions/5466323/how-exactly-does-k-means-work

random : random selection of data rows as initial centroids

If the mini_batch_params parameter is not NULL then the optimal number of clusters will be
found based on the Mini-batch-Kmeans algorithm, otherwise based on the Kmeans. The higher
the init_fraction parameter is the more close the results between Mini-Batch-Kmeans and Kmeans
will be.

In case that the max_clusters parameter is a contiguous or non-contiguous vector then plotting is
disabled. Therefore, plotting is enabled only if the max_clusters parameter is of length 1. Moreover,
the distortion_fK criterion can’t be computed if the max_clusters parameter is a contiguous or non-
continguous vector ( the distortion_fK criterion requires consecutive clusters ). The same applies
also to the Adjusted_Rsquared criterion which returns incorrect output.

Value
a vector with the results for the specified criterion. If plot_clusters is TRUE then it plots also the
results.

Author(s)

Lampros Mouselimis



Optimal_Clusters_Medoids 27

References

https://www.ee.columbia.edu/~dpwe/papers/PhamDNO5-kmeans.pdf

Examples

data(dietary_survey_IBS)
dat = dietary_survey_IBS[, -ncol(dietary_survey_IBS)]

dat = center_scale(dat)

opt_km = Optimal_Clusters_KMeans(dat, max_clusters = 10, criterion = "distortion_fK",

plot_clusters = FALSE)

params_mbkm = list(batch_size = 10, init_fraction = 0.3, early_stop_iter = 10)
opt_mbkm = Optimal_Clusters_KMeans(dat, max_clusters = 10, criterion = "distortion_fK",

plot_clusters = FALSE, mini_batch_params = params_mbkm)

search_space = c(2,5)
opt_km = Optimal_Clusters_KMeans(dat, max_clusters = search_space,
criterion = "variance_explained”,

plot_clusters = FALSE)

Optimal_Clusters_Medoids
Optimal number of Clusters for the partitioning around Medoids func-
tions
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Description

Optimal number of Clusters for the partitioning around Medoids functions

Usage

Optimal_Clusters_Medoids(
data,
max_clusters,
distance_metric,
criterion = "dissimilarity”,
clara_samples = 0,
clara_sample_size = 0,
minkowski_p = 1,
swap_phase = TRUE,
threads = 1,
verbose = FALSE,
plot_clusters = TRUE,
seed = 1

Arguments

data matrix or data.frame. If both clara_samples and clara_sample_size equal 0, then
the data parameter can be also a dissimilarity matrix, where the main diagonal
equals 0.0 and the number of rows equals the number of columns

max_clusters either a numeric value, a contiguous or non-continguous numeric vector speci-
fying the cluster search space

distance_metric
a string specifying the distance method. One of, euclidean, manhattan, cheby-
shev, canberra, braycurtis, pearson_correlation, simple_matching_coefficient,
minkowski, hamming, jaccard_coefficient, Rao_coefficient, mahalanobis, cosine

criterion one of ’dissimilarity’ or ’silhouette’

clara_samples number of samples to draw from the data set in case of clustering large applica-
tions (clara)

clara_sample_size

fraction of data to draw in each sample iteration in case of clustering large ap-
plications (clara). It should be a float number greater than 0.0 and less or equal

to 1.0

minkowski_p anumeric value specifying the minkowski parameter in case that distance_metric
= "minkowski"

swap_phase either TRUE or FALSE. If TRUE then both phases (’build’ and ’swap’) will take

place. The ’swap_phase’ is considered more computationally intensive.

threads an integer specifying the number of cores to run in parallel. Openmp will be
utilized to parallelize the number of sample draws

verbose either TRUE or FALSE, indicating whether progress is printed during clustering
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plot_clusters TRUE or FALSE, indicating whether the iterative results should be plotted. See
the details section for more information

seed integer value for random number generator (RNG)

Details

In case of plot_clusters = TRUE, the first plot will be either a plot of dissimilarities or both dissim-
ilarities and silhouette widths giving an indication of the optimal number of the clusters. Then, the
user will be asked to give an optimal value for the number of the clusters and after that the second
plot will appear with either the dissimilarities or the silhouette widths belonging to each cluster.

In case that the max_clusters parameter is a contiguous or non-contiguous vector then plotting is
disabled. Therefore, plotting is enabled only if the max_clusters parameter is of length 1.

Value

a list of length equal to the max_clusters parameter (the first sublist equals NULL, as dissimilarities
and silhouette widths can be calculated if the number of clusters > 1). If plot_clusters is TRUE then
the function plots also the results.

Author(s)

Lampros Mouselimis

Examples

## Not run:
data(soybean)

dat = soybean[, -ncol(soybean)]

opt_md = Optimal_Clusters_Medoids(dat, 10, 'jaccard_coefficient', plot_clusters = FALSE)

search_space = c(2,5)

opt_md = Optimal_Clusters_Medoids(dat, search_space, 'jaccard_coefficient', plot_clusters = FALSE)

## End(Not run)
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plot_2d 2-dimensional plots

Description

2-dimensional plots

Usage

plot_2d(data, clusters, centroids_medoids)

Arguments
data a 2-dimensional matrix or data frame
clusters numeric vector of length equal to the number of rows of the data, which is the

result of a clustering method
centroids_medoids

a matrix of centroids or medoids. The rows of the centroids_medoids should be
equal to the length of the unique values of the clusters and the columns should
be equal to the columns of the data.

Details

This function plots the clusters using 2-dimensional data and medoids or centroids.

Value

a plot

Author(s)

Lampros Mouselimis

Examples

# data(dietary_survey_IBS)

# dat = dietary_survey_IBS[, -ncol(dietary_survey_IBS)]

# dat = center_scale(dat)
# pca_dat = stats::princomp(dat)$scores[, 1:2]
# km = KMeans_rcpp(pca_dat, clusters = 2, num_init = 5, max_iters = 100)

# plot_2d(pca_dat, km$clusters, km$centroids)
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predict_GMM Prediction function for a Gaussian Mixture Model object

Description

Prediction function for a Gaussian Mixture Model object

Usage
predict_GMM(data, CENTROIDS, COVARIANCE, WEIGHTS)

## S3 method for class 'GMMCluster'

predict(object, newdata, ...)
Arguments
data matrix or data frame
CENTROIDS matrix or data frame containing the centroids (means), stored as row vectors
COVARIANCE matrix or data frame containing the diagonal covariance matrices, stored as row
vectors
WEIGHTS vector containing the weights

object, newdata, ...
arguments for the ‘predict* generic

Details

This function takes the centroids, covariance matrix and weights from a trained model and returns
the log-likelihoods, cluster probabilities and cluster labels for new data.

Value

a list consisting of the log-likelihoods, cluster probabilities and cluster labels.

Author(s)

Lampros Mouselimis

Examples

data(dietary_survey_IBS)

dat

as.matrix(dietary_survey_IBS[, -ncol(dietary_survey_IBS)])

dat = center_scale(dat)

gmm = GMM(dat, 2, "maha_dist"”, "random_subset”, 10, 10)



32 predict_KMeans

# pr = predict_GMM(dat, gmm$centroids, gmm$covariance_matrices, gmm$weights)

predict_KMeans Prediction function for the k-means

Description

Prediction function for the k-means

Usage

predict_KMeans(data, CENTROIDS, threads = 1, fuzzy = FALSE)

## S3 method for class 'KMeansCluster'

predict(object, newdata, fuzzy = FALSE, threads =1, ...)
Arguments
data matrix or data frame
CENTROIDS a matrix of initial cluster centroids. The rows of the CENTROIDS matrix should

be equal to the number of clusters and the columns should be equal to the
columns of the data.

threads an integer specifying the number of cores to run in parallel

fuzzy either TRUE or FALSE. If TRUE, then probabilities for each cluster will be
returned based on the distance between observations and centroids.

object, newdata, ...
arguments for the ‘predict‘ generic

Details

This function takes the data and the output centroids and returns the clusters.

Value

a vector (clusters)

Author(s)

Lampros Mouselimis
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Examples

data(dietary_survey_IBS)

dat = dietary_survey_IBS[, -ncol(dietary_survey_IBS)]

dat

center_scale(dat)
km = KMeans_rcpp(dat, clusters = 2, num_init = 5, max_iters = 100, initializer = 'kmeans++')

pr = predict_KMeans(dat, km$centroids, threads = 1)

predict_MBatchKMeans  Prediction function for Mini-Batch-k-means

Description

Prediction function for Mini-Batch-k-means

Usage

predict_MBatchKMeans(data, CENTROIDS, fuzzy = FALSE, updated_output = FALSE)

## S3 method for class 'MBatchKMeans'

predict(object, newdata, fuzzy = FALSE, ...)
Arguments
data matrix or data frame
CENTROIDS a matrix of initial cluster centroids. The rows of the CENTROIDS matrix should
be equal to the number of clusters and the columns should equal the columns of
the data.
fuzzy either TRUE or FALSE. If TRUE then prediction probabilities will be calculated

using the distance between observations and centroids.

updated_output either TRUE or FALSE. If TRUE then the ’predict_MBatchKMeans’ function
will follow the same output object behaviour as the ’predict_KMeans’ function
(if fuzzy is TRUE it will return probabilities otherwise it will return the hard
clusters). This parameter will be removed in version 1.4.0 because this will
become the default output format.

object, newdata, ...
arguments for the ‘predict‘ generic

Details

This function takes the data and the output centroids and returns the clusters.
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Value
if fuzzy = TRUE the function returns a list with two attributes: a vector with the clusters and a
matrix with cluster probabilities. Otherwise, it returns a vector with the clusters.

Author(s)

Lampros Mouselimis

Examples

data(dietary_survey_IBS)

dat = dietary_survey_IBS[, -ncol(dietary_survey_IBS)]

dat = center_scale(dat)

MbatchKm = MiniBatchKmeans(dat, clusters = 2, batch_size = 20, num_init = 5, early_stop_iter = 10)

pr = predict_MBatchKMeans(dat, MbatchKm$centroids, fuzzy = FALSE)

predict_Medoids Predictions for the Medoid functions

Description

Predictions for the Medoid functions

Usage

predict_Medoids(
data,
MEDOIDS = NULL,
distance_metric = "euclidean",
fuzzy = FALSE,
minkowski_p = 1,
threads = 1

## S3 method for class 'MedoidsCluster'
predict(object, newdata, fuzzy = FALSE, threads =1, ...)
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Arguments

data

MEDOIDS

distance_metric

fuzzy

minkowski_p

threads
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matrix or data frame

a matrix of initial cluster medoids (data observations). The rows of the MEDOIDS
matrix should be equal to the number of clusters and the columns of the MEDOIDS
matrix should be equal to the columns of the data.

a string specifying the distance method. One of, euclidean, manhattan, cheby-
shev, canberra, braycurtis, pearson_correlation, simple_matching_coefficient,
minkowski, hamming, jaccard_coefficient, Rao_coefficient, mahalanobis, cosine

either TRUE or FALSE. If TRUE, then probabilities for each cluster will be
returned based on the distance between observations and medoids.

anumeric value specifying the minkowski parameter in case that distance_metric
= "minkowski"

an integer specifying the number of cores to run in parallel. Openmp will be
utilized to parallelize the number of initializations (num_init)

object, newdata, ...

Value

arguments for the ‘predict* generic

a list with the following attributes will be returned : clusters, fuzzy_clusters (if fuzzy = TRUE),

dissimilarity.

Author(s)

Lampros Mouselimis

Examples

data(dietary_survey_IBS)

dat = dietary_survey_IBS[, -ncol(dietary_survey_IBS)]

dat

cm

center_scale(dat)

Cluster_Medoids(dat, clusters = 3, distance_metric = 'euclidean', swap_phase = TRUE)

pm = predict_Medoids(dat, MEDOIDS = cm$medoids, 'euclidean', fuzzy = TRUE)
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Silhouette_Dissimilarity_Plot
Plot of silhouette widths or dissimilarities

Description

Plot of silhouette widths or dissimilarities

Usage

Silhouette_Dissimilarity_Plot(evaluation_object, silhouette = TRUE)

Arguments

evaluation_object
the output of either a Cluster_Medoids or Clara_Medoids function

silhouette either TRUE or FALSE, indicating whether the silhouette widths or the dissim-
ilarities should be plotted

Details

This function takes the result-object of the Cluster_Medoids or Clara_Medoids function and de-
pending on the argument silhouette it plots either the dissimilarities or the silhouette widths of the
observations belonging to each cluster.

Value

TRUE if either the silhouette widths or the dissimilarities are plotted successfully, otherwise FALSE

Author(s)

Lampros Mouselimis

Examples

# data(soybean)
# dat = soybean[, -ncol(soybean)]
# cm = Cluster_Medoids(dat, clusters = 5, distance_metric = 'jaccard_coefficient')

# plt_sd = Silhouette_Dissimilarity_Plot(cm, silhouette = TRUE)
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silhouette_of_clusters
Silhouette width based on pre-computed clusters

Description

Silhouette width based on pre-computed clusters

Usage

silhouette_of_clusters(data, clusters)

Arguments
data a matrix or a data frame
clusters a numeric vector which corresponds to the pre-computed clusters (see the ex-
ample section for more details). The size of the clusters’ vector must be equal
to the number of rows of the input data
Value

a list object where the first sublist is the ’silhouette summary’, the second sublist is the ’silhouette
matrix’ and the third sublist is the *global average silhouette’ (based on the silhouette values of all
observations)

Author(s)

Lampros Mouselimis

Examples

data(dietary_survey_IBS)
dat = dietary_survey_IBS[, -ncol(dietary_survey_IBS)]
dat = center_scale(dat)

clusters = 2

# compute k-means
km = KMeans_rcpp(dat, clusters = clusters, num_init = 5, max_iters = 100, initializer = 'kmeans++")

# compute the silhouette width
silh_km = silhouette_of_clusters(data = dat, clusters = km$clusters)

# silhouette summary
silh_summary = silh_km$silhouette_summary

# silhouette matrix (including cluster & dissimilarity)
silh_mtrx = silh_km$silhouette_matrix
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soybean

# global average silhouette
glob_avg = silh_km$silhouette_global_average

soybean The soybean (large) data set from the UCI repository

Description

There are 19 classes, only the first 15 of which have been used in prior work. The folklore seems to
be that the last four classes are unjustified by the data since they have so few examples. There are
35 categorical attributes, some nominal and some ordered. The value ’dna’ means does not apply.
The values for attributes are encoded numerically, with the first value encoded as ’0’, the second as
’1’, and so forth. Unknown values were imputated using the mice package.

Usage

data(soybean)

Format

A data frame with 307 Instances and 36 attributes (including the class attribute, "class")

Details

The column names of the data (including the class) appear in the following order:

date, plant-stand, precip, temp, hail, crop-hist, area-damaged, severity, seed-tmt, germination, plant-
growth, leaves, leafspots-halo, leafspots-marg, leafspot-size, leaf-shread, leaf-malf, leaf-mild, stem,
lodging, stem-cankers, canker-lesion, fruiting-bodies, external decay, mycelium, int-discolor, scle-
rotia, fruit-pods, fruit spots, seed, mold-growth, seed-discolor, seed-size, shriveling, roots, class

References

R.S. Michalski and R.L. Chilausky, Learning by Being Told and Learning from Examples: An
Experimental Comparison of the Two Methods of Knowledge Acquisition in the Context of Devel-
oping an Expert System for Soybean Disease Diagnosis, International Journal of Policy Analysis
and Information Systems, Vol. 4, No. 2, 1980.

Donor: Ming Tan & Jeff Schlimmer (Jeff.Schlimmer cs.cmu.edu)

download source: https://archive.ics.uci.edu/ml/datasets/Soybean+(Large)

Examples

data(soybean)

X = soybean[, -ncol(soybean)]

y = soybean[, ncol(soybean)]
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