CRAN Package Check Results for Package cobs

Last updated on 2024-11-08 07:50:11 CET.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 1.3-8 10.84 115.93 126.77 ERROR
r-devel-linux-x86_64-debian-gcc 1.3-8 8.68 87.09 95.77 OK
r-devel-linux-x86_64-fedora-clang 1.3-8 220.76 ERROR
r-devel-linux-x86_64-fedora-gcc 1.3-8 206.09 OK
r-devel-windows-x86_64 1.3-8 15.00 131.00 146.00 OK
r-patched-linux-x86_64 1.3-8 10.05 115.25 125.30 OK
r-release-linux-x86_64 1.3-8 10.08 115.40 125.48 OK
r-release-macos-arm64 1.3-8 69.00 OK
r-release-macos-x86_64 1.3-8 96.00 OK
r-release-windows-x86_64 1.3-8 16.00 136.00 152.00 OK
r-oldrel-macos-arm64 1.3-8 74.00 OK
r-oldrel-macos-x86_64 1.3-8 160.00 OK
r-oldrel-windows-x86_64 1.3-8 17.00 171.00 188.00 OK

Check Details

Version: 1.3-8
Check: tests
Result: ERROR Running ‘0_pt-ex.R’ [3s/3s] Running ‘ex1.R’ [4s/5s] Running ‘ex2-long.R’ [7s/10s] Running ‘ex3.R’ [2s/3s] Comparing ‘ex3.Rout’ to ‘ex3.Rout.save’ ...15,16c15,16 < Warning messages: < 1: In cobs(weight, height, knots = weight, nknots = length(weight)) : --- > Warning message: > In cobs(weight, height, knots = weight, nknots = length(weight)) : 19,20d18 < 2: In cobs(weight, height, knots = weight, nknots = length(weight)) : < drqssbc2(): Not all flags are normal (== 1), ifl : 23 Running ‘multi-constr.R’ [4s/5s] Running ‘roof.R’ [4s/5s] Comparing ‘roof.Rout’ to ‘roof.Rout.save’ ...24,45d23 < WARNING: Some lambdas had problems in rq.fit.sfnc(): < lambda icyc ifl fidel sum|res|_s k < [1,] 1.590888e-03 1 25 889.5418 0.00000 3 < [2,] 3.113911e-03 1 25 889.5418 0.00000 3 < [3,] 1.192998e-02 1 25 889.5418 0.00000 3 < [4,] 2.335104e-02 1 25 889.5418 0.00000 3 < [5,] 4.570597e-02 1 25 889.5418 0.00000 3 < [6,] 1.751081e-01 1 25 889.5418 0.00000 3 < [7,] 6.708718e-01 18 21 1110.8511 64.93351 4 < [8,] 1.313125e+00 1 25 889.5418 0.00000 3 < [9,] 2.570235e+00 1 25 889.5418 0.00000 3 < [10,] 9.847052e+00 1 25 889.5418 0.00000 3 < [11,] 1.927405e+01 1 25 889.5418 0.00000 3 < [12,] 3.772589e+01 1 25 889.5418 0.00000 3 < [13,] 7.384247e+01 1 25 889.5418 0.00000 3 < [14,] 2.829043e+02 1 25 889.5418 0.00000 3 < [15,] 5.537404e+02 1 25 889.5418 0.00000 3 < [16,] 1.083859e+03 1 25 889.5418 0.00000 3 < [17,] 2.121483e+03 1 25 889.5418 0.00000 3 < [18,] 4.152467e+03 1 25 889.5418 0.00000 3 < [19,] 8.127798e+03 1 25 889.5418 0.00000 3 < [20,] 1.590888e+04 1 25 889.5418 0.00000 3 47,48c25 < WARNING! Since the optimal lambda chosen by SIC < reached the smoothest possible fit at `lambda.hi', you should --- > The algorithm has converged. You might 50,52c27,29 < and possibly consider doing one of the following: < (1) reduce 'lambda.lo', increase 'lambda.hi', increase 'lambda.length' or all of the above; < (2) decrease the number of knots. --- > to see if you have found the global minimum of the information criterion > so that you can determine if you need to adjust any or all of > 'lambda.lo', 'lambda.hi' and 'lambda.length' and refit the model. 54,56d30 < Warning message: < In cobs(age, fci, constraint = "decrease", lambda = -1, nknots = 10, : < drqssbc2(): Not all flags are normal (== 1), ifl : 252512525251251212525125252525125252525252525 60,62c34 < * Warning in algorithm: some ifl != 1 < < {tau=0.5}-quantile; dimensionality of fit: 5 from {3,16,4,8,5} --- > {tau=0.5}-quantile; dimensionality of fit: 5 from {16,11,9,8,6,5,4} 64c36 < lambda = 144.535, selected via SIC, out of 25 ones. --- > lambda = 19.27405, selected via SIC, out of 25 ones. 66,67c38,39 < coef[1:12]: 99.8592496, 98.4410072, 95.8601794, 93.6911524, 92.2856863, ... , 0.2997177 < R^2 = -6.47% ; empirical tau (over all): 79/153 = 0.5163399 (target tau= 0.5) --- > coef[1:12]: 99.8569569, 98.4177329, 95.9739856, 94.1164468, 93.0604245, ... , 0.4726201 > R^2 = -5.6% ; empirical tau (over all): 78/153 = 0.5098039 (target tau= 0.5) 79,80c51,52 < [1,] 1.59089e-03 1.80959 < [2,] 3.11391e-03 1.80959 --- > [1,] 1.59089e-03 2.24395 > [2,] 3.11391e-03 2.24395 82,84c54,56 < [4,] 1.19300e-02 1.80959 < [5,] 2.33510e-02 1.80959 < [6,] 4.57060e-02 1.80959 --- > [4,] 1.19300e-02 2.24395 > [5,] 2.33510e-02 2.24395 > [6,] 4.57060e-02 2.24395 86c58 < [8,] 1.75108e-01 1.80959 --- > [8,] 1.75108e-01 2.24424 88,90c60,62 < [10,] 6.70872e-01 2.04820 < [11,] 1.31313e+00 1.80959 < [12,] 2.57024e+00 1.80959 --- > [10,] 6.70872e-01 2.24535 > [11,] 1.31313e+00 2.18317 > [12,] 2.57024e+00 2.15738 92,95c64,67 < [14,] 9.84705e+00 1.80959 < [15,] 1.92740e+01 1.80959 < [16,] 3.77259e+01 1.80959 < [17,] 7.38425e+01 1.80959 --- > [14,] 9.84705e+00 2.11165 > [15,] 1.92740e+01 2.09955 > [16,] 3.77259e+01 2.11706 > [17,] 7.38425e+01 2.10159 97,103c69,75 < [19,] 2.82904e+02 1.80959 < [20,] 5.53740e+02 1.80959 < [21,] 1.08386e+03 1.80959 < [22,] 2.12148e+03 1.80959 < [23,] 4.15247e+03 1.80959 < [24,] 8.12780e+03 1.80959 < [25,] 1.59089e+04 1.80959 --- > [19,] 2.82904e+02 2.10095 > [20,] 5.53740e+02 2.12696 > [21,] 1.08386e+03 2.12696 > [22,] 2.12148e+03 2.12696 > [23,] 4.15247e+03 2.12696 > [24,] 8.12780e+03 2.12696 > [25,] 1.59089e+04 2.12696 129,150d100 < WARNING: Some lambdas had problems in rq.fit.sfnc(): < lambda icyc ifl fidel sum|res|_s k < [1,] 3.113911e-03 1 25 889.5418 0.00000 3 < [2,] 1.192998e-02 17 21 981.4627 106.09537 3 < [3,] 8.946220e-02 1 25 889.5418 0.00000 3 < [4,] 1.751081e-01 1 25 889.5418 0.00000 3 < [5,] 3.427464e-01 1 25 889.5418 0.00000 3 < [6,] 6.708718e-01 10 21 1003.6100 21.11754 3 < [7,] 2.570235e+00 1 25 889.5418 0.00000 3 < [8,] 5.030829e+00 1 24 889.5418 0.00000 3 < [9,] 9.847052e+00 1 25 889.5418 0.00000 3 < [10,] 1.927405e+01 1 25 889.5418 0.00000 3 < [11,] 3.772589e+01 1 25 889.5418 0.00000 3 < [12,] 7.384247e+01 1 25 889.5418 0.00000 3 < [13,] 1.445350e+02 1 25 889.5418 0.00000 3 < [14,] 2.829043e+02 1 25 889.5418 0.00000 3 < [15,] 5.537404e+02 1 25 889.5418 0.00000 3 < [16,] 1.083859e+03 1 25 889.5418 0.00000 3 < [17,] 2.121483e+03 1 25 889.5418 0.00000 3 < [18,] 4.152467e+03 1 25 889.5418 0.00000 3 < [19,] 8.127798e+03 1 25 889.5418 0.00000 3 < [20,] 1.590888e+04 1 25 889.5418 0.00000 3 152,153c102 < WARNING! Since the optimal lambda chosen by SIC < rests on a flat portion, you might --- > The algorithm has converged. You might 155c104,106 < to see if you want to reduce 'lambda.lo' and/or increase 'lambda.ho' --- > to see if you have found the global minimum of the information criterion > so that you can determine if you need to adjust any or all of > 'lambda.lo', 'lambda.hi' and 'lambda.length' and refit the model. 157,159d107 < Warning message: < In cobs(age, fci, constraint = "decrease", lambda = -1, nknots = 10, : < drqssbc2(): Not all flags are normal (== 1), ifl : 125121112525252112524252525252525252525252525 163,165c111 < * Warning in algorithm: some ifl != 1 < < {tau=0.25}-quantile; dimensionality of fit: 10 from {13,3,10} --- > {tau=0.25}-quantile; dimensionality of fit: 5 from {13,12,11,10,8,7,6,5,3} 167c113 < lambda = 1.313125, selected via SIC, out of 25 ones. --- > lambda = 73.84247, selected via SIC, out of 25 ones. 169,170c115,116 < coef[1:12]: 99.254957, 91.804860, 82.972707, 80.841558, 80.841558, ... , 6.116351 < empirical tau (over all): 40/153 = 0.2614379 (target tau= 0.25) --- > coef[1:12]: 99.6189624, 95.7795144, 88.7927299, 82.9207676, 79.1159073, ... , 0.8113919 > empirical tau (over all): 44/153 = 0.2875817 (target tau= 0.25) 187,206d132 < WARNING: Some lambdas had problems in rq.fit.sfnc(): < lambda icyc ifl fidel sum|res|_s k < [1,] 1.590888e-03 1 25 889.5418 0.00000 3 < [2,] 3.113911e-03 5 21 657.3322 95.00356 3 < [3,] 6.094988e-03 1 25 889.5418 0.00000 3 < [4,] 1.192998e-02 1 25 889.5418 0.00000 3 < [5,] 2.335104e-02 1 25 889.5418 0.00000 3 < [6,] 4.570597e-02 1 25 889.5418 0.00000 3 < [7,] 3.427464e-01 1 25 889.5418 0.00000 3 < [8,] 6.708718e-01 1 25 889.5418 0.00000 3 < [9,] 2.570235e+00 1 25 889.5418 0.00000 3 < [10,] 5.030829e+00 1 25 889.5418 0.00000 3 < [11,] 9.847052e+00 1 25 889.5418 0.00000 3 < [12,] 1.445350e+02 1 25 889.5418 0.00000 3 < [13,] 2.829043e+02 1 25 889.5418 0.00000 3 < [14,] 5.537404e+02 1 25 889.5418 0.00000 3 < [15,] 2.121483e+03 1 25 889.5418 0.00000 3 < [16,] 4.152467e+03 1 25 889.5418 0.00000 3 < [17,] 8.127798e+03 1 25 889.5418 0.00000 3 < [18,] 1.590888e+04 1 25 889.5418 0.00000 3 213,215d138 < Warning message: < In cobs(age, fci, constraint = "decrease", lambda = -1, nknots = 10, : < drqssbc2(): Not all flags are normal (== 1), ifl : 2521252525251125251252525111252525125252525 219,221c142 < * Warning in algorithm: some ifl != 1 < < {tau=0.75}-quantile; dimensionality of fit: 70 from {3,70} --- > {tau=0.75}-quantile; dimensionality of fit: 70 from {70} 223c144 < lambda = 19.27405, selected via SIC, out of 25 ones. --- > lambda = 5.030829, selected via SIC, out of 25 ones. 241,340c162,261 < [1,] 0.04998516 99.85925 70.45262 129.26588 82.39397 117.32453 < [2,] 0.20109657 99.43830 72.99090 125.88569 83.73058 115.14602 < [3,] 0.35220798 99.02419 74.56555 123.48283 84.49763 113.55074 < [4,] 0.50331939 98.61692 75.51646 121.71738 84.89702 112.33682 < [5,] 0.65443080 98.21650 76.14832 120.28468 85.10969 111.32331 < [6,] 0.80554221 97.82292 76.64775 118.99810 85.24650 110.39935 < [7,] 0.95665362 97.43619 77.02675 117.84563 85.31455 109.55783 < [8,] 1.10776504 97.05630 77.08161 117.03099 85.19287 108.91973 < [9,] 1.25887645 96.68325 76.66817 116.69834 84.79583 108.57068 < [10,] 1.40998786 96.31705 76.12279 116.51132 84.32321 108.31090 < [11,] 1.56109927 95.95770 75.71600 116.19939 83.93569 107.97971 < [12,] 1.71221068 95.60518 75.57128 115.63908 83.70659 107.50378 < [13,] 1.86332209 95.25951 75.67433 114.84469 83.62742 106.89160 < [14,] 2.01443350 94.92069 75.86425 113.97713 83.60262 106.23875 < [15,] 2.16554491 94.58870 75.81500 113.36241 83.43857 105.73884 < [16,] 2.31665632 94.26357 75.42364 113.10349 83.07410 105.45303 < [17,] 2.46776773 93.94527 75.04254 112.84800 82.71850 105.17204 < [18,] 2.61887914 93.63382 74.90902 112.35863 82.51273 104.75492 < [19,] 2.76999056 93.32922 75.10220 111.55623 82.50377 104.15467 < [20,] 2.92110197 93.03146 75.54412 110.51879 82.64532 103.41759 < [21,] 3.07221338 92.74054 75.96589 109.51519 82.77768 102.70339 < [22,] 3.22332479 92.45646 76.08423 108.82870 82.73261 102.18031 < [23,] 3.37443620 92.17923 76.04988 108.30859 82.59963 101.75883 < [24,] 3.52554761 91.90885 75.85434 107.96335 82.37370 101.44399 < [25,] 3.67665902 91.64530 75.20435 108.08626 81.88064 101.40997 < [26,] 3.82777043 91.38861 74.05098 108.72623 81.09139 101.68582 < [27,] 3.97888184 91.13875 72.71804 109.55946 80.19826 102.07924 < [28,] 4.12999325 90.89574 71.43794 110.35354 79.33930 102.45218 < [29,] 4.28110467 90.65957 70.34919 110.96995 78.59677 102.72238 < [30,] 4.43221608 90.43025 69.52417 111.33633 78.01365 102.84686 < [31,] 4.58332749 90.20777 68.98880 111.42675 77.60533 102.81022 < [32,] 4.73443890 89.99214 68.73206 111.25222 77.36528 102.61899 < [33,] 4.88555031 89.78335 68.70739 110.85931 77.26585 102.30085 < [34,] 5.03666172 89.58140 68.82785 110.33496 77.25538 101.90742 < [35,] 5.18777313 89.38630 68.95743 109.81517 77.25312 101.51948 < [36,] 5.33888454 89.19804 68.88527 109.51081 77.13382 101.26226 < [37,] 5.48999595 89.01663 68.45127 109.58198 76.80238 101.23087 < [38,] 5.64110736 88.84205 67.76295 109.92116 76.32269 101.36142 < [39,] 5.79221877 88.67433 66.93729 110.41136 75.76420 101.58446 < [40,] 5.94333019 88.51344 66.07156 110.95533 75.18469 101.84220 < [41,] 6.09444160 88.35941 65.24169 111.47712 74.62926 102.08955 < [42,] 6.24555301 88.21221 64.50479 111.91963 74.13182 102.29260 < [43,] 6.39666442 88.07186 63.90296 112.24076 73.71739 102.42633 < [44,] 6.54777583 87.93835 63.46678 112.40992 73.40412 102.47259 < [45,] 6.69888724 87.81169 63.21814 112.40524 73.20501 102.41837 < [46,] 6.84999865 87.69187 63.17219 112.21155 73.12906 102.25467 < [47,] 7.00111006 87.57889 63.33875 111.81904 73.18211 101.97568 < [48,] 7.15222147 87.47276 63.72296 111.22257 73.36720 101.57832 < [49,] 7.30333288 87.37348 64.32551 110.42144 73.68476 101.06220 < [50,] 7.45444429 87.28103 65.14222 109.41984 74.13228 100.42979 < [51,] 7.60555571 87.19543 66.16276 108.22810 74.70364 99.68722 < [52,] 7.75666712 87.11668 67.36825 106.86510 75.38763 98.84572 < [53,] 7.90777853 87.04476 68.72676 105.36277 76.16528 97.92425 < [54,] 8.05888994 86.97970 70.18536 103.77404 77.00515 96.95425 < [55,] 8.21000135 86.92147 71.65649 102.18645 77.85525 95.98770 < [56,] 8.36111276 86.87009 72.99694 100.74324 78.63051 95.10968 < [57,] 8.51222417 86.82556 73.98507 99.66605 79.19929 94.45182 < [58,] 8.66333558 86.78787 74.35829 99.21744 79.40565 94.17008 < [59,] 8.81444699 86.75702 74.25300 99.26103 79.33059 94.18344 < [60,] 8.96555840 86.73301 74.11460 99.35143 79.23865 94.22738 < [61,] 9.11666981 86.71585 74.16900 99.26270 79.26399 94.16772 < [62,] 9.26778123 86.70554 74.42013 98.99095 79.40895 94.00213 < [63,] 9.41889264 86.70207 74.64353 98.76060 79.54022 93.86391 < [64,] 9.57000405 86.70207 74.33682 99.06731 79.35806 94.04607 < [65,] 9.72111546 86.70207 73.40242 100.00171 78.80310 94.60103 < [66,] 9.87222687 86.70207 72.06011 101.34402 78.00587 95.39826 < [67,] 10.02333828 86.70207 70.49592 102.90822 77.07686 96.32727 < [68,] 10.17444969 86.70207 68.84022 104.56391 76.09350 97.31063 < [69,] 10.32556110 86.70207 67.17776 106.22638 75.10613 98.29801 < [70,] 10.47667251 86.70207 65.56256 107.84157 74.14682 99.25731 < [71,] 10.62778392 86.70207 64.02936 109.37477 73.23622 100.16791 < [72,] 10.77889533 86.70207 62.60084 110.80330 72.38779 101.01635 < [73,] 10.93000675 86.70207 61.29202 112.11211 71.61045 101.79368 < [74,] 11.08111816 86.70207 60.11299 113.29114 70.91020 102.49394 < [75,] 11.23222957 86.70207 59.07044 114.33369 70.29100 103.11313 < [76,] 11.38334098 86.70207 58.16876 115.23537 69.75547 103.64866 < [77,] 11.53445239 86.70207 57.41058 115.99355 69.30517 104.09896 < [78,] 11.68556380 86.70207 56.79720 116.60693 68.94087 104.46326 < [79,] 11.83667521 86.70207 56.32881 117.07532 68.66268 104.74145 < [80,] 11.98778662 86.70207 56.00460 117.39953 68.47013 104.93400 < [81,] 12.13889803 86.70207 55.82283 117.58130 68.36217 105.04196 < [82,] 12.29000944 86.70207 55.78075 117.62338 68.33718 105.06695 < [83,] 12.44112086 86.70207 55.87453 117.52960 68.39288 105.01125 < [84,] 12.59223227 86.70207 56.09911 117.30502 68.52626 104.87787 < [85,] 12.74334368 86.70207 56.44793 116.95620 68.73343 104.67070 < [86,] 12.89445509 86.70207 56.91262 116.49152 69.00942 104.39471 < [87,] 13.04556650 86.70207 57.48251 115.92162 69.34790 104.05624 < [88,] 13.19667791 86.70207 58.14411 115.26002 69.74083 103.66330 < [89,] 13.34778932 86.70207 58.88027 114.52387 70.17805 103.22608 < [90,] 13.49890073 86.70207 59.66924 113.73489 70.64664 102.75749 < [91,] 13.65001214 86.70207 60.48356 112.92057 71.13029 102.27385 < [92,] 13.80112355 86.70207 61.28872 112.11542 71.60849 101.79564 < [93,] 13.95223496 86.70207 62.04196 111.36217 72.05586 101.34827 < [94,] 14.10334638 86.70207 62.69152 110.71261 72.44165 100.96248 < [95,] 14.25445779 86.70207 63.17698 110.22715 72.72997 100.67416 < [96,] 14.40556920 86.70207 63.43166 109.97247 72.88123 100.52290 < [97,] 14.55668061 86.70207 63.38768 110.01645 72.85511 100.54902 < [98,] 14.70779202 86.70207 62.98352 110.42062 72.61507 100.78906 < [99,] 14.85890343 86.70207 62.17212 111.23201 72.13316 101.27097 < [100,] 15.01001484 86.70207 60.92663 112.47750 71.39344 102.01069 --- > [1,] 0.04998516 99.85696 71.02180 128.69211 82.73109 116.98282 > [2,] 0.20109657 99.43170 73.49827 125.36513 84.02923 114.83416 > [3,] 0.35220798 99.01723 75.03391 123.00056 84.77298 113.26149 > [4,] 0.50331939 98.61356 75.96202 121.26510 85.16029 112.06684 > [5,] 0.65443080 98.22068 76.58136 119.86000 85.36859 111.07277 > [6,] 0.80554221 97.83859 77.07493 118.60226 85.50657 110.17061 > [7,] 0.95665362 97.46729 77.45448 117.48011 85.58122 109.35337 > [8,] 1.10776504 97.10679 77.52028 116.69330 85.47391 108.73967 > [9,] 1.25887645 96.75708 77.13096 116.38320 85.10067 108.41349 > [10,] 1.40998786 96.41816 76.61633 116.21998 84.65740 108.17892 > [11,] 1.56109927 96.09003 76.24170 115.93835 84.30165 107.87841 > [12,] 1.71221068 95.77269 76.12812 115.41726 84.10533 107.44006 > [13,] 1.86332209 95.46615 76.26158 114.67072 84.06011 106.87219 > [14,] 2.01443350 95.17040 76.48429 113.85650 84.07228 106.26851 > [15,] 2.16554491 94.88544 76.47657 113.29430 83.95199 105.81889 > [16,] 2.31665632 94.61127 76.13747 113.08507 83.63925 105.58329 > [17,] 2.46776773 94.34789 75.81251 112.88328 83.33930 105.35649 > [18,] 2.61887914 94.09531 75.73439 112.45623 83.19034 105.00029 > [19,] 2.76999056 93.85352 75.98072 111.72632 83.23845 104.46859 > [20,] 2.92110197 93.62252 76.47502 110.77002 83.43822 103.80682 > [21,] 3.07221338 93.40231 76.95365 109.85097 83.63307 103.17155 > [22,] 3.22332479 93.19290 77.13883 109.24697 83.65802 102.72778 > [23,] 3.37443620 92.99428 77.17837 108.81018 83.60084 102.38771 > [24,] 3.52554761 92.80644 77.06394 108.54895 83.45660 102.15629 > [25,] 3.67665902 92.62499 76.50354 108.74644 83.05009 102.19989 > [26,] 3.82777043 92.43415 75.43346 109.43484 82.33704 102.53125 > [27,] 3.97888184 92.23251 74.16977 110.29524 81.50463 102.96039 > [28,] 4.12999325 92.02008 72.94041 111.09975 80.68822 103.35194 > [29,] 4.28110467 91.79686 71.88118 111.71254 79.96847 103.62524 > [30,] 4.43221608 91.56284 71.06304 112.06265 79.38754 103.73815 > [31,] 4.58332749 91.31804 70.51142 112.12465 78.96051 103.67557 > [32,] 4.73443890 91.06244 70.21552 111.90936 78.68097 103.44391 > [33,] 4.88555031 90.79605 70.12967 111.46243 78.52181 103.07029 > [34,] 5.03666172 90.51887 70.16863 110.86911 78.43239 102.60535 > [35,] 5.18777313 90.23090 70.19903 110.26276 78.33351 102.12828 > [36,] 5.33888454 89.93586 70.01785 109.85388 78.10609 101.76564 > [37,] 5.48999595 89.64979 69.48409 109.81549 77.67292 101.62667 > [38,] 5.64110736 89.37451 68.70505 110.04398 77.09844 101.65059 > [39,] 5.79221877 89.11003 67.79542 110.42464 76.45079 101.76927 > [40,] 5.94333019 88.85633 66.85058 110.86209 75.78661 101.92606 > [41,] 6.09444160 88.61343 65.94497 111.28189 75.15011 102.07676 > [42,] 6.24555301 88.38132 65.13462 111.62803 74.57457 102.18808 > [43,] 6.39666442 88.16001 64.46079 111.85922 74.08449 102.23552 > [44,] 6.54777583 87.94948 63.95348 111.94548 73.69770 102.20126 > [45,] 6.69888724 87.74975 63.63413 111.86536 73.42693 102.07257 > [46,] 6.84999865 87.56081 63.51763 111.60398 73.28101 101.84060 > [47,] 7.00111006 87.38266 63.61358 111.15173 73.26565 101.49966 > [48,] 7.15222147 87.21530 63.92703 110.50356 73.38386 101.04674 > [49,] 7.30333288 87.05874 64.45867 109.65880 73.63603 100.48144 > [50,] 7.45444429 86.91296 65.20438 108.62154 74.01973 99.80619 > [51,] 7.60555571 86.77798 66.15405 107.40191 74.52895 99.02701 > [52,] 7.75666712 86.65379 67.28915 106.01844 75.15268 98.15491 > [53,] 7.90777853 86.54040 68.57837 104.50242 75.87233 97.20846 > [54,] 8.05888994 86.43779 69.96982 102.90576 76.65708 96.21850 > [55,] 8.21000135 86.34598 71.37765 101.31431 77.45594 95.23602 > [56,] 8.36111276 86.26496 72.66142 99.86851 78.18550 94.34442 > [57,] 8.51222417 86.19473 73.60378 98.78569 78.71667 93.67279 > [58,] 8.66333558 86.13530 73.94727 98.32332 78.89655 93.37405 > [59,] 8.81444699 86.08665 73.82563 98.34767 78.80455 93.36876 > [60,] 8.96555840 86.04880 73.67561 98.42200 78.70008 93.39753 > [61,] 9.11666981 86.02174 73.71872 98.32476 78.71469 93.32879 > [62,] 9.26778123 86.00548 73.95881 98.05214 78.85068 93.16027 > [63,] 9.41889264 86.00000 74.17580 97.82420 78.97733 93.02267 > [64,] 9.57000405 86.00000 73.87505 98.12495 78.79871 93.20129 > [65,] 9.72111546 86.00000 72.95882 99.04118 78.25454 93.74546 > [66,] 9.87222687 86.00000 71.64259 100.35741 77.47280 94.52720 > [67,] 10.02333828 86.00000 70.10879 101.89121 76.56184 95.43816 > [68,] 10.17444969 86.00000 68.48528 103.51472 75.59760 96.40240 > [69,] 10.32556110 86.00000 66.85512 105.14488 74.62941 97.37059 > [70,] 10.47667251 86.00000 65.27131 106.72869 73.68875 98.31125 > [71,] 10.62778392 86.00000 63.76791 108.23209 72.79584 99.20416 > [72,] 10.77889533 86.00000 62.36714 109.63286 71.96390 100.03610 > [73,] 10.93000675 86.00000 61.08376 110.91624 71.20167 100.79833 > [74,] 11.08111816 86.00000 59.92764 112.07236 70.51502 101.48498 > [75,] 11.23222957 86.00000 58.90536 113.09464 69.90786 102.09214 > [76,] 11.38334098 86.00000 58.02120 113.97880 69.38274 102.61726 > [77,] 11.53445239 86.00000 57.27775 114.72225 68.94119 103.05881 > [78,] 11.68556380 86.00000 56.67629 115.32371 68.58397 103.41603 > [79,] 11.83667521 86.00000 56.21700 115.78300 68.31119 103.68881 > [80,] 11.98778662 86.00000 55.89910 116.10090 68.12238 103.87762 > [81,] 12.13889803 86.00000 55.72086 116.27914 68.01652 103.98348 > [82,] 12.29000944 86.00000 55.67959 116.32041 67.99201 104.00799 > [83,] 12.44112086 86.00000 55.77155 116.22845 68.04662 103.95338 > [84,] 12.59223227 86.00000 55.99177 116.00823 68.17741 103.82259 > [85,] 12.74334368 86.00000 56.33381 115.66619 68.38056 103.61944 > [86,] 12.89445509 86.00000 56.78946 115.21054 68.65118 103.34882 > [87,] 13.04556650 86.00000 57.34829 114.65171 68.98308 103.01692 > [88,] 13.19667791 86.00000 57.99703 114.00297 69.36839 102.63161 > [89,] 13.34778932 86.00000 58.71888 113.28112 69.79711 102.20289 > [90,] 13.49890073 86.00000 59.49252 112.50748 70.25659 101.74341 > [91,] 13.65001214 86.00000 60.29101 111.70899 70.73083 101.26917 > [92,] 13.80112355 86.00000 61.08052 110.91948 71.19974 100.80026 > [93,] 13.95223496 86.00000 61.81913 110.18087 71.63842 100.36158 > [94,] 14.10334638 86.00000 62.45607 109.54393 72.01671 99.98329 > [95,] 14.25445779 86.00000 62.93209 109.06791 72.29944 99.70056 > [96,] 14.40556920 86.00000 63.18182 108.81818 72.44775 99.55225 > [97,] 14.55668061 86.00000 63.13869 108.86131 72.42214 99.57786 > [98,] 14.70779202 86.00000 62.74238 109.25762 72.18676 99.81324 > [99,] 14.85890343 86.00000 61.94676 110.05324 71.71422 100.28578 > [100,] 15.01001484 86.00000 60.72548 111.27452 70.98887 101.01113 445,544c366,465 < [1,] 0.04998516 99.25496 67.28997 131.21994 84.48754 114.02237 < [2,] 0.20109657 97.09552 68.34722 125.84383 83.81418 110.37687 < [3,] 0.35220798 95.07576 68.48923 121.66229 82.79312 107.35840 < [4,] 0.50331939 93.19566 68.08547 118.30584 81.59507 104.79624 < [5,] 0.65443080 91.45522 67.46712 115.44332 80.37302 102.53742 < [6,] 0.80554221 89.85445 66.83705 112.87185 79.22070 100.48819 < [7,] 0.95665362 88.39334 66.20829 110.57839 78.14413 98.64255 < [8,] 1.10776504 87.07190 65.35942 108.78438 77.04101 97.10279 < [9,] 1.25887645 85.89012 64.13374 107.64651 75.83895 95.94129 < [10,] 1.40998786 84.84801 62.89685 106.79917 74.70685 94.98916 < [11,] 1.56109927 83.94556 61.94285 105.94827 73.78059 94.11053 < [12,] 1.71221068 83.18278 61.40594 104.95961 73.12216 93.24340 < [13,] 1.86332209 82.55966 61.27058 103.84874 72.72438 92.39494 < [14,] 2.01443350 82.07621 61.36187 102.79055 72.50645 91.64597 < [15,] 2.16554491 81.72655 61.31955 102.13356 72.29878 91.15433 < [16,] 2.31665632 81.44712 60.96813 101.92610 71.98608 90.90815 < [17,] 2.46776773 81.22053 60.67328 101.76779 71.72796 90.71310 < [18,] 2.61887914 81.04681 60.69295 101.40066 71.64359 90.45003 < [19,] 2.76999056 80.92594 61.11318 100.73869 71.77269 90.07918 < [20,] 2.92110197 80.85792 61.84919 99.86665 72.07613 89.63971 < [21,] 3.07221338 80.84156 62.60752 99.07559 72.41767 89.26545 < [22,] 3.22332479 80.84156 63.04495 98.63817 72.61975 89.06337 < [23,] 3.37443620 80.84156 63.30896 98.37416 72.74172 88.94140 < [24,] 3.52554761 80.84156 63.39032 98.29279 72.77931 88.90381 < [25,] 3.67665902 80.82485 62.95354 98.69616 72.56853 89.08117 < [26,] 3.82777043 80.73178 61.88579 99.57776 72.02517 89.43838 < [27,] 3.97888184 80.55703 60.53373 100.58034 71.30652 89.80755 < [28,] 4.12999325 80.30062 59.15001 101.45124 70.52931 90.07194 < [29,] 4.28110467 79.96255 57.88517 102.03992 69.76308 90.16201 < [30,] 4.43221608 79.54280 56.81790 102.26769 69.04419 90.04141 < [31,] 4.58332749 79.04138 55.97637 102.10639 68.38564 89.69712 < [32,] 4.73443890 78.45830 55.34860 101.56799 67.78191 89.13468 < [33,] 4.88555031 77.79354 54.88399 100.70310 67.20962 88.37747 < [34,] 5.03666172 77.04712 54.48802 99.60622 66.62511 87.46914 < [35,] 5.18777313 76.21903 54.01287 98.42520 65.96007 86.47800 < [36,] 5.33888454 75.32984 53.24988 97.40981 65.12918 85.53050 < [37,] 5.48999595 74.46778 52.11325 96.82231 64.14027 84.79529 < [38,] 5.64110736 73.64293 50.72995 96.55590 63.05742 84.22843 < [39,] 5.79221877 72.85528 49.22714 96.48343 61.93938 83.77118 < [40,] 5.94333019 72.10485 47.71054 96.49916 60.83499 83.37471 < [41,] 6.09444160 71.39162 46.26268 96.52057 59.78237 83.00088 < [42,] 6.24555301 70.71561 44.94565 96.48556 58.81022 82.62100 < [43,] 6.39666442 70.07680 43.80522 96.34839 57.93967 82.21394 < [44,] 6.54777583 69.47521 42.87463 96.07579 57.18608 81.76434 < [45,] 6.69888724 68.91082 42.17765 95.64400 56.56044 81.26121 < [46,] 6.84999865 68.38365 41.73078 95.03652 56.07036 80.69694 < [47,] 7.00111006 67.89368 41.54466 94.24271 55.72077 80.06660 < [48,] 7.15222147 67.44093 41.62490 93.25695 55.51425 79.36760 < [49,] 7.30333288 67.02538 41.97226 92.07850 55.45116 78.59960 < [50,] 7.45444429 66.64704 42.58217 90.71192 55.52938 77.76471 < [51,] 7.60555571 66.30591 43.44341 89.16842 55.74373 76.86810 < [52,] 7.75666712 66.00200 44.53547 87.46852 56.08474 75.91926 < [53,] 7.90777853 65.73529 45.82363 85.64695 56.53635 74.93422 < [54,] 8.05888994 65.50579 47.25035 83.76123 57.07201 73.93957 < [55,] 8.21000135 65.31350 48.72048 81.90652 57.64774 72.97927 < [56,] 8.36111276 65.15842 50.07832 80.23853 58.19161 72.12524 < [57,] 8.51222417 65.04055 51.08295 78.99816 58.59232 71.48879 < [58,] 8.66333558 64.99235 51.48141 78.50330 58.75047 71.23424 < [59,] 8.81444699 64.99235 51.40050 78.58421 58.71309 71.27162 < [60,] 8.96555840 64.99235 51.27615 78.70856 58.65564 71.32907 < [61,] 9.11666981 64.99235 51.35394 78.63077 58.69158 71.29313 < [62,] 9.26778123 64.99235 51.63812 78.34659 58.82287 71.16184 < [63,] 9.41889264 64.99235 51.88473 78.09998 58.93680 71.04791 < [64,] 9.57000405 64.99235 51.55134 78.43337 58.78278 71.20193 < [65,] 9.72111546 64.99235 50.53565 79.44906 58.31354 71.67117 < [66,] 9.87222687 64.99235 49.07656 80.90815 57.63946 72.34525 < [67,] 10.02333828 64.99235 47.37628 82.60843 56.85395 73.13076 < [68,] 10.17444969 64.99235 45.57654 84.40817 56.02250 73.96221 < [69,] 10.32556110 64.99235 43.76944 86.21527 55.18764 74.79707 < [70,] 10.47667251 64.99235 42.01372 87.97099 54.37652 75.60819 < [71,] 10.62778392 64.99235 40.34714 89.63757 53.60658 76.37813 < [72,] 10.77889533 64.99235 38.79433 91.19038 52.88920 77.09551 < [73,] 10.93000675 64.99235 37.37165 92.61306 52.23194 77.75277 < [74,] 11.08111816 64.99235 36.09004 93.89467 51.63985 78.34485 < [75,] 11.23222957 64.99235 34.95680 95.02791 51.11631 78.86840 < [76,] 11.38334098 64.99235 33.97667 96.00804 50.66350 79.32121 < [77,] 11.53445239 64.99235 33.15253 96.83218 50.28276 79.70195 < [78,] 11.68556380 64.99235 32.48578 97.49893 49.97473 80.00998 < [79,] 11.83667521 64.99235 31.97664 98.00807 49.73952 80.24519 < [80,] 11.98778662 64.99235 31.62423 98.36048 49.57671 80.40800 < [81,] 12.13889803 64.99235 31.42665 98.55806 49.48542 80.49928 < [82,] 12.29000944 64.99235 31.38090 98.60381 49.46429 80.52042 < [83,] 12.44112086 64.99235 31.48284 98.50187 49.51139 80.47332 < [84,] 12.59223227 64.99235 31.72696 98.25775 49.62417 80.36054 < [85,] 12.74334368 64.99235 32.10613 97.87858 49.79934 80.18537 < [86,] 12.89445509 64.99235 32.61124 97.37347 50.03269 79.95202 < [87,] 13.04556650 64.99235 33.23072 96.75399 50.31888 79.66583 < [88,] 13.19667791 64.99235 33.94988 96.03483 50.65113 79.33358 < [89,] 13.34778932 64.99235 34.75007 95.23463 51.02081 78.96390 < [90,] 13.49890073 64.99235 35.60769 94.37702 51.41701 78.56770 < [91,] 13.65001214 64.99235 36.49285 93.49186 51.82595 78.15876 < [92,] 13.80112355 64.99235 37.36806 92.61665 52.23028 77.75443 < [93,] 13.95223496 64.99235 38.18684 91.79787 52.60855 77.37616 < [94,] 14.10334638 64.99235 38.89291 91.09180 52.93474 77.04997 < [95,] 14.25445779 64.99235 39.42061 90.56410 53.17853 76.80618 < [96,] 14.40556920 64.99235 39.69744 90.28727 53.30642 76.67828 < [97,] 14.55668061 64.99235 39.64963 90.33508 53.28434 76.70037 < [98,] 14.70779202 64.99235 39.21031 90.77440 53.08138 76.90333 < [99,] 14.85890343 64.99235 38.32832 91.65639 52.67391 77.31080 < [100,] 15.01001484 64.99235 36.97448 93.01023 52.04845 77.93626 --- > [1,] 0.04998516 99.61896 71.09477 128.14315 82.67778 116.56014 > [2,] 0.20109657 98.47936 72.82560 124.13312 83.24300 113.71572 > [3,] 0.35220798 97.35829 73.63361 121.08298 83.26765 111.44893 > [4,] 0.50331939 96.25575 73.84849 118.66301 82.94756 109.56394 > [5,] 0.65443080 95.17173 73.76577 116.57769 82.45824 107.88523 > [6,] 0.80554221 94.10624 73.56650 114.64599 81.90721 106.30528 > [7,] 0.95665362 93.05929 73.26229 112.85628 81.30139 104.81718 > [8,] 1.10776504 92.03085 72.65556 111.40614 80.52342 103.53829 > [9,] 1.25887645 91.02095 71.60648 110.43542 79.49025 102.55165 > [10,] 1.40998786 90.02957 70.44130 109.61785 78.39564 101.66351 > [11,] 1.56109927 89.05672 69.42245 108.69100 77.39547 100.71798 > [12,] 1.71221068 88.10240 68.66968 107.53512 76.56086 99.64395 > [13,] 1.86332209 87.16661 68.16915 106.16408 75.88358 98.44965 > [14,] 2.01443350 86.24935 67.76475 104.73394 75.27092 97.22778 > [15,] 2.16554491 85.35061 67.14027 103.56095 74.53507 96.16615 > [16,] 2.31665632 84.47040 66.19583 102.74498 73.61671 95.32409 > [17,] 2.46776773 83.60872 65.27323 101.94421 72.71884 94.49860 > [18,] 2.61887914 82.76557 64.60266 100.92848 71.97819 93.55294 > [19,] 2.76999056 81.94094 64.26088 99.62100 71.44034 92.44154 > [20,] 2.92110197 81.13484 64.17227 98.09742 71.06037 91.20931 > [21,] 3.07221338 80.34727 64.07600 96.61855 70.68338 90.01116 > [22,] 3.22332479 79.57823 63.69729 95.45917 70.14617 89.01029 > [23,] 3.37443620 78.82772 63.18237 94.47306 69.53558 88.11985 > [24,] 3.52554761 78.09573 62.52299 93.66847 68.84672 87.34474 > [25,] 3.67665902 77.38227 61.43468 93.32987 67.91063 86.85392 > [26,] 3.82777043 76.68734 59.86999 93.50470 66.69913 86.67556 > [27,] 3.97888184 76.01094 58.14300 93.87888 65.39875 86.62313 > [28,] 4.12999325 75.35307 56.47916 94.22697 64.14341 86.56272 > [29,] 4.28110467 74.71372 55.01281 94.41462 63.01289 86.41454 > [30,] 4.43221608 74.09290 53.81417 94.37163 62.04889 86.13691 > [31,] 4.58332749 73.49061 52.90837 94.07284 61.26634 85.71488 > [32,] 4.73443890 72.90685 52.28474 93.52895 60.65890 85.15479 > [33,] 4.88555031 72.34161 51.89810 92.78512 60.19973 84.48349 > [34,] 5.03666172 71.79490 51.66412 91.92568 59.83877 83.75104 > [35,] 5.18777313 71.26672 51.45089 91.08256 59.49764 83.03581 > [36,] 5.33888454 70.75707 51.05385 90.46029 59.05487 82.45927 > [37,] 5.48999595 70.26595 50.31772 90.21418 58.41823 82.11366 > [38,] 5.64110736 69.79335 49.34679 90.23991 57.64966 81.93704 > [39,] 5.79221877 69.33928 48.25453 90.42403 56.81656 81.86200 > [40,] 5.94333019 68.90374 47.13530 90.67219 55.97496 81.83253 > [41,] 6.09444160 68.48673 46.06273 90.91073 55.16859 81.80486 > [42,] 6.24555301 68.08824 45.09223 91.08425 54.43038 81.74611 > [43,] 6.39666442 67.70829 44.26465 91.15193 53.78457 81.63201 > [44,] 6.54777583 67.34686 43.60963 91.08408 53.24877 81.44495 > [45,] 6.69888724 67.00396 43.14841 90.85950 52.83559 81.17232 > [46,] 6.84999865 66.67958 42.89570 90.46347 52.55378 80.80539 > [47,] 7.00111006 66.37374 42.86099 89.88649 52.40897 80.33850 > [48,] 7.15222147 66.08642 43.04930 89.12354 52.40414 79.76870 > [49,] 7.30333288 65.81763 43.46129 88.17397 52.53968 79.09558 > [50,] 7.45444429 65.56737 44.09290 87.04184 52.81318 78.32156 > [51,] 7.60555571 65.33564 44.93411 85.73716 53.21870 77.45257 > [52,] 7.75666712 65.12243 45.96662 84.27824 53.74535 76.49951 > [53,] 7.90777853 64.92775 47.15943 82.69607 54.37473 75.48077 > [54,] 8.05888994 64.75160 48.46122 81.04198 55.07637 74.42683 > [55,] 8.21000135 64.59398 49.78707 79.40088 55.79981 73.38814 > [56,] 8.36111276 64.45488 50.99804 77.91173 56.46255 72.44721 > [57,] 8.51222417 64.33432 51.87914 76.78949 56.93690 71.73173 > [58,] 8.66333558 64.23228 52.17569 76.28887 57.07159 71.39297 > [59,] 8.81444699 64.14877 52.01997 76.27756 56.94519 71.35234 > [60,] 8.96555840 64.08378 51.84402 76.32354 56.81431 71.35326 > [61,] 9.11666981 64.03733 51.86698 76.20767 56.80908 71.26558 > [62,] 9.26778123 64.00940 52.09265 75.92615 56.93177 71.08704 > [63,] 9.41889264 64.00000 52.30332 75.69669 57.05307 70.94693 > [64,] 9.57000405 64.00000 52.00581 75.99419 56.87637 71.12363 > [65,] 9.72111546 64.00000 51.09945 76.90055 56.33807 71.66193 > [66,] 9.87222687 64.00000 49.79742 78.20258 55.56476 72.43524 > [67,] 10.02333828 64.00000 48.28016 79.71984 54.66363 73.33637 > [68,] 10.17444969 64.00000 46.67416 81.32584 53.70978 74.29022 > [69,] 10.32556110 64.00000 45.06158 82.93842 52.75203 75.24797 > [70,] 10.47667251 64.00000 43.49485 84.50515 51.82152 76.17848 > [71,] 10.62778392 64.00000 42.00766 85.99234 50.93824 77.06176 > [72,] 10.77889533 64.00000 40.62200 87.37800 50.11526 77.88474 > [73,] 10.93000675 64.00000 39.35246 88.64754 49.36126 78.63874 > [74,] 11.08111816 64.00000 38.20881 89.79119 48.68201 79.31799 > [75,] 11.23222957 64.00000 37.19755 90.80245 48.08140 79.91860 > [76,] 11.38334098 64.00000 36.32292 91.67708 47.56194 80.43806 > [77,] 11.53445239 64.00000 35.58749 92.41251 47.12515 80.87485 > [78,] 11.68556380 64.00000 34.99252 93.00748 46.77178 81.22822 > [79,] 11.83667521 64.00000 34.53818 93.46182 46.50194 81.49806 > [80,] 11.98778662 64.00000 34.22371 93.77629 46.31517 81.68483 > [81,] 12.13889803 64.00000 34.04739 93.95261 46.21045 81.78955 > [82,] 12.29000944 64.00000 34.00657 93.99343 46.18621 81.81379 > [83,] 12.44112086 64.00000 34.09754 93.90246 46.24024 81.75976 > [84,] 12.59223227 64.00000 34.31538 93.68462 46.36962 81.63038 > [85,] 12.74334368 64.00000 34.65373 93.34627 46.57057 81.42943 > [86,] 12.89445509 64.00000 35.10447 92.89553 46.83828 81.16172 > [87,] 13.04556650 64.00000 35.65727 92.34273 47.16660 80.83340 > [88,] 13.19667791 64.00000 36.29902 91.70098 47.54774 80.45226 > [89,] 13.34778932 64.00000 37.01308 90.98692 47.97184 80.02816 > [90,] 13.49890073 64.00000 37.77838 90.22162 48.42637 79.57363 > [91,] 13.65001214 64.00000 38.56826 89.43174 48.89550 79.10450 > [92,] 13.80112355 64.00000 39.34926 88.65074 49.35935 78.64065 > [93,] 13.95223496 64.00000 40.07990 87.92010 49.79330 78.20670 > [94,] 14.10334638 64.00000 40.70997 87.29003 50.16751 77.83249 > [95,] 14.25445779 64.00000 41.18086 86.81914 50.44718 77.55282 > [96,] 14.40556920 64.00000 41.42789 86.57211 50.59390 77.40610 > [97,] 14.55668061 64.00000 41.38523 86.61477 50.56856 77.43144 > [98,] 14.70779202 64.00000 40.99320 87.00680 50.33573 77.66427 > [99,] 14.85890343 64.00000 40.20615 87.79385 49.86828 78.13172 > [100,] 15.01001484 64.00000 38.99804 89.00196 49.15076 78.84924 Running ‘small-ex.R’ [3s/3s] Comparing ‘small-ex.Rout’ to ‘small-ex.Rout.save’ ... OK Running ‘spline-ex.R’ [2s/3s] Comparing ‘spline-ex.Rout’ to ‘spline-ex.Rout.save’ ... OK Running ‘temp.R’ [3s/5s] Comparing ‘temp.Rout’ to ‘temp.Rout.save’ ...29,31d28 < Warning message: < In cobs(year, temp, knots.add = TRUE, degree = 1, constraint = "increase", : < drqssbc2(): Not all flags are normal (== 1), ifl : 22 35,42c32,35 < < **** ERROR in algorithm: ifl = 22 < < < {tau=0.5}-quantile; dimensionality of fit: 5 from {5} < x$knots[1:5]: 1880, 1908, 1936, 1964, 1992 < coef[1:5]: -0.39324840, -0.28115087, 0.05916295, -0.07465159, 0.31227753 < R^2 = 73.22% ; empirical tau (over all): 63/113 = 0.5575221 (target tau= 0.5) --- > {tau=0.5}-quantile; dimensionality of fit: 4 from {4} > x$knots[1:4]: 1880, 1936, 1964, 1992 > coef[1:4]: -0.47054145, -0.01648649, -0.01648649, 0.27562279 > R^2 = 70.37% ; empirical tau (over all): 56/113 = 0.4955752 (target tau= 0.5) 52,54d44 < Warning message: < In cobs(year, temp, nknots = 9, knots.add = TRUE, degree = 1, constraint = "increase", : < drqssbc2(): Not all flags are normal (== 1), ifl : 22 58,65c48,51 < < **** ERROR in algorithm: ifl = 22 < < < {tau=0.5}-quantile; dimensionality of fit: 5 from {5} < x$knots[1:5]: 1880, 1908, 1936, 1964, 1992 < coef[1:5]: -0.39324840, -0.28115087, 0.05916295, -0.07465159, 0.31227753 < R^2 = 73.22% ; empirical tau (over all): 63/113 = 0.5575221 (target tau= 0.5) --- > {tau=0.5}-quantile; dimensionality of fit: 4 from {4} > x$knots[1:4]: 1880, 1936, 1964, 1992 > coef[1:4]: -0.47054145, -0.01648649, -0.01648649, 0.27562279 > R^2 = 70.37% ; empirical tau (over all): 56/113 = 0.4955752 (target tau= 0.5) 69,71d54 < Warning message: < In cobs(year, temp, nknots = length(a50$knots), knots = a50$knot, : < drqssbc2(): Not all flags are normal (== 1), ifl : 22 75,82c58,61 < < **** ERROR in algorithm: ifl = 22 < < < {tau=0.1}-quantile; dimensionality of fit: 5 from {5} < x$knots[1:5]: 1880, 1908, 1936, 1964, 1992 < coef[1:5]: -0.39324885, -0.28115087, 0.05916295, -0.07465159, 0.31227907 < empirical tau (over all): 63/113 = 0.5575221 (target tau= 0.1) --- > {tau=0.1}-quantile; dimensionality of fit: 4 from {4} > x$knots[1:4]: 1880, 1936, 1964, 1992 > coef[1:4]: -0.5700016, -0.1700000, -0.1700000, 0.1300024 > empirical tau (over all): 12/113 = 0.1061947 (target tau= 0.1) 85,87d63 < Warning message: < In cobs(year, temp, nknots = length(a50$knots), knots = a50$knot, : < drqssbc2(): Not all flags are normal (== 1), ifl : 22 91,98c67,70 < < **** ERROR in algorithm: ifl = 22 < < < {tau=0.9}-quantile; dimensionality of fit: 5 from {5} < x$knots[1:5]: 1880, 1908, 1936, 1964, 1992 < coef[1:5]: -0.39324885, -0.28115087, 0.05916295, -0.07465159, 0.31227907 < empirical tau (over all): 63/113 = 0.5575221 (target tau= 0.9) --- > {tau=0.9}-quantile; dimensionality of fit: 4 from {4} > x$knots[1:4]: 1880, 1936, 1964, 1992 > coef[1:4]: -0.2576939, 0.1300000, 0.1300000, 0.4961568 > empirical tau (over all): 104/113 = 0.920354 (target tau= 0.9) 101,103c73 < [1] 1 2 9 10 17 18 20 21 22 23 26 27 35 36 42 47 48 49 52 < [20] 53 58 59 61 62 63 64 65 68 73 74 78 79 80 81 82 83 84 88 < [39] 90 91 94 98 100 101 102 104 108 109 111 112 --- > [1] 10 18 21 22 47 61 74 102 111 105,108c75 < [1] 3 4 5 6 7 8 11 12 13 14 15 16 19 24 25 28 29 30 31 < [20] 32 33 34 37 38 39 40 41 43 44 45 46 50 51 54 55 56 57 60 < [39] 66 67 69 70 71 72 75 76 77 85 86 87 89 92 93 95 96 97 99 < [58] 103 105 106 107 110 113 --- > [1] 5 8 25 28 38 39 85 86 92 95 97 113 113,225c80,192 < [1,] 1880 -0.393247953 -0.568567598 -0.217928308 -0.497693198 -0.2888027083 < [2,] 1881 -0.389244486 -0.556686706 -0.221802266 -0.488996819 -0.2894921527 < [3,] 1882 -0.385241019 -0.544932639 -0.225549398 -0.480375996 -0.2901060418 < [4,] 1883 -0.381237552 -0.533324789 -0.229150314 -0.471842280 -0.2906328235 < [5,] 1884 -0.377234084 -0.521886218 -0.232581951 -0.463409410 -0.2910587589 < [6,] 1885 -0.373230617 -0.510644405 -0.235816829 -0.455093758 -0.2913674769 < [7,] 1886 -0.369227150 -0.499632120 -0.238822180 -0.446914845 -0.2915394558 < [8,] 1887 -0.365223683 -0.488888394 -0.241558972 -0.438895923 -0.2915514428 < [9,] 1888 -0.361220216 -0.478459556 -0.243980875 -0.431064594 -0.2913758376 < [10,] 1889 -0.357216749 -0.468400213 -0.246033284 -0.423453388 -0.2909801092 < [11,] 1890 -0.353213282 -0.458773976 -0.247652588 -0.416100202 -0.2903263615 < [12,] 1891 -0.349209814 -0.449653605 -0.248766024 -0.409048381 -0.2893712477 < [13,] 1892 -0.345206347 -0.441120098 -0.249292596 -0.402346180 -0.2880665146 < [14,] 1893 -0.341202880 -0.433260133 -0.249145628 -0.396045236 -0.2863605248 < [15,] 1894 -0.337199413 -0.426161346 -0.248237480 -0.390197757 -0.2842010691 < [16,] 1895 -0.333195946 -0.419905293 -0.246486599 -0.384852330 -0.2815395617 < [17,] 1896 -0.329192479 -0.414558712 -0.243826246 -0.380048714 -0.2783362437 < [18,] 1897 -0.325189012 -0.410164739 -0.240213284 -0.375812606 -0.2745654171 < [19,] 1898 -0.321185545 -0.406736420 -0.235634669 -0.372151779 -0.2702193101 < [20,] 1899 -0.317182077 -0.404254622 -0.230109533 -0.369054834 -0.2653093212 < [21,] 1900 -0.313178610 -0.402671075 -0.223686145 -0.366493014 -0.2598642062 < [22,] 1901 -0.309175143 -0.401915491 -0.216434795 -0.364424447 -0.2539258394 < [23,] 1902 -0.305171676 -0.401904507 -0.208438845 -0.362799469 -0.2475438831 < [24,] 1903 -0.301168209 -0.402550192 -0.199786225 -0.361565696 -0.2407707212 < [25,] 1904 -0.297164742 -0.403766666 -0.190562818 -0.360671966 -0.2336575172 < [26,] 1905 -0.293161275 -0.405474370 -0.180848179 -0.360070883 -0.2262516664 < [27,] 1906 -0.289157807 -0.407602268 -0.170713347 -0.359720126 -0.2185954887 < [28,] 1907 -0.285154340 -0.410088509 -0.160220171 -0.359582850 -0.2107258307 < [29,] 1908 -0.281150873 -0.412880143 -0.149421603 -0.359627508 -0.2026742377 < [30,] 1909 -0.268996808 -0.394836115 -0.143157501 -0.343964546 -0.1940290700 < [31,] 1910 -0.256842743 -0.376961386 -0.136724100 -0.328402442 -0.1852830438 < [32,] 1911 -0.244688678 -0.359281315 -0.130096042 -0.312956304 -0.1764210522 < [33,] 1912 -0.232534613 -0.341825431 -0.123243796 -0.297643724 -0.1674255025 < [34,] 1913 -0.220380548 -0.324627946 -0.116133151 -0.282485083 -0.1582760137 < [35,] 1914 -0.208226483 -0.307728160 -0.108724807 -0.267503793 -0.1489491732 < [36,] 1915 -0.196072418 -0.291170651 -0.100974185 -0.252726413 -0.1394184235 < [37,] 1916 -0.183918353 -0.275005075 -0.092831631 -0.238182523 -0.1296541835 < [38,] 1917 -0.171764288 -0.259285340 -0.084243236 -0.223904239 -0.1196243373 < [39,] 1918 -0.159610223 -0.244067933 -0.075152513 -0.209925213 -0.1092952334 < [40,] 1919 -0.147456158 -0.229409203 -0.065503113 -0.196279015 -0.0986333019 < [41,] 1920 -0.135302093 -0.215361603 -0.055242584 -0.182996891 -0.0876072953 < [42,] 1921 -0.123148028 -0.201969188 -0.044326869 -0.170105089 -0.0761909673 < [43,] 1922 -0.110993963 -0.189263062 -0.032724864 -0.157622139 -0.0643657877 < [44,] 1923 -0.098839898 -0.177257723 -0.020422074 -0.145556676 -0.0521231208 < [45,] 1924 -0.086685833 -0.165949224 -0.007422442 -0.133906350 -0.0394653164 < [46,] 1925 -0.074531768 -0.155315688 0.006252152 -0.122658128 -0.0264054087 < [47,] 1926 -0.062377703 -0.145320002 0.020564595 -0.111789900 -0.0129655072 < [48,] 1927 -0.050223638 -0.135913981 0.035466704 -0.101272959 0.0008256822 < [49,] 1928 -0.038069573 -0.127043003 0.050903856 -0.091074767 0.0149356198 < [50,] 1929 -0.025915508 -0.118650261 0.066819244 -0.081161479 0.0293304619 < [51,] 1930 -0.013761444 -0.110680090 0.083157203 -0.071499934 0.0439770474 < [52,] 1931 -0.001607379 -0.103080234 0.099865477 -0.062059002 0.0588442451 < [53,] 1932 0.010546686 -0.095803129 0.116896502 -0.052810346 0.0739037194 < [54,] 1933 0.022700751 -0.088806436 0.134207939 -0.043728744 0.0891302464 < [55,] 1934 0.034854816 -0.082053049 0.151762682 -0.034792088 0.1045017213 < [56,] 1935 0.047008881 -0.075510798 0.169528561 -0.025981216 0.1199989785 < [57,] 1936 0.059162946 -0.069151984 0.187477877 -0.017279624 0.1356055167 < [58,] 1937 0.054383856 -0.068135824 0.176903535 -0.018606241 0.1273739530 < [59,] 1938 0.049604765 -0.067303100 0.166512631 -0.020042139 0.1192516703 < [60,] 1939 0.044825675 -0.066681512 0.156332862 -0.021603820 0.1112551700 < [61,] 1940 0.040046585 -0.066303231 0.146396400 -0.023310448 0.1034036175 < [62,] 1941 0.035267494 -0.066205361 0.136740349 -0.025184129 0.0957191177 < [63,] 1942 0.030488404 -0.066430243 0.127407050 -0.027250087 0.0882268946 < [64,] 1943 0.025709313 -0.067025439 0.118444066 -0.029536657 0.0809552836 < [65,] 1944 0.020930223 -0.068043207 0.109903653 -0.032074970 0.0739354160 < [66,] 1945 0.016151132 -0.069539210 0.101841475 -0.034898188 0.0672004530 < [67,] 1946 0.011372042 -0.071570257 0.094314341 -0.038040154 0.0607842381 < [68,] 1947 0.006592951 -0.074190969 0.087376871 -0.041533408 0.0547193111 < [69,] 1948 0.001813861 -0.077449530 0.081077252 -0.045406656 0.0490343779 < [70,] 1949 -0.002965230 -0.081383054 0.075452595 -0.049682007 0.0437515481 < [71,] 1950 -0.007744320 -0.086013419 0.070524779 -0.054372496 0.0388838557 < [72,] 1951 -0.012523410 -0.091344570 0.066297749 -0.059480471 0.0344336506 < [73,] 1952 -0.017302501 -0.097362010 0.062757009 -0.064997299 0.0303922971 < [74,] 1953 -0.022081591 -0.104034636 0.059871454 -0.070904448 0.0267412650 < [75,] 1954 -0.026860682 -0.111318392 0.057597028 -0.077175672 0.0234543081 < [76,] 1955 -0.031639772 -0.119160824 0.055881280 -0.083779723 0.0205001786 < [77,] 1956 -0.036418863 -0.127505585 0.054667859 -0.090683032 0.0178453070 < [78,] 1957 -0.041197953 -0.136296186 0.053900280 -0.097851948 0.0154560415 < [79,] 1958 -0.045977044 -0.145478720 0.053524633 -0.105254354 0.0133002664 < [80,] 1959 -0.050756134 -0.155003532 0.053491263 -0.112860669 0.0113484004 < [81,] 1960 -0.055535225 -0.164826042 0.053755593 -0.120644335 0.0095738862 < [82,] 1961 -0.060314315 -0.174906951 0.054278321 -0.128581941 0.0079533109 < [83,] 1962 -0.065093405 -0.185212049 0.055025238 -0.136653105 0.0064662939 < [84,] 1963 -0.069872496 -0.195711803 0.055966811 -0.144840234 0.0050952422 < [85,] 1964 -0.074651586 -0.206380857 0.057077684 -0.153128222 0.0038250490 < [86,] 1965 -0.060832745 -0.185766914 0.064101424 -0.135261254 0.0135957648 < [87,] 1966 -0.047013903 -0.165458364 0.071430557 -0.117576222 0.0235484155 < [88,] 1967 -0.033195062 -0.145508157 0.079118034 -0.100104670 0.0337145466 < [89,] 1968 -0.019376220 -0.125978144 0.087225704 -0.082883444 0.0441310044 < [90,] 1969 -0.005557378 -0.106939362 0.095824605 -0.065954866 0.0548401092 < [91,] 1970 0.008261463 -0.088471368 0.104994294 -0.049366330 0.0658892560 < [92,] 1971 0.022080305 -0.070660043 0.114820653 -0.033168999 0.0773296085 < [93,] 1972 0.035899146 -0.053593318 0.125391611 -0.017415258 0.0892135504 < [94,] 1973 0.049717988 -0.037354556 0.136790532 -0.002154768 0.1015907442 < [95,] 1974 0.063536830 -0.022014046 0.149087705 0.012570595 0.1145030640 < [96,] 1975 0.077355671 -0.007620056 0.162331398 0.026732077 0.1279792657 < [97,] 1976 0.091174513 0.005808280 0.176540746 0.040318278 0.1420307479 < [98,] 1977 0.104993354 0.018284008 0.191702701 0.053336970 0.1566497385 < [99,] 1978 0.118812196 0.029850263 0.207774129 0.065813852 0.1718105399 < [100,] 1979 0.132631038 0.040573785 0.224688290 0.077788682 0.1874733929 < [101,] 1980 0.146449879 0.050536128 0.242363630 0.089310046 0.2035897119 < [102,] 1981 0.160268721 0.059824930 0.260712511 0.100430154 0.2201072876 < [103,] 1982 0.174087562 0.068526868 0.279648256 0.111200642 0.2369744825 < [104,] 1983 0.187906404 0.076722940 0.299089868 0.121669764 0.2541430435 < [105,] 1984 0.201725246 0.084485905 0.318964586 0.131880867 0.2715696238 < [106,] 1985 0.215544087 0.091879376 0.339208798 0.141871847 0.2892163274 < [107,] 1986 0.229362929 0.098957959 0.359767899 0.151675234 0.3070506231 < [108,] 1987 0.243181770 0.105767982 0.380595558 0.161318630 0.3250449108 < [109,] 1988 0.257000612 0.112348478 0.401652745 0.170825286 0.3431759375 < [110,] 1989 0.270819454 0.118732216 0.422906691 0.180214725 0.3614241817 < [111,] 1990 0.284638295 0.124946675 0.444329916 0.189503318 0.3797732721 < [112,] 1991 0.298457137 0.131014917 0.465899357 0.198704804 0.3982094699 < [113,] 1992 0.312275978 0.136956333 0.487595623 0.207830734 0.4167212231 --- > [1,] 1880 -0.470540541 -0.580395233 -0.360685849 -0.541226637 -0.399854444 > [2,] 1881 -0.462432432 -0.569650451 -0.355214414 -0.531421959 -0.393442906 > [3,] 1882 -0.454324324 -0.558928137 -0.349720511 -0.521631738 -0.387016910 > [4,] 1883 -0.446216216 -0.548230020 -0.344202412 -0.511857087 -0.380575346 > [5,] 1884 -0.438108108 -0.537557989 -0.338658227 -0.502099220 -0.374116996 > [6,] 1885 -0.430000000 -0.526914115 -0.333085885 -0.492359472 -0.367640528 > [7,] 1886 -0.421891892 -0.516300667 -0.327483116 -0.482639300 -0.361144484 > [8,] 1887 -0.413783784 -0.505720132 -0.321847435 -0.472940307 -0.354627261 > [9,] 1888 -0.405675676 -0.495175238 -0.316176113 -0.463264247 -0.348087105 > [10,] 1889 -0.397567568 -0.484668976 -0.310466159 -0.453613044 -0.341522091 > [11,] 1890 -0.389459459 -0.474204626 -0.304714293 -0.443988810 -0.334930108 > [12,] 1891 -0.381351351 -0.463785782 -0.298916920 -0.434393857 -0.328308845 > [13,] 1892 -0.373243243 -0.453416379 -0.293070107 -0.424830717 -0.321655770 > [14,] 1893 -0.365135135 -0.443100719 -0.287169552 -0.415302157 -0.314968113 > [15,] 1894 -0.357027027 -0.432843496 -0.281210558 -0.405811200 -0.308242854 > [16,] 1895 -0.348918919 -0.422649821 -0.275188017 -0.396361132 -0.301476706 > [17,] 1896 -0.340810811 -0.412525238 -0.269096384 -0.386955521 -0.294666101 > [18,] 1897 -0.332702703 -0.402475737 -0.262929668 -0.377598222 -0.287807183 > [19,] 1898 -0.324594595 -0.392507759 -0.256681430 -0.368293379 -0.280895810 > [20,] 1899 -0.316486486 -0.382628180 -0.250344793 -0.359045416 -0.273927557 > [21,] 1900 -0.308378378 -0.372844288 -0.243912468 -0.349859024 -0.266897733 > [22,] 1901 -0.300270270 -0.363163733 -0.237376807 -0.340739124 -0.259801417 > [23,] 1902 -0.292162162 -0.353594450 -0.230729874 -0.331690821 -0.252633503 > [24,] 1903 -0.284054054 -0.344144557 -0.223963551 -0.322719340 -0.245388768 > [25,] 1904 -0.275945946 -0.334822217 -0.217069675 -0.313829934 -0.238061958 > [26,] 1905 -0.267837838 -0.325635470 -0.210040206 -0.305027774 -0.230647901 > [27,] 1906 -0.259729730 -0.316592032 -0.202867427 -0.296317828 -0.223141632 > [28,] 1907 -0.251621622 -0.307699075 -0.195544168 -0.287704708 -0.215538535 > [29,] 1908 -0.243513514 -0.298962989 -0.188064038 -0.279192527 -0.207834500 > [30,] 1909 -0.235405405 -0.290389150 -0.180421661 -0.270784743 -0.200026067 > [31,] 1910 -0.227297297 -0.281981702 -0.172612893 -0.262484025 -0.192110570 > [32,] 1911 -0.219189189 -0.273743385 -0.164634993 -0.254292134 -0.184086245 > [33,] 1912 -0.211081081 -0.265675409 -0.156486753 -0.246209849 -0.175952313 > [34,] 1913 -0.202972973 -0.257777400 -0.148168546 -0.238236929 -0.167709017 > [35,] 1914 -0.194864865 -0.250047417 -0.139682313 -0.230372126 -0.159357604 > [36,] 1915 -0.186756757 -0.242482039 -0.131031475 -0.222613238 -0.150900276 > [37,] 1916 -0.178648649 -0.235076516 -0.122220781 -0.214957209 -0.142340088 > [38,] 1917 -0.170540541 -0.227824968 -0.113256113 -0.207400255 -0.133680826 > [39,] 1918 -0.162432432 -0.220720606 -0.104144259 -0.199938008 -0.124926856 > [40,] 1919 -0.154324324 -0.213755974 -0.094892674 -0.192565671 -0.116082978 > [41,] 1920 -0.146216216 -0.206923176 -0.085509256 -0.185278162 -0.107154270 > [42,] 1921 -0.138108108 -0.200214092 -0.076002124 -0.178070257 -0.098145959 > [43,] 1922 -0.130000000 -0.193620560 -0.066379440 -0.170936704 -0.089063296 > [44,] 1923 -0.121891892 -0.187134533 -0.056649251 -0.163872326 -0.079911458 > [45,] 1924 -0.113783784 -0.180748200 -0.046819367 -0.156872096 -0.070695472 > [46,] 1925 -0.105675676 -0.174454074 -0.036897277 -0.149931196 -0.061420156 > [47,] 1926 -0.097567568 -0.168245056 -0.026890080 -0.143045058 -0.052090077 > [48,] 1927 -0.089459459 -0.162114471 -0.016804448 -0.136209390 -0.042709529 > [49,] 1928 -0.081351351 -0.156056093 -0.006646610 -0.129420182 -0.033282521 > [50,] 1929 -0.073243243 -0.150064140 0.003577654 -0.122673716 -0.023812771 > [51,] 1930 -0.065135135 -0.144133276 0.013863006 -0.115966557 -0.014303713 > [52,] 1931 -0.057027027 -0.138258588 0.024204534 -0.109295545 -0.004758509 > [53,] 1932 -0.048918919 -0.132435569 0.034597732 -0.102657780 0.004819942 > [54,] 1933 -0.040810811 -0.126660095 0.045038473 -0.096050607 0.014428985 > [55,] 1934 -0.032702703 -0.120928393 0.055522988 -0.089471600 0.024066194 > [56,] 1935 -0.024594595 -0.115237021 0.066047832 -0.082918542 0.033729353 > [57,] 1936 -0.016486486 -0.109582838 0.076609865 -0.076389415 0.043416442 > [58,] 1937 -0.016486486 -0.105401253 0.072428280 -0.073698770 0.040725797 > [59,] 1938 -0.016486486 -0.101403226 0.068430253 -0.071126236 0.038153263 > [60,] 1939 -0.016486486 -0.097615899 0.064642926 -0.068689277 0.035716305 > [61,] 1940 -0.016486486 -0.094070136 0.061097163 -0.066407753 0.033434780 > [62,] 1941 -0.016486486 -0.090800520 0.057827547 -0.064303916 0.031330943 > [63,] 1942 -0.016486486 -0.087845022 0.054872049 -0.062402198 0.029429225 > [64,] 1943 -0.016486486 -0.085244160 0.052271187 -0.060728671 0.027755698 > [65,] 1944 -0.016486486 -0.083039523 0.050066550 -0.059310095 0.026337122 > [66,] 1945 -0.016486486 -0.081271575 0.048298602 -0.058172508 0.025199535 > [67,] 1946 -0.016486486 -0.079976806 0.047003833 -0.057339388 0.024366415 > [68,] 1947 -0.016486486 -0.079184539 0.046211566 -0.056829602 0.023856629 > [69,] 1948 -0.016486486 -0.078913907 0.045940934 -0.056655464 0.023682491 > [70,] 1949 -0.016486486 -0.079171667 0.046198694 -0.056821320 0.023848347 > [71,] 1950 -0.016486486 -0.079951382 0.046978409 -0.057323028 0.024350055 > [72,] 1951 -0.016486486 -0.081234197 0.048261224 -0.058148457 0.025175484 > [73,] 1952 -0.016486486 -0.082991006 0.050018033 -0.059278877 0.026305904 > [74,] 1953 -0.016486486 -0.085185454 0.052212481 -0.060690897 0.027717924 > [75,] 1954 -0.016486486 -0.087777140 0.054804167 -0.062358519 0.029385546 > [76,] 1955 -0.016486486 -0.090724471 0.057751498 -0.064254982 0.031282009 > [77,] 1956 -0.016486486 -0.093986883 0.061013910 -0.066354184 0.033381211 > [78,] 1957 -0.016486486 -0.097526332 0.064553359 -0.068631645 0.035658672 > [79,] 1958 -0.016486486 -0.101308145 0.068335172 -0.071065056 0.038092083 > [80,] 1959 -0.016486486 -0.105301366 0.072328393 -0.073634498 0.040661525 > [81,] 1960 -0.016486486 -0.109478765 0.076505793 -0.076322449 0.043349476 > [82,] 1961 -0.016486486 -0.113816631 0.080843658 -0.079113653 0.046140680 > [83,] 1962 -0.016486486 -0.118294454 0.085321481 -0.081994911 0.049021938 > [84,] 1963 -0.016486486 -0.122894566 0.089921593 -0.084954858 0.051981885 > [85,] 1964 -0.016486486 -0.127601781 0.094628808 -0.087983719 0.055010746 > [86,] 1965 -0.006054054 -0.111440065 0.099331957 -0.073864774 0.061756666 > [87,] 1966 0.004378378 -0.095541433 0.104298190 -0.059915111 0.068671868 > [88,] 1967 0.014810811 -0.079951422 0.109573043 -0.046164030 0.075785651 > [89,] 1968 0.025243243 -0.064723125 0.115209611 -0.032645694 0.083132181 > [90,] 1969 0.035675676 -0.049917365 0.121268716 -0.019399240 0.090750592 > [91,] 1970 0.046108108 -0.035602017 0.127818233 -0.006468342 0.098684559 > [92,] 1971 0.056540541 -0.021849988 0.134931069 0.006100087 0.106980994 > [93,] 1972 0.066972973 -0.008735416 0.142681362 0.018258345 0.115687601 > [94,] 1973 0.077405405 0.003672103 0.151138707 0.029961648 0.124849163 > [95,] 1974 0.087837838 0.015314778 0.160360898 0.041172812 0.134502863 > [96,] 1975 0.098270270 0.026154092 0.170386449 0.051867053 0.144673488 > [97,] 1976 0.108702703 0.036176523 0.181228883 0.062035669 0.155369736 > [98,] 1977 0.119135135 0.045395695 0.192874575 0.071687429 0.166582842 > [99,] 1978 0.129567568 0.053850212 0.205284923 0.080847170 0.178287965 > [100,] 1979 0.140000000 0.061597925 0.218402075 0.089552117 0.190447883 > [101,] 1980 0.150432432 0.068708461 0.232156404 0.097847072 0.203017792 > [102,] 1981 0.160864865 0.075255962 0.246473767 0.105779742 0.215949987 > [103,] 1982 0.171297297 0.081313324 0.261281271 0.113397031 0.229197563 > [104,] 1983 0.181729730 0.086948395 0.276511065 0.120742598 0.242716862 > [105,] 1984 0.192162162 0.092221970 0.292102355 0.127855559 0.256468766 > [106,] 1985 0.202594595 0.097187112 0.308002077 0.134770059 0.270419130 > [107,] 1986 0.213027027 0.101889333 0.324164721 0.141515381 0.284538673 > [108,] 1987 0.223459459 0.106367224 0.340551695 0.148116359 0.298802560 > [109,] 1988 0.233891892 0.110653299 0.357130484 0.154593913 0.313189871 > [110,] 1989 0.244324324 0.114774857 0.373873791 0.160965608 0.327683041 > [111,] 1990 0.254756757 0.118754798 0.390758715 0.167246179 0.342267335 > [112,] 1991 0.265189189 0.122612348 0.407766030 0.173447997 0.356930381 > [113,] 1992 0.275621622 0.126363680 0.424879564 0.179581470 0.371661774 228,340c195,307 < [1,] 1880 -0.393247953 -0.638616081 -0.147879825 -0.539424009 -0.247071897 < [2,] 1881 -0.389244486 -0.623587786 -0.154901186 -0.528852590 -0.249636382 < [3,] 1882 -0.385241019 -0.608736988 -0.161745049 -0.518386915 -0.252095123 < [4,] 1883 -0.381237552 -0.594090828 -0.168384275 -0.508043150 -0.254431953 < [5,] 1884 -0.377234084 -0.579681581 -0.174786588 -0.497840525 -0.256627644 < [6,] 1885 -0.373230617 -0.565547708 -0.180913527 -0.487801951 -0.258659284 < [7,] 1886 -0.369227150 -0.551735068 -0.186719232 -0.477954750 -0.260499551 < [8,] 1887 -0.365223683 -0.538298290 -0.192149076 -0.468331465 -0.262115901 < [9,] 1888 -0.361220216 -0.525302213 -0.197138218 -0.458970724 -0.263469708 < [10,] 1889 -0.357216749 -0.512823261 -0.201610236 -0.449918056 -0.264515441 < [11,] 1890 -0.353213282 -0.500950461 -0.205476102 -0.441226498 -0.265200065 < [12,] 1891 -0.349209814 -0.489785646 -0.208633983 -0.432956717 -0.265462912 < [13,] 1892 -0.345206347 -0.479442174 -0.210970520 -0.425176244 -0.265236451 < [14,] 1893 -0.341202880 -0.470041356 -0.212364405 -0.417957348 -0.264448412 < [15,] 1894 -0.337199413 -0.461705842 -0.212692984 -0.411373100 -0.263025726 < [16,] 1895 -0.333195946 -0.454549774 -0.211842118 -0.405491497 -0.260900395 < [17,] 1896 -0.329192479 -0.448666556 -0.209718402 -0.400368183 -0.258016774 < [18,] 1897 -0.325189012 -0.444116558 -0.206261466 -0.396039125 -0.254338899 < [19,] 1898 -0.321185545 -0.440918038 -0.201453051 -0.392515198 -0.249855891 < [20,] 1899 -0.317182077 -0.439044218 -0.195319937 -0.389780451 -0.244583704 < [21,] 1900 -0.313178610 -0.438427544 -0.187929677 -0.387794638 -0.238562582 < [22,] 1901 -0.309175143 -0.438969642 -0.179380644 -0.386499155 -0.231851132 < [23,] 1902 -0.305171676 -0.440553844 -0.169789508 -0.385824495 -0.224518857 < [24,] 1903 -0.301168209 -0.443057086 -0.159279332 -0.385697347 -0.216639071 < [25,] 1904 -0.297164742 -0.446359172 -0.147970311 -0.386046103 -0.208283380 < [26,] 1905 -0.293161275 -0.450348759 -0.135973790 -0.386804433 -0.199518116 < [27,] 1906 -0.289157807 -0.454926427 -0.123389188 -0.387913107 -0.190402508 < [28,] 1907 -0.285154340 -0.460005614 -0.110303066 -0.389320557 -0.180988124 < [29,] 1908 -0.281150873 -0.465512212 -0.096789534 -0.390982633 -0.171319113 < [30,] 1909 -0.268996808 -0.445114865 -0.092878751 -0.373917700 -0.164075916 < [31,] 1910 -0.256842743 -0.424954461 -0.088731025 -0.356993924 -0.156691562 < [32,] 1911 -0.244688678 -0.405066488 -0.084310868 -0.340232447 -0.149144910 < [33,] 1912 -0.232534613 -0.385492277 -0.079576949 -0.323657890 -0.141411336 < [34,] 1913 -0.220380548 -0.366279707 -0.074481389 -0.307298779 -0.133462317 < [35,] 1914 -0.208226483 -0.347483782 -0.068969185 -0.291187880 -0.125265087 < [36,] 1915 -0.196072418 -0.329166890 -0.062977947 -0.275362361 -0.116782475 < [37,] 1916 -0.183918353 -0.311398525 -0.056438181 -0.259863623 -0.107973083 < [38,] 1917 -0.171764288 -0.294254136 -0.049274440 -0.244736614 -0.098791963 < [39,] 1918 -0.159610223 -0.277812779 -0.041407667 -0.230028429 -0.089192017 < [40,] 1919 -0.147456158 -0.262153318 -0.032758999 -0.215786053 -0.079126264 < [41,] 1920 -0.135302093 -0.247349160 -0.023255026 -0.202053217 -0.068550970 < [42,] 1921 -0.123148028 -0.233461966 -0.012834091 -0.188866654 -0.057429402 < [43,] 1922 -0.110993963 -0.220535266 -0.001452661 -0.176252299 -0.045735628 < [44,] 1923 -0.098839898 -0.208589350 0.010909553 -0.164222236 -0.033457560 < [45,] 1924 -0.086685833 -0.197618695 0.024247028 -0.152773178 -0.020598488 < [46,] 1925 -0.074531768 -0.187592682 0.038529145 -0.141886883 -0.007176654 < [47,] 1926 -0.062377703 -0.178459370 0.053703964 -0.131532407 0.006777000 < [48,] 1927 -0.050223638 -0.170151322 0.069704045 -0.121669575 0.021222298 < [49,] 1928 -0.038069573 -0.162592093 0.086452946 -0.112252846 0.036113699 < [50,] 1929 -0.025915508 -0.155702177 0.103871160 -0.103234855 0.051403838 < [51,] 1930 -0.013761444 -0.149403669 0.121880782 -0.094569190 0.067046303 < [52,] 1931 -0.001607379 -0.143623435 0.140408678 -0.086212283 0.082997525 < [53,] 1932 0.010546686 -0.138294906 0.159388279 -0.078124475 0.099217848 < [54,] 1933 0.022700751 -0.133358827 0.178760330 -0.070270466 0.115671969 < [55,] 1934 0.034854816 -0.128763266 0.198472899 -0.062619318 0.132328951 < [56,] 1935 0.047008881 -0.124463200 0.218480963 -0.055144209 0.149161972 < [57,] 1936 0.059162946 -0.120419862 0.238745755 -0.047822043 0.166147936 < [58,] 1937 0.054383856 -0.117088225 0.225855937 -0.047769234 0.156536946 < [59,] 1938 0.049604765 -0.114013317 0.213222848 -0.047869369 0.147078900 < [60,] 1939 0.044825675 -0.111233903 0.200885253 -0.048145542 0.137796893 < [61,] 1940 0.040046585 -0.108795008 0.188888177 -0.048624577 0.128717746 < [62,] 1941 0.035267494 -0.106748562 0.177283550 -0.049337410 0.119872398 < [63,] 1942 0.030488404 -0.105153822 0.166130629 -0.050319343 0.111296150 < [64,] 1943 0.025709313 -0.104077355 0.155495982 -0.051610033 0.103028659 < [65,] 1944 0.020930223 -0.103592297 0.145452743 -0.053253050 0.095113496 < [66,] 1945 0.016151132 -0.103776551 0.136078816 -0.055294804 0.087597069 < [67,] 1946 0.011372042 -0.104709625 0.127453709 -0.057782662 0.080526746 < [68,] 1947 0.006592951 -0.106467962 0.119653865 -0.060762163 0.073948066 < [69,] 1948 0.001813861 -0.109119001 0.112746722 -0.064273484 0.067901206 < [70,] 1949 -0.002965230 -0.112714681 0.106784222 -0.068347568 0.062417108 < [71,] 1950 -0.007744320 -0.117285623 0.101796983 -0.073002655 0.057514015 < [72,] 1951 -0.012523410 -0.122837348 0.097790527 -0.078242036 0.053195215 < [73,] 1952 -0.017302501 -0.129349568 0.094744566 -0.084053625 0.049448623 < [74,] 1953 -0.022081591 -0.136778751 0.092615568 -0.090411486 0.046248303 < [75,] 1954 -0.026860682 -0.145063238 0.091341874 -0.097278888 0.043557524 < [76,] 1955 -0.031639772 -0.154129620 0.090850076 -0.104612098 0.041332553 < [77,] 1956 -0.036418863 -0.163899035 0.091061309 -0.112364133 0.039526407 < [78,] 1957 -0.041197953 -0.174292425 0.091896518 -0.120487896 0.038091990 < [79,] 1958 -0.045977044 -0.185234342 0.093280255 -0.128938440 0.036984353 < [80,] 1959 -0.050756134 -0.196655293 0.095143025 -0.137674365 0.036162097 < [81,] 1960 -0.055535225 -0.208492888 0.097422439 -0.146658502 0.035588053 < [82,] 1961 -0.060314315 -0.220692125 0.100063495 -0.155858084 0.035229454 < [83,] 1962 -0.065093405 -0.233205123 0.103018312 -0.165244586 0.035057775 < [84,] 1963 -0.069872496 -0.245990553 0.106245561 -0.174793388 0.035048396 < [85,] 1964 -0.074651586 -0.259012925 0.109709752 -0.184483346 0.035180173 < [86,] 1965 -0.060832745 -0.235684019 0.114018529 -0.164998961 0.043333472 < [87,] 1966 -0.047013903 -0.212782523 0.118754717 -0.145769203 0.051741396 < [88,] 1967 -0.033195062 -0.190382546 0.123992423 -0.126838220 0.060448097 < [89,] 1968 -0.019376220 -0.168570650 0.129818210 -0.108257582 0.069505142 < [90,] 1969 -0.005557378 -0.147446255 0.136331499 -0.090086516 0.078971760 < [91,] 1970 0.008261463 -0.127120705 0.143643631 -0.072391356 0.088914283 < [92,] 1971 0.022080305 -0.107714195 0.151874804 -0.055243707 0.099404316 < [93,] 1972 0.035899146 -0.089349787 0.161148080 -0.038716881 0.110515174 < [94,] 1973 0.049717988 -0.072144153 0.171580129 -0.022880386 0.122316362 < [95,] 1974 0.063536830 -0.056195664 0.183269323 -0.007792824 0.134866483 < [96,] 1975 0.077355671 -0.041571875 0.196283217 0.006505558 0.148205784 < [97,] 1976 0.091174513 -0.028299564 0.210648590 0.019998808 0.162350217 < [98,] 1977 0.104993354 -0.016360474 0.226347183 0.032697804 0.177288905 < [99,] 1978 0.118812196 -0.005694233 0.243318625 0.044638509 0.192985883 < [100,] 1979 0.132631038 0.003792562 0.261469513 0.055876570 0.209385506 < [101,] 1980 0.146449879 0.012214052 0.280685706 0.066479983 0.226419775 < [102,] 1981 0.160268721 0.019692889 0.300844552 0.076521819 0.244015623 < [103,] 1982 0.174087562 0.026350383 0.321824742 0.086074346 0.262100779 < [104,] 1983 0.187906404 0.032299891 0.343512917 0.095205097 0.280607711 < [105,] 1984 0.201725246 0.037643248 0.365807243 0.103974737 0.299475754 < [106,] 1985 0.215544087 0.042469480 0.388618694 0.112436305 0.318651869 < [107,] 1986 0.229362929 0.046855011 0.411870847 0.120635329 0.338090528 < [108,] 1987 0.243181770 0.050864680 0.435498861 0.128610437 0.357753104 < [109,] 1988 0.257000612 0.054553115 0.459448109 0.136394171 0.377607052 < [110,] 1989 0.270819454 0.057966177 0.483672730 0.144013855 0.397625052 < [111,] 1990 0.284638295 0.061142326 0.508134265 0.151492399 0.417784191 < [112,] 1991 0.298457137 0.064113837 0.532800436 0.158849032 0.438065241 < [113,] 1992 0.312275978 0.066907850 0.557644107 0.166099922 0.458452034 --- > [1,] 1880 -0.570000000 -0.7989007 -0.3410992837 -0.71728636 -0.422713636 > [2,] 1881 -0.562857143 -0.7862639 -0.3394503795 -0.70660842 -0.419105867 > [3,] 1882 -0.555714286 -0.7736739 -0.3377546582 -0.69596060 -0.415467975 > [4,] 1883 -0.548571429 -0.7611343 -0.3360085204 -0.68534522 -0.411797641 > [5,] 1884 -0.541428571 -0.7486491 -0.3342080272 -0.67476481 -0.408092333 > [6,] 1885 -0.534285714 -0.7362226 -0.3323488643 -0.66422216 -0.404349273 > [7,] 1886 -0.527142857 -0.7238594 -0.3304263043 -0.65372029 -0.400565421 > [8,] 1887 -0.520000000 -0.7115648 -0.3284351643 -0.64326256 -0.396737440 > [9,] 1888 -0.512857143 -0.6993445 -0.3263697605 -0.63285261 -0.392861675 > [10,] 1889 -0.505714286 -0.6872047 -0.3242238599 -0.62249446 -0.388934114 > [11,] 1890 -0.498571429 -0.6751522 -0.3219906288 -0.61219250 -0.384950360 > [12,] 1891 -0.491428571 -0.6631946 -0.3196625782 -0.60195155 -0.380905594 > [13,] 1892 -0.484285714 -0.6513399 -0.3172315093 -0.59177689 -0.376794541 > [14,] 1893 -0.477142857 -0.6395973 -0.3146884583 -0.58167428 -0.372611433 > [15,] 1894 -0.470000000 -0.6279764 -0.3120236430 -0.57165002 -0.368349976 > [16,] 1895 -0.462857143 -0.6164879 -0.3092264155 -0.56171097 -0.364003318 > [17,] 1896 -0.455714286 -0.6051433 -0.3062852230 -0.55186455 -0.359564026 > [18,] 1897 -0.448571429 -0.5939553 -0.3031875831 -0.54211879 -0.355024067 > [19,] 1898 -0.441428571 -0.5829371 -0.2999200783 -0.53248233 -0.350374809 > [20,] 1899 -0.434285714 -0.5721031 -0.2964683783 -0.52296440 -0.345607030 > [21,] 1900 -0.427142857 -0.5614684 -0.2928172976 -0.51357475 -0.340710959 > [22,] 1901 -0.420000000 -0.5510491 -0.2889508980 -0.50432366 -0.335676342 > [23,] 1902 -0.412857143 -0.5408616 -0.2848526441 -0.49522175 -0.330492537 > [24,] 1903 -0.405714286 -0.5309229 -0.2805056214 -0.48627991 -0.325148662 > [25,] 1904 -0.398571429 -0.5212500 -0.2758928205 -0.47750909 -0.319633772 > [26,] 1905 -0.391428571 -0.5118597 -0.2709974894 -0.46892006 -0.313937087 > [27,] 1906 -0.384285714 -0.5027679 -0.2658035488 -0.46052317 -0.308048262 > [28,] 1907 -0.377142857 -0.4939897 -0.2602960562 -0.45232803 -0.301957682 > [29,] 1908 -0.370000000 -0.4855383 -0.2544616963 -0.44434322 -0.295656778 > [30,] 1909 -0.362857143 -0.4774250 -0.2482892691 -0.43657594 -0.289138345 > [31,] 1910 -0.355714286 -0.4696584 -0.2417701364 -0.42903175 -0.282396824 > [32,] 1911 -0.348571429 -0.4622443 -0.2348985912 -0.42171431 -0.275428543 > [33,] 1912 -0.341428571 -0.4551850 -0.2276721117 -0.41462526 -0.268231879 > [34,] 1913 -0.334285714 -0.4484800 -0.2200914777 -0.40776409 -0.260807334 > [35,] 1914 -0.327142857 -0.4421250 -0.2121607344 -0.40112820 -0.253157511 > [36,] 1915 -0.320000000 -0.4361130 -0.2038870084 -0.39471301 -0.245286995 > [37,] 1916 -0.312857143 -0.4304341 -0.1952801960 -0.38851213 -0.237202155 > [38,] 1917 -0.305714286 -0.4250760 -0.1863525523 -0.38251770 -0.228910875 > [39,] 1918 -0.298571429 -0.4200246 -0.1771182205 -0.37672060 -0.220422257 > [40,] 1919 -0.291428571 -0.4152644 -0.1675927388 -0.37111085 -0.211746298 > [41,] 1920 -0.284285714 -0.4107789 -0.1577925583 -0.36567785 -0.202893584 > [42,] 1921 -0.277142857 -0.4065511 -0.1477346004 -0.36041071 -0.193875002 > [43,] 1922 -0.270000000 -0.4025641 -0.1374358695 -0.35529850 -0.184701495 > [44,] 1923 -0.262857143 -0.3988012 -0.1269131329 -0.35033043 -0.175383852 > [45,] 1924 -0.255714286 -0.3952459 -0.1161826679 -0.34549603 -0.165932545 > [46,] 1925 -0.248571429 -0.3918828 -0.1052600744 -0.34078524 -0.156357614 > [47,] 1926 -0.241428571 -0.3886970 -0.0941601449 -0.33618857 -0.146668575 > [48,] 1927 -0.234285714 -0.3856746 -0.0828967845 -0.33169705 -0.136874376 > [49,] 1928 -0.227142857 -0.3828027 -0.0714829715 -0.32730235 -0.126983369 > [50,] 1929 -0.220000000 -0.3800693 -0.0599307484 -0.32299670 -0.117003301 > [51,] 1930 -0.212857143 -0.3774630 -0.0482512378 -0.31877296 -0.106941331 > [52,] 1931 -0.205714286 -0.3749739 -0.0364546744 -0.31462453 -0.096804042 > [53,] 1932 -0.198571429 -0.3725924 -0.0245504487 -0.31054538 -0.086597478 > [54,] 1933 -0.191428571 -0.3703100 -0.0125471577 -0.30652997 -0.076327171 > [55,] 1934 -0.184285714 -0.3681188 -0.0004526588 -0.30257325 -0.065998175 > [56,] 1935 -0.177142857 -0.3660116 0.0117258745 -0.29867061 -0.055615108 > [57,] 1936 -0.170000000 -0.3639819 0.0239818977 -0.29481782 -0.045182180 > [58,] 1937 -0.170000000 -0.3552689 0.0152688616 -0.28921141 -0.050788591 > [59,] 1938 -0.170000000 -0.3469383 0.0069383006 -0.28385110 -0.056148897 > [60,] 1939 -0.170000000 -0.3390468 -0.0009532311 -0.27877329 -0.061226710 > [61,] 1940 -0.170000000 -0.3316586 -0.0083414258 -0.27401935 -0.065980650 > [62,] 1941 -0.170000000 -0.3248458 -0.0151542191 -0.26963565 -0.070364348 > [63,] 1942 -0.170000000 -0.3186875 -0.0213124962 -0.26567310 -0.074326897 > [64,] 1943 -0.170000000 -0.3132682 -0.0267318303 -0.26218603 -0.077813972 > [65,] 1944 -0.170000000 -0.3086744 -0.0313255619 -0.25923019 -0.080769813 > [66,] 1945 -0.170000000 -0.3049906 -0.0350093787 -0.25685983 -0.083140168 > [67,] 1946 -0.170000000 -0.3022928 -0.0377072467 -0.25512389 -0.084876113 > [68,] 1947 -0.170000000 -0.3006419 -0.0393580695 -0.25406166 -0.085938337 > [69,] 1948 -0.170000000 -0.3000780 -0.0399219767 -0.25369882 -0.086301183 > [70,] 1949 -0.170000000 -0.3006151 -0.0393848898 -0.25404441 -0.085955594 > [71,] 1950 -0.170000000 -0.3022398 -0.0377602233 -0.25508980 -0.084910201 > [72,] 1951 -0.170000000 -0.3049127 -0.0350872623 -0.25680972 -0.083190282 > [73,] 1952 -0.170000000 -0.3085733 -0.0314266558 -0.25916514 -0.080834862 > [74,] 1953 -0.170000000 -0.3131458 -0.0268541535 -0.26210732 -0.077892681 > [75,] 1954 -0.170000000 -0.3185461 -0.0214539408 -0.26558209 -0.074417909 > [76,] 1955 -0.170000000 -0.3246873 -0.0153126807 -0.26953369 -0.070466310 > [77,] 1956 -0.170000000 -0.3314851 -0.0085148970 -0.27390773 -0.066092271 > [78,] 1957 -0.170000000 -0.3388601 -0.0011398598 -0.27865320 -0.061346797 > [79,] 1958 -0.170000000 -0.3467402 0.0067401824 -0.28372362 -0.056276377 > [80,] 1959 -0.170000000 -0.3550607 0.0150607304 -0.28907749 -0.050922513 > [81,] 1960 -0.170000000 -0.3637650 0.0237650445 -0.29467829 -0.045321714 > [82,] 1961 -0.170000000 -0.3728037 0.0328037172 -0.30049423 -0.039505772 > [83,] 1962 -0.170000000 -0.3821340 0.0421340134 -0.30649781 -0.033502185 > [84,] 1963 -0.170000000 -0.3917191 0.0517191202 -0.31266536 -0.027334640 > [85,] 1964 -0.170000000 -0.4015274 0.0615273928 -0.31897650 -0.021023499 > [86,] 1965 -0.159285714 -0.3788752 0.0603037544 -0.30058075 -0.017990680 > [87,] 1966 -0.148571429 -0.3567712 0.0596282943 -0.28253772 -0.014605137 > [88,] 1967 -0.137857143 -0.3353102 0.0595958975 -0.26490847 -0.010805813 > [89,] 1968 -0.127142857 -0.3146029 0.0603171930 -0.24776419 -0.006521525 > [90,] 1969 -0.116428571 -0.2947761 0.0619189162 -0.23118642 -0.001670726 > [91,] 1970 -0.105714286 -0.2759711 0.0645424939 -0.21526616 0.003837587 > [92,] 1971 -0.095000000 -0.2583398 0.0683398431 -0.20010116 0.010101164 > [93,] 1972 -0.084285714 -0.2420369 0.0734654391 -0.18579083 0.017219402 > [94,] 1973 -0.073571429 -0.2272072 0.0800643002 -0.17242847 0.025285614 > [95,] 1974 -0.062857143 -0.2139711 0.0882568427 -0.16009157 0.034377282 > [96,] 1975 -0.052142857 -0.2024090 0.0981233226 -0.14883176 0.044546046 > [97,] 1976 -0.041428571 -0.1925491 0.1096919157 -0.13866718 0.055810037 > [98,] 1977 -0.030714286 -0.1843628 0.1229342326 -0.12957956 0.068150987 > [99,] 1978 -0.020000000 -0.1777698 0.1377698370 -0.12151714 0.081517138 > [100,] 1979 -0.009285714 -0.1726496 0.1540781875 -0.11440236 0.095830930 > [101,] 1980 0.001428571 -0.1688571 0.1717142023 -0.10814187 0.110999008 > [102,] 1981 0.012142857 -0.1662377 0.1905233955 -0.10263625 0.126921969 > [103,] 1982 0.022857143 -0.1646396 0.2103538775 -0.09778779 0.143502079 > [104,] 1983 0.033571429 -0.1639214 0.2310642722 -0.09350551 0.160648370 > [105,] 1984 0.044285714 -0.1639565 0.2525279044 -0.08970790 0.178279332 > [106,] 1985 0.055000000 -0.1646342 0.2746342071 -0.08632382 0.196323821 > [107,] 1986 0.065714286 -0.1658598 0.2972883534 -0.08329225 0.214720820 > [108,] 1987 0.076428571 -0.1675528 0.3204099260 -0.08056144 0.233418585 > [109,] 1988 0.087142857 -0.1696455 0.3439311798 -0.07808781 0.252373526 > [110,] 1989 0.097857143 -0.1720809 0.3677952332 -0.07583476 0.271549041 > [111,] 1990 0.108571429 -0.1748115 0.3919543697 -0.07377157 0.290914428 > [112,] 1991 0.119285714 -0.1777971 0.4163685288 -0.07187248 0.310443909 > [113,] 1992 0.130000000 -0.1810040 0.4410040109 -0.07011580 0.330115800 343,455c310,422 < [1,] 1880 -0.393247953 -0.693805062 -0.092690844 -0.572302393 -0.214193513 < [2,] 1881 -0.389244486 -0.676297026 -0.102191945 -0.560253689 -0.218235282 < [3,] 1882 -0.385241019 -0.659006413 -0.111475624 -0.548334514 -0.222147524 < [4,] 1883 -0.381237552 -0.641966465 -0.120508639 -0.536564669 -0.225910434 < [5,] 1884 -0.377234084 -0.625216717 -0.129251452 -0.524967709 -0.229500459 < [6,] 1885 -0.373230617 -0.608804280 -0.137656955 -0.513571700 -0.232889535 < [7,] 1886 -0.369227150 -0.592785330 -0.145668970 -0.502410107 -0.236044193 < [8,] 1887 -0.365223683 -0.577226782 -0.153220584 -0.491522795 -0.238924571 < [9,] 1888 -0.361220216 -0.562208058 -0.160232373 -0.480957079 -0.241483352 < [10,] 1889 -0.357216749 -0.547822773 -0.166610724 -0.470768729 -0.243664768 < [11,] 1890 -0.353213282 -0.534179978 -0.172246585 -0.461022711 -0.245403852 < [12,] 1891 -0.349209814 -0.521404410 -0.177015219 -0.451793336 -0.246626293 < [13,] 1892 -0.345206347 -0.509634924 -0.180777771 -0.443163327 -0.247249368 < [14,] 1893 -0.341202880 -0.499020116 -0.183385645 -0.435221208 -0.247184553 < [15,] 1894 -0.337199413 -0.489710224 -0.184688602 -0.428056482 -0.246342344 < [16,] 1895 -0.333195946 -0.481845064 -0.184546828 -0.421752442 -0.244639450 < [17,] 1896 -0.329192479 -0.475539046 -0.182845912 -0.416377249 -0.242007708 < [18,] 1897 -0.325189012 -0.470866120 -0.179511904 -0.411974957 -0.238403066 < [19,] 1898 -0.321185545 -0.467848651 -0.174522438 -0.408558891 -0.233812198 < [20,] 1899 -0.317182077 -0.466453839 -0.167910316 -0.406109508 -0.228254646 < [21,] 1900 -0.313178610 -0.466598933 -0.159758288 -0.404577513 -0.221779708 < [22,] 1901 -0.309175143 -0.468163434 -0.150186852 -0.403891117 -0.214459169 < [23,] 1902 -0.305171676 -0.471004432 -0.139338920 -0.403965184 -0.206378168 < [24,] 1903 -0.301168209 -0.474971184 -0.127365234 -0.404709910 -0.197626508 < [25,] 1904 -0.297164742 -0.479916458 -0.114413025 -0.406037582 -0.188291901 < [26,] 1905 -0.293161275 -0.485703869 -0.100618680 -0.407866950 -0.178455599 < [27,] 1906 -0.289157807 -0.492211633 -0.086103982 -0.410125463 -0.168190151 < [28,] 1907 -0.285154340 -0.499333719 -0.070974961 -0.412749954 -0.157558727 < [29,] 1908 -0.281150873 -0.506979351 -0.055322395 -0.415686342 -0.146615404 < [30,] 1909 -0.268996808 -0.484727899 -0.053265717 -0.397516841 -0.140476775 < [31,] 1910 -0.256842743 -0.462766683 -0.050918803 -0.379520246 -0.134165240 < [32,] 1911 -0.244688678 -0.441139176 -0.048238181 -0.361722455 -0.127654901 < [33,] 1912 -0.232534613 -0.419896002 -0.045173225 -0.344153628 -0.120915598 < [34,] 1913 -0.220380548 -0.399095811 -0.041665286 -0.326848704 -0.113912392 < [35,] 1914 -0.208226483 -0.378805976 -0.037646990 -0.309847821 -0.106605145 < [36,] 1915 -0.196072418 -0.359102922 -0.033041915 -0.293196507 -0.098948329 < [37,] 1916 -0.183918353 -0.340071771 -0.027764935 -0.276945475 -0.090891232 < [38,] 1917 -0.171764288 -0.321804943 -0.021723634 -0.261149781 -0.082378795 < [39,] 1918 -0.159610223 -0.304399275 -0.014821172 -0.245867116 -0.073353330 < [40,] 1919 -0.147456158 -0.287951368 -0.006960949 -0.231155030 -0.063757286 < [41,] 1920 -0.135302093 -0.272551143 0.001946957 -0.217067092 -0.053537094 < [42,] 1921 -0.123148028 -0.258274127 0.011978071 -0.203648297 -0.042647760 < [43,] 1922 -0.110993963 -0.245173645 0.023185718 -0.190930411 -0.031057516 < [44,] 1923 -0.098839898 -0.233274545 0.035594749 -0.178928240 -0.018751557 < [45,] 1924 -0.086685833 -0.222570067 0.049198400 -0.167637754 -0.005733912 < [46,] 1925 -0.074531768 -0.213022703 0.063959166 -0.157036610 0.007973073 < [47,] 1926 -0.062377703 -0.204568828 0.079813422 -0.147086903 0.022331496 < [48,] 1927 -0.050223638 -0.197125838 0.096678562 -0.137739423 0.037292146 < [49,] 1928 -0.038069573 -0.190600095 0.114460948 -0.128938384 0.052799237 < [50,] 1929 -0.025915508 -0.184894207 0.133063191 -0.120625768 0.068794751 < [51,] 1930 -0.013761444 -0.179912750 0.152389863 -0.112744726 0.085221839 < [52,] 1931 -0.001607379 -0.175566138 0.172351381 -0.105241887 0.102027130 < [53,] 1932 0.010546686 -0.171772831 0.192866204 -0.098068675 0.119162048 < [54,] 1933 0.022700751 -0.168460244 0.213861747 -0.091181848 0.136583351 < [55,] 1934 0.034854816 -0.165564766 0.235274399 -0.084543511 0.154253144 < [56,] 1935 0.047008881 -0.163031246 0.257049009 -0.078120807 0.172138570 < [57,] 1936 0.059162946 -0.160812199 0.279138092 -0.071885448 0.190211340 < [58,] 1937 0.054383856 -0.155656272 0.264423984 -0.070745832 0.179513544 < [59,] 1938 0.049604765 -0.150814817 0.250024348 -0.069793562 0.169003093 < [60,] 1939 0.044825675 -0.146335320 0.235986670 -0.069056925 0.158708275 < [61,] 1940 0.040046585 -0.142272933 0.222366102 -0.068568777 0.148661946 < [62,] 1941 0.035267494 -0.138691265 0.209226254 -0.068367014 0.138902002 < [63,] 1942 0.030488404 -0.135662903 0.196639710 -0.068494879 0.129471686 < [64,] 1943 0.025709313 -0.133269386 0.184688012 -0.069000947 0.120419573 < [65,] 1944 0.020930223 -0.131600299 0.173460744 -0.069938588 0.111799033 < [66,] 1945 0.016151132 -0.130751068 0.163053332 -0.071364652 0.103666917 < [67,] 1946 0.011372042 -0.130819083 0.153563167 -0.073337158 0.096081242 < [68,] 1947 0.006592951 -0.131897983 0.145083886 -0.075911890 0.089097793 < [69,] 1948 0.001813861 -0.134070373 0.137698095 -0.079138060 0.082765782 < [70,] 1949 -0.002965230 -0.137399877 0.131469418 -0.083053571 0.077123112 < [71,] 1950 -0.007744320 -0.141924001 0.126435361 -0.087680768 0.072192128 < [72,] 1951 -0.012523410 -0.147649510 0.122602689 -0.093023679 0.067976858 < [73,] 1952 -0.017302501 -0.154551551 0.119946549 -0.099067500 0.064462498 < [74,] 1953 -0.022081591 -0.162576801 0.118413618 -0.105780463 0.061617281 < [75,] 1954 -0.026860682 -0.171649733 0.117928369 -0.113117575 0.059396211 < [76,] 1955 -0.031639772 -0.181680427 0.118400882 -0.121025265 0.057745721 < [77,] 1956 -0.036418863 -0.192572281 0.119734555 -0.129445984 0.056608259 < [78,] 1957 -0.041197953 -0.204228457 0.121832550 -0.138322042 0.055926136 < [79,] 1958 -0.045977044 -0.216556537 0.124602449 -0.147598382 0.055644294 < [80,] 1959 -0.050756134 -0.229471397 0.127959128 -0.157224290 0.055712022 < [81,] 1960 -0.055535225 -0.242896613 0.131826164 -0.167154239 0.056083790 < [82,] 1961 -0.060314315 -0.256764812 0.136136182 -0.177348092 0.056719462 < [83,] 1962 -0.065093405 -0.271017346 0.140830535 -0.187770909 0.057584098 < [84,] 1963 -0.069872496 -0.285603587 0.145858595 -0.198392529 0.058647537 < [85,] 1964 -0.074651586 -0.300480064 0.151176891 -0.209187055 0.059883882 < [86,] 1965 -0.060832745 -0.275012124 0.153346634 -0.188428358 0.066762869 < [87,] 1966 -0.047013903 -0.250067729 0.156039922 -0.167981559 0.073953753 < [88,] 1967 -0.033195062 -0.225737656 0.159347533 -0.147900737 0.081510614 < [89,] 1968 -0.019376220 -0.202127937 0.163375497 -0.128249061 0.089496621 < [90,] 1969 -0.005557378 -0.179360353 0.168245596 -0.109099079 0.097984322 < [91,] 1970 0.008261463 -0.157571293 0.174094219 -0.090532045 0.107054971 < [92,] 1971 0.022080305 -0.136907986 0.181068596 -0.072635669 0.116796279 < [93,] 1972 0.035899146 -0.117521176 0.189319469 -0.055499756 0.127298049 < [94,] 1973 0.049717988 -0.099553773 0.198989749 -0.039209443 0.138645419 < [95,] 1974 0.063536830 -0.083126277 0.210199936 -0.023836517 0.150910176 < [96,] 1975 0.077355671 -0.068321437 0.223032779 -0.009430275 0.164141617 < [97,] 1976 0.091174513 -0.055172054 0.237521080 0.003989742 0.178359283 < [98,] 1977 0.104993354 -0.043655763 0.253642472 0.016436858 0.193549851 < [99,] 1978 0.118812196 -0.033698615 0.271323007 0.027955127 0.209669265 < [100,] 1979 0.132631038 -0.025186198 0.290448273 0.038612710 0.226649365 < [101,] 1980 0.146449879 -0.017978697 0.310878456 0.048492899 0.244406859 < [102,] 1981 0.160268721 -0.011925874 0.332463316 0.057685199 0.262852243 < [103,] 1982 0.174087562 -0.006879134 0.355054259 0.066278133 0.281896992 < [104,] 1983 0.187906404 -0.002699621 0.378512429 0.074354424 0.301458384 < [105,] 1984 0.201725246 0.000737403 0.402713088 0.081988382 0.321462109 < [106,] 1985 0.215544087 0.003540988 0.427547186 0.089244975 0.341843199 < [107,] 1986 0.229362929 0.005804749 0.452921108 0.096179971 0.362545886 < [108,] 1987 0.243181770 0.007608108 0.478755433 0.102840688 0.383522853 < [109,] 1988 0.257000612 0.009017980 0.504983244 0.109266987 0.404734237 < [110,] 1989 0.270819454 0.010090540 0.531548367 0.115492336 0.426146571 < [111,] 1990 0.284638295 0.010872901 0.558403689 0.121544800 0.447731790 < [112,] 1991 0.298457137 0.011404596 0.585509677 0.127447933 0.469466340 < [113,] 1992 0.312275978 0.011718869 0.612833087 0.133221539 0.491330418 --- > [1,] 1880 -0.257692308 -3.867500e-01 -0.128634653 -0.340734568 -0.174650048 > [2,] 1881 -0.250769231 -3.767293e-01 -0.124809149 -0.331818355 -0.169720107 > [3,] 1882 -0.243846154 -3.667351e-01 -0.120957249 -0.322919126 -0.164773181 > [4,] 1883 -0.236923077 -3.567692e-01 -0.117076923 -0.314038189 -0.159807965 > [5,] 1884 -0.230000000 -3.468340e-01 -0.113165951 -0.305176970 -0.154823030 > [6,] 1885 -0.223076923 -3.369319e-01 -0.109221900 -0.296337036 -0.149816810 > [7,] 1886 -0.216153846 -3.270656e-01 -0.105242105 -0.287520102 -0.144787590 > [8,] 1887 -0.209230769 -3.172379e-01 -0.101223643 -0.278728048 -0.139733491 > [9,] 1888 -0.202307692 -3.074521e-01 -0.097163311 -0.269962936 -0.134652449 > [10,] 1889 -0.195384615 -2.977116e-01 -0.093057593 -0.261227027 -0.129542204 > [11,] 1890 -0.188461539 -2.880204e-01 -0.088902637 -0.252522800 -0.124400277 > [12,] 1891 -0.181538462 -2.783827e-01 -0.084694220 -0.243852973 -0.119223950 > [13,] 1892 -0.174615385 -2.688030e-01 -0.080427720 -0.235220519 -0.114010250 > [14,] 1893 -0.167692308 -2.592865e-01 -0.076098083 -0.226628691 -0.108755924 > [15,] 1894 -0.160769231 -2.498387e-01 -0.071699793 -0.218081038 -0.103457424 > [16,] 1895 -0.153846154 -2.404655e-01 -0.067226847 -0.209581422 -0.098110886 > [17,] 1896 -0.146923077 -2.311734e-01 -0.062672732 -0.201134035 -0.092712119 > [18,] 1897 -0.140000000 -2.219696e-01 -0.058030409 -0.192743405 -0.087256595 > [19,] 1898 -0.133076923 -2.128615e-01 -0.053292314 -0.184414399 -0.081739447 > [20,] 1899 -0.126153846 -2.038573e-01 -0.048450366 -0.176152218 -0.076155475 > [21,] 1900 -0.119230769 -1.949655e-01 -0.043496005 -0.167962369 -0.070499170 > [22,] 1901 -0.112307692 -1.861951e-01 -0.038420244 -0.159850635 -0.064764750 > [23,] 1902 -0.105384615 -1.775555e-01 -0.033213760 -0.151823015 -0.058946216 > [24,] 1903 -0.098461539 -1.690561e-01 -0.027867017 -0.143885645 -0.053037432 > [25,] 1904 -0.091538462 -1.607065e-01 -0.022370423 -0.136044696 -0.047032227 > [26,] 1905 -0.084615385 -1.525162e-01 -0.016714535 -0.128306245 -0.040924524 > [27,] 1906 -0.077692308 -1.444943e-01 -0.010890287 -0.120676126 -0.034708490 > [28,] 1907 -0.070769231 -1.366492e-01 -0.004889253 -0.113159760 -0.028378702 > [29,] 1908 -0.063846154 -1.289884e-01 0.001296074 -0.105761977 -0.021930331 > [30,] 1909 -0.056923077 -1.215182e-01 0.007672008 -0.098486840 -0.015359314 > [31,] 1910 -0.050000000 -1.142434e-01 0.014243419 -0.091337484 -0.008662516 > [32,] 1911 -0.043076923 -1.071674e-01 0.021013527 -0.084315978 -0.001837868 > [33,] 1912 -0.036153846 -1.002914e-01 0.027983751 -0.077423239 0.005115546 > [34,] 1913 -0.029230769 -9.361519e-02 0.035153653 -0.070658982 0.012197443 > [35,] 1914 -0.022307692 -8.713634e-02 0.042520952 -0.064021740 0.019406355 > [36,] 1915 -0.015384615 -8.085086e-02 0.050081630 -0.057508928 0.026739697 > [37,] 1916 -0.008461538 -7.475318e-02 0.057830107 -0.051116955 0.034193878 > [38,] 1917 -0.001538462 -6.883640e-02 0.065759473 -0.044841376 0.041764453 > [39,] 1918 0.005384615 -6.309252e-02 0.073861755 -0.038677059 0.049446290 > [40,] 1919 0.012307692 -5.751281e-02 0.082128191 -0.032618368 0.057233753 > [41,] 1920 0.019230769 -5.208797e-02 0.090549507 -0.026659334 0.065120873 > [42,] 1921 0.026153846 -4.680847e-02 0.099116161 -0.020793819 0.073101511 > [43,] 1922 0.033076923 -4.166472e-02 0.107818567 -0.015015652 0.081169499 > [44,] 1923 0.040000000 -3.664727e-02 0.116647271 -0.009318753 0.089318753 > [45,] 1924 0.046923077 -3.174694e-02 0.125593095 -0.003697214 0.097543368 > [46,] 1925 0.053846154 -2.695494e-02 0.134647244 0.001854623 0.105837685 > [47,] 1926 0.060769231 -2.226292e-02 0.143801377 0.007342124 0.114196337 > [48,] 1927 0.067692308 -1.766304e-02 0.153047656 0.012770335 0.122614280 > [49,] 1928 0.074615385 -1.314799e-02 0.162378762 0.018143964 0.131086806 > [50,] 1929 0.081538462 -8.710982e-03 0.171787905 0.023467379 0.139609544 > [51,] 1930 0.088461538 -4.345738e-03 0.181268815 0.028744616 0.148178461 > [52,] 1931 0.095384615 -4.649065e-05 0.190815721 0.033979388 0.156789843 > [53,] 1932 0.102307692 4.192055e-03 0.200423329 0.039175101 0.165440284 > [54,] 1933 0.109230769 8.374747e-03 0.210086792 0.044334874 0.174126664 > [55,] 1934 0.116153846 1.250601e-02 0.219801679 0.049461559 0.182846134 > [56,] 1935 0.123076923 1.658990e-02 0.229563945 0.054557757 0.191596090 > [57,] 1936 0.130000000 2.063010e-02 0.239369902 0.059625842 0.200374158 > [58,] 1937 0.130000000 2.554264e-02 0.234457361 0.062786820 0.197213180 > [59,] 1938 0.130000000 3.023953e-02 0.229760466 0.065809042 0.194190958 > [60,] 1939 0.130000000 3.468890e-02 0.225311102 0.068671989 0.191328011 > [61,] 1940 0.130000000 3.885447e-02 0.221145527 0.071352331 0.188647669 > [62,] 1941 0.130000000 4.269563e-02 0.217304372 0.073823926 0.186176074 > [63,] 1942 0.130000000 4.616776e-02 0.213832244 0.076058070 0.183941930 > [64,] 1943 0.130000000 4.922326e-02 0.210776742 0.078024136 0.181975864 > [65,] 1944 0.130000000 5.181327e-02 0.208186727 0.079690683 0.180309317 > [66,] 1945 0.130000000 5.389026e-02 0.206109736 0.081027125 0.178972875 > [67,] 1946 0.130000000 5.541136e-02 0.204588637 0.082005877 0.177994123 > [68,] 1947 0.130000000 5.634212e-02 0.203657879 0.082604774 0.177395226 > [69,] 1948 0.130000000 5.666006e-02 0.203339939 0.082809352 0.177190648 > [70,] 1949 0.130000000 5.635724e-02 0.203642757 0.082614504 0.177385496 > [71,] 1950 0.130000000 5.544123e-02 0.204558768 0.082025096 0.177974904 > [72,] 1951 0.130000000 5.393418e-02 0.206065824 0.081055380 0.178944620 > [73,] 1952 0.130000000 5.187027e-02 0.208129729 0.079727358 0.180272642 > [74,] 1953 0.130000000 4.929223e-02 0.210707774 0.078068513 0.181931487 > [75,] 1954 0.130000000 4.624751e-02 0.213752495 0.076109385 0.183890615 > [76,] 1955 0.130000000 4.278497e-02 0.217215029 0.073881414 0.186118586 > [77,] 1956 0.130000000 3.895228e-02 0.221047722 0.071415265 0.188584735 > [78,] 1957 0.130000000 3.479412e-02 0.225205878 0.068739695 0.191260305 > [79,] 1958 0.130000000 3.035124e-02 0.229648764 0.065880916 0.194119084 > [80,] 1959 0.130000000 2.565999e-02 0.234340014 0.062862328 0.197137672 > [81,] 1960 0.130000000 2.075236e-02 0.239247637 0.059704514 0.200295486 > [82,] 1961 0.130000000 1.565622e-02 0.244343776 0.056425398 0.203574602 > [83,] 1962 0.130000000 1.039566e-02 0.249604337 0.053040486 0.206959514 > [84,] 1963 0.130000000 4.991436e-03 0.255008564 0.049563131 0.210436869 > [85,] 1964 0.130000000 -5.386147e-04 0.260538615 0.046004815 0.213995185 > [86,] 1965 0.143076923 1.926909e-02 0.266884757 0.063412665 0.222741181 > [87,] 1966 0.156153846 3.876772e-02 0.273539971 0.080621643 0.231686050 > [88,] 1967 0.169230769 5.790379e-02 0.280557753 0.097597325 0.240864213 > [89,] 1968 0.182307692 7.661491e-02 0.288000479 0.114299577 0.250315807 > [90,] 1969 0.195384615 9.482963e-02 0.295939602 0.130682422 0.260086809 > [91,] 1970 0.208461538 1.124682e-01 0.304454863 0.146694551 0.270228526 > [92,] 1971 0.221538461 1.294450e-01 0.313631914 0.162280850 0.280796073 > [93,] 1972 0.234615385 1.456729e-01 0.323557850 0.177385278 0.291845491 > [94,] 1973 0.247692308 1.610702e-01 0.334314435 0.191955225 0.303429390 > [95,] 1974 0.260769231 1.755689e-01 0.345969561 0.205947004 0.315591457 > [96,] 1975 0.273846154 1.891238e-01 0.358568478 0.219331501 0.328360807 > [97,] 1976 0.286923077 2.017191e-01 0.372127073 0.232098492 0.341747662 > [98,] 1977 0.300000000 2.133707e-01 0.386629338 0.244258277 0.355741722 > [99,] 1978 0.313076923 2.241239e-01 0.402029922 0.255840039 0.370313807 > [100,] 1979 0.326153846 2.340468e-01 0.418260863 0.266887506 0.385420186 > [101,] 1980 0.339230769 2.432212e-01 0.435240360 0.277453314 0.401008224 > [102,] 1981 0.352307692 2.517341e-01 0.452881314 0.287593508 0.417021876 > [103,] 1982 0.365384615 2.596711e-01 0.471098085 0.297363192 0.433406039 > [104,] 1983 0.378461538 2.671121e-01 0.489810964 0.306813654 0.450109423 > [105,] 1984 0.391538461 2.741284e-01 0.508948530 0.315990851 0.467086072 > [106,] 1985 0.404615384 2.807823e-01 0.528448443 0.324934896 0.484295873 > [107,] 1986 0.417692308 2.871274e-01 0.548257238 0.333680190 0.501704425 > [108,] 1987 0.430769231 2.932089e-01 0.568329576 0.342255907 0.519282554 > [109,] 1988 0.443846154 2.990650e-01 0.588627259 0.350686626 0.537005682 > [110,] 1989 0.456923077 3.047279e-01 0.609118218 0.358992981 0.554853173 > [111,] 1990 0.470000000 3.102244e-01 0.629775550 0.367192284 0.572807716 > [112,] 1991 0.483076923 3.155772e-01 0.650576667 0.375299067 0.590854778 > [113,] 1992 0.496153846 3.208051e-01 0.671502569 0.383325558 0.608982134 478,480d444 < Warning message: < In cobs(year, temp, knots.add = TRUE, degree = 1, constraint = "none", : < drqssbc2(): Not all flags are normal (== 1), ifl : 22 490,492d453 < Warning message: < In cobs(year, temp, nknots = 9, knots.add = TRUE, degree = 1, constraint = "none", : < drqssbc2(): Not all flags are normal (== 1), ifl : 22 496,499d456 < < **** ERROR in algorithm: ifl = 22 < < 502,503c459,460 < coef[1:5]: -0.39324840, -0.28115087, 0.05916295, -0.07465159, 0.31227753 < R^2 = 73.22% ; empirical tau (over all): 63/113 = 0.5575221 (target tau= 0.5) --- > coef[1:5]: -0.40655906, -0.31473700, 0.05651823, -0.05681818, 0.28681956 > R^2 = 72.56% ; empirical tau (over all): 54/113 = 0.4778761 (target tau= 0.5) 509,512d465 < < **** ERROR in algorithm: ifl = 22 < < 515,517d467 < Warning message: < In cobs(year, temp, nknots = length(a50$knots), knots = a50$knot, : < drqssbc2(): Not all flags are normal (== 1), ifl : 22 522,525d471 < < **** ERROR in algorithm: ifl = 22 < < 528,530d473 < Warning message: < In cobs(year, temp, nknots = length(a50$knots), knots = a50$knot, : < drqssbc2(): Not all flags are normal (== 1), ifl : 22 532,534c475 < [1] 1 2 9 10 17 18 20 21 22 23 26 27 35 36 42 47 48 49 52 < [20] 53 58 59 61 62 63 64 65 68 73 74 78 79 80 81 82 83 84 88 < [39] 90 91 94 98 100 101 102 104 108 109 111 112 --- > [1] 10 18 21 22 47 61 68 74 78 79 102 111 536,539c477 < [1] 3 4 5 6 7 8 11 12 13 14 15 16 19 24 25 28 29 30 31 < [20] 32 33 34 37 38 39 40 41 43 44 45 46 50 51 54 55 56 57 60 < [39] 66 67 69 70 71 72 75 76 77 85 86 87 89 92 93 95 96 97 99 < [58] 103 105 106 107 110 113 --- > [1] 5 8 25 38 39 50 54 77 85 97 113 Running ‘wind.R’ [4s/5s] Running the tests in ‘tests/ex1.R’ failed. Complete output: > #### OOps! Running this in 'CMD check' or in *R* __for the first time__ > #### ===== gives a wrong result (at the end) than when run a 2nd time > ####-- problem disappears with introduction of if (psw) call ... in Fortran > > suppressMessages(library(cobs)) > options(digits = 6) > if(!dev.interactive(orNone=TRUE)) pdf("ex1.pdf") > > source(system.file("util.R", package = "cobs")) > > ## Simple example from example(cobs) > set.seed(908) > x <- seq(-1,1, len = 50) > f.true <- pnorm(2*x) > y <- f.true + rnorm(50)/10 > ## specify constraints (boundary conditions) > con <- rbind(c( 1,min(x),0), + c(-1,max(x),1), + c( 0, 0, 0.5)) > ## obtain the median *regression* B-spline using automatically selected knots > coR <- cobs(x,y,constraint = "increase", pointwise = con) qbsks2(): Performing general knot selection ... Deleting unnecessary knots ... > summaryCobs(coR) List of 24 $ call : language cobs(x = x, y = y, constraint = "increase", pointwise = con) $ tau : num 0.5 $ degree : num 2 $ constraint : chr "increase" $ ic : chr "AIC" $ pointwise : num [1:3, 1:3] 1 -1 0 -1 1 0 0 1 0.5 $ select.knots : logi TRUE $ select.lambda: logi FALSE $ x : num [1:50] -1 -0.959 -0.918 -0.878 -0.837 ... $ y : num [1:50] 0.2254 0.0916 0.0803 -0.0272 -0.0454 ... $ resid : num [1:50] 0.1976 0.063 0.0491 -0.0626 -0.0868 ... $ fitted : num [1:50] 0.0278 0.0287 0.0312 0.0354 0.0414 ... $ coef : num [1:4] 0.0278 0.0278 0.8154 1 $ knots : num [1:3] -1 -0.224 1 $ k0 : num 4 $ k : num 4 $ x.ps :Formal class 'matrix.csr' [package "SparseM"] with 4 slots $ SSy : num 6.19 $ lambda : num 0 $ icyc : int 7 $ ifl : int 1 $ pp.lambda : NULL $ pp.sic : NULL $ i.mask : NULL cb.lo ci.lo fit ci.up cb.up 1 -6.77514e-02 -0.029701622 0.0278152 0.0853320 0.123382 2 -6.41787e-02 -0.027468888 0.0280224 0.0835138 0.120224 3 -6.04433e-02 -0.024973163 0.0286442 0.0822615 0.117732 4 -5.65412e-02 -0.022212175 0.0296803 0.0815728 0.115902 5 -5.24674e-02 -0.019182756 0.0311310 0.0814447 0.114729 6 -4.82149e-02 -0.015880775 0.0329961 0.0818729 0.114207 7 -4.37751e-02 -0.012301110 0.0352757 0.0828524 0.114326 8 -3.91381e-02 -0.008437641 0.0379697 0.0843771 0.115077 9 -3.42918e-02 -0.004283290 0.0410782 0.0864397 0.116448 10 -2.92233e-02 0.000169901 0.0446012 0.0890325 0.118426 11 -2.39179e-02 0.004930665 0.0485387 0.0921467 0.120995 12 -1.83600e-02 0.010008360 0.0528906 0.0957728 0.124141 13 -1.25335e-02 0.015412811 0.0576570 0.0999012 0.127847 14 -6.42140e-03 0.021154129 0.0628378 0.1045216 0.132097 15 -6.81378e-06 0.027242531 0.0684332 0.1096238 0.136873 16 6.72715e-03 0.033688168 0.0744430 0.1151978 0.142159 17 1.37970e-02 0.040500961 0.0808672 0.1212335 0.147938 18 2.12185e-02 0.047690461 0.0877060 0.1277215 0.154193 19 2.90068e-02 0.055265726 0.0949592 0.1346527 0.160912 20 3.71760e-02 0.063235225 0.1026269 0.1420185 0.168078 21 4.57390e-02 0.071606758 0.1107090 0.1498113 0.175679 22 5.47075e-02 0.080387396 0.1192056 0.1580238 0.183704 23 6.40921e-02 0.089583438 0.1281167 0.1666500 0.192141 24 7.39018e-02 0.099200377 0.1374422 0.1756841 0.200983 25 8.41444e-02 0.109242876 0.1471823 0.1851216 0.210220 26 9.48262e-02 0.119714746 0.1573367 0.1949588 0.219847 27 1.05952e-01 0.130618921 0.1679057 0.2051925 0.229859 28 1.17526e-01 0.141957438 0.1788891 0.2158208 0.240253 29 1.29548e-01 0.153731401 0.1902870 0.2268426 0.251026 30 1.42021e-01 0.165940947 0.2020994 0.2382578 0.262178 31 1.54941e-01 0.178585191 0.2143262 0.2500672 0.273711 32 1.68306e-01 0.191662165 0.2269675 0.2622729 0.285629 33 1.82111e-01 0.205168744 0.2400233 0.2748778 0.297936 34 1.96348e-01 0.219100556 0.2534935 0.2878865 0.310639 35 2.11008e-01 0.233451886 0.2673782 0.3013046 0.323748 36 2.26079e-01 0.248215565 0.2816774 0.3151392 0.337276 37 2.41547e-01 0.263382876 0.2963910 0.3293992 0.351235 38 2.57393e-01 0.278943451 0.3115191 0.3440948 0.365645 39 2.73599e-01 0.294885220 0.3270617 0.3592382 0.380524 40 2.90023e-01 0.311080514 0.3429107 0.3747410 0.395798 41 3.06194e-01 0.327075735 0.3586411 0.3902065 0.411088 42 3.22074e-01 0.342831649 0.3742095 0.4055873 0.426345 43 3.37676e-01 0.358355597 0.3896158 0.4208761 0.441556 44 3.53012e-01 0.373655096 0.4048602 0.4360653 0.456709 45 3.68094e-01 0.388737688 0.4199426 0.4511475 0.471791 46 3.82936e-01 0.403610792 0.4348630 0.4661151 0.486790 47 3.97549e-01 0.418281590 0.4496214 0.4809611 0.501694 48 4.11944e-01 0.432756923 0.4642177 0.4956786 0.516491 49 4.26133e-01 0.447043216 0.4786521 0.5102611 0.531172 50 4.40124e-01 0.461146429 0.4929245 0.5247027 0.545725 51 4.53927e-01 0.475072016 0.5070350 0.5389979 0.560143 52 4.67551e-01 0.488824911 0.5209834 0.5531418 0.574416 53 4.81002e-01 0.502409521 0.5347698 0.5671300 0.588538 54 4.94287e-01 0.515829730 0.5483942 0.5809587 0.602501 55 5.07412e-01 0.529088909 0.5618566 0.5946243 0.616302 56 5.20381e-01 0.542189933 0.5751571 0.6081242 0.629933 57 5.33198e-01 0.555135196 0.5882955 0.6214558 0.643393 58 5.45867e-01 0.567926630 0.6012719 0.6346172 0.656677 59 5.58390e-01 0.580565721 0.6140864 0.6476070 0.669782 60 5.70769e-01 0.593053527 0.6267388 0.6604241 0.682708 61 5.83005e-01 0.605390690 0.6392293 0.6730679 0.695454 62 5.95098e-01 0.617577451 0.6515577 0.6855380 0.708017 63 6.07048e-01 0.629613656 0.6637242 0.6978347 0.720400 64 6.18854e-01 0.641498766 0.6757287 0.7099586 0.732603 65 6.30515e-01 0.653231865 0.6875711 0.7219104 0.744627 66 6.42028e-01 0.664811658 0.6992516 0.7336916 0.756475 67 6.53391e-01 0.676236478 0.7107701 0.7453037 0.768149 68 6.64600e-01 0.687504287 0.7221266 0.7567489 0.779653 69 6.75652e-01 0.698612675 0.7333211 0.7680295 0.790991 70 6.86541e-01 0.709558867 0.7443536 0.7791483 0.802166 71 6.97262e-01 0.720339721 0.7552241 0.7901084 0.813186 72 7.07810e-01 0.730951740 0.7659326 0.8009134 0.824055 73 7.18179e-01 0.741391078 0.7764791 0.8115671 0.834779 74 7.28361e-01 0.751653555 0.7868636 0.8220736 0.845367 75 7.38348e-01 0.761734678 0.7970861 0.8324375 0.855824 76 7.48134e-01 0.771629669 0.8071466 0.8426636 0.866160 77 7.57709e-01 0.781333498 0.8170452 0.8527568 0.876382 78 7.67065e-01 0.790840929 0.8267817 0.8627224 0.886499 79 7.76192e-01 0.800146569 0.8363562 0.8725659 0.896520 80 7.85083e-01 0.809244928 0.8457688 0.8822926 0.906455 81 7.93727e-01 0.818130488 0.8550193 0.8919081 0.916312 82 8.02116e-01 0.826797774 0.8641079 0.9014179 0.926100 83 8.10240e-01 0.835241429 0.8730344 0.9108274 0.935829 84 8.18091e-01 0.843456291 0.8817990 0.9201417 0.945507 85 8.25661e-01 0.851437463 0.8904015 0.9293656 0.955142 86 8.32942e-01 0.859180385 0.8988421 0.9385038 0.964742 87 8.39928e-01 0.866680887 0.9071207 0.9475605 0.974313 88 8.46612e-01 0.873935236 0.9152373 0.9565393 0.983862 89 8.52989e-01 0.880940170 0.9231918 0.9654435 0.993395 90 8.59054e-01 0.887692913 0.9309844 0.9742760 1.002915 91 8.64803e-01 0.894191180 0.9386150 0.9830389 1.012427 92 8.70233e-01 0.900433167 0.9460836 0.9917341 1.021934 93 8.75343e-01 0.906417527 0.9533902 1.0003629 1.031437 94 8.80130e-01 0.912143340 0.9605348 1.0089263 1.040939 95 8.84594e-01 0.917610075 0.9675174 1.0174248 1.050441 96 8.88735e-01 0.922817542 0.9743381 1.0258586 1.059942 97 8.92551e-01 0.927765853 0.9809967 1.0342275 1.069442 98 8.96045e-01 0.932455371 0.9874933 1.0425312 1.078941 99 8.99218e-01 0.936886669 0.9938279 1.0507692 1.088438 100 9.02069e-01 0.941060487 1.0000006 1.0589406 1.097932 knots : [1] -1.00000 -0.22449 1.00000 coef : [1] 0.0278152 0.0278152 0.8153868 1.0000006 > coR1 <- cobs(x,y,constraint = "increase", pointwise = con, degree = 1) qbsks2(): Performing general knot selection ... Deleting unnecessary knots ... > summary(coR1) COBS regression spline (degree = 1) from call: cobs(x = x, y = y, constraint = "increase", degree = 1, pointwise = con) {tau=0.5}-quantile; dimensionality of fit: 4 from {4} x$knots[1:4]: -1.000002, -0.632653, 0.183673, 1.000002 with 3 pointwise constraints coef[1:4]: 0.0504467, 0.0504467, 0.6305155, 1.0000009 R^2 = 93.83% ; empirical tau (over all): 21/50 = 0.42 (target tau= 0.5) > > ## compute the median *smoothing* B-spline using automatically chosen lambda > coS <- cobs(x,y,constraint = "increase", pointwise = con, + lambda = -1, trace = 3) Searching for optimal lambda. This may take a while. While you are waiting, here is something you can consider to speed up the process: (a) Use a smaller number of knots; (b) Set lambda==0 to exclude the penalty term; (c) Use a coarser grid by reducing the argument 'lambda.length' from the default value of 25. loo.design2(): -> Xeq 51 x 22 (nz = 151 =^= 0.13%) Xieq 62 x 22 (nz = 224 =^= 0.16%) ........................ The algorithm has converged. You might plot() the returned object (which plots 'sic' against 'lambda') to see if you have found the global minimum of the information criterion so that you can determine if you need to adjust any or all of 'lambda.lo', 'lambda.hi' and 'lambda.length' and refit the model. > with(coS, cbind(pp.lambda, pp.sic, k0, ifl, icyc)) pp.lambda pp.sic k0 ifl icyc [1,] 3.54019e-05 -2.64644 22 1 21 [2,] 6.92936e-05 -2.64644 22 1 21 [3,] 1.35631e-04 -2.64644 22 1 20 [4,] 2.65477e-04 -2.64644 22 1 22 [5,] 5.19629e-04 -2.64644 22 1 22 [6,] 1.01709e-03 -2.64644 22 1 23 [7,] 1.99080e-03 -2.68274 21 1 20 [8,] 3.89667e-03 -2.75212 19 1 18 [9,] 7.62711e-03 -2.73932 19 1 14 [10,] 1.49289e-02 -2.85261 16 1 13 [11,] 2.92209e-02 -2.97873 12 1 12 [12,] 5.71953e-02 -3.01058 11 1 12 [13,] 1.11951e-01 -3.04364 10 1 11 [14,] 2.19126e-01 -3.11242 8 1 12 [15,] 4.28904e-01 -3.17913 6 1 12 [16,] 8.39512e-01 -3.18824 5 1 11 [17,] 1.64321e+00 -3.01467 5 1 12 [18,] 3.21633e+00 -3.01380 4 1 11 [19,] 6.29545e+00 -3.01380 4 1 10 [20,] 1.23223e+01 -3.01380 4 1 11 [21,] 2.41190e+01 -3.01380 4 1 11 [22,] 4.72092e+01 -3.01380 4 1 10 [23,] 9.24046e+01 -3.01380 4 1 10 [24,] 1.80867e+02 -3.01380 4 1 10 [25,] 3.54019e+02 -3.01380 4 1 10 > with(coS, plot(pp.sic ~ pp.lambda, type = "b", log = "x", col=2, + main = deparse(call))) > ##-> very nice minimum close to 1 > > summaryCobs(coS) List of 24 $ call : language cobs(x = x, y = y, constraint = "increase", lambda = -1, pointwise = con, trace = 3) $ tau : num 0.5 $ degree : num 2 $ constraint : chr "increase" $ ic : NULL $ pointwise : num [1:3, 1:3] 1 -1 0 -1 1 0 0 1 0.5 $ select.knots : logi TRUE $ select.lambda: logi TRUE $ x : num [1:50] -1 -0.959 -0.918 -0.878 -0.837 ... $ y : num [1:50] 0.2254 0.0916 0.0803 -0.0272 -0.0454 ... $ resid : num [1:50] 0.2254 0.0829 0.062 -0.0562 -0.0862 ... $ fitted : num [1:50] 0 0.00869 0.01837 0.02906 0.04075 ... $ coef : num [1:22] 0 0.00819 0.03365 0.06662 0.10458 ... $ knots : num [1:20] -1 -0.918 -0.796 -0.714 -0.592 ... $ k0 : int [1:25] 22 22 22 22 22 22 21 19 19 16 ... $ k : int 5 $ x.ps :Formal class 'matrix.csr' [package "SparseM"] with 4 slots $ SSy : num 6.19 $ lambda : Named num 0.84 ..- attr(*, "names")= chr "lambda" $ icyc : int [1:25] 21 21 20 22 22 23 20 18 14 13 ... $ ifl : int [1:25] 1 1 1 1 1 1 1 1 1 1 ... $ pp.lambda : num [1:25] 0 0 0 0 0.001 0.001 0.002 0.004 0.008 0.015 ... $ pp.sic : num [1:25] -2.65 -2.65 -2.65 -2.65 -2.65 ... $ i.mask : logi [1:25] TRUE TRUE TRUE TRUE TRUE TRUE ... cb.lo ci.lo fit ci.up cb.up 1 -0.07071332 -0.03907635 -3.77249e-07 0.0390756 0.0707126 2 -0.06555125 -0.03435600 4.17438e-03 0.0427048 0.0739000 3 -0.06016465 -0.02940203 8.59400e-03 0.0465900 0.0773526 4 -0.05455349 -0.02421442 1.32585e-02 0.0507314 0.0810704 5 -0.04871809 -0.01879334 1.81678e-02 0.0551289 0.0850537 6 -0.04265897 -0.01313909 2.33220e-02 0.0597831 0.0893029 7 -0.03637554 -0.00725134 2.87210e-02 0.0646934 0.0938176 8 -0.02986704 -0.00112966 3.43649e-02 0.0698595 0.0985969 9 -0.02313305 0.00522618 4.02537e-02 0.0752812 0.1036404 10 -0.01617351 0.01181620 4.63873e-02 0.0809584 0.1089481 11 -0.00898880 0.01864020 5.27658e-02 0.0868914 0.1145204 12 -0.00157983 0.02569768 5.93891e-02 0.0930806 0.1203581 13 0.00605308 0.03298846 6.62573e-02 0.0995262 0.1264615 14 0.01391000 0.04051257 7.33704e-02 0.1062282 0.1328307 15 0.02199057 0.04826981 8.07283e-02 0.1131867 0.1394660 16 0.03029461 0.05626010 8.83310e-02 0.1204020 0.1463675 17 0.03882336 0.06448412 9.61787e-02 0.1278732 0.1535339 18 0.04757769 0.07294234 1.04271e-01 0.1355999 0.1609646 19 0.05655804 0.08163500 1.12608e-01 0.1435819 0.1686589 20 0.06576441 0.09056212 1.21191e-01 0.1518192 0.1766169 21 0.07519637 0.09972344 1.30018e-01 0.1603120 0.1848391 22 0.08485262 0.10911826 1.39090e-01 0.1690610 0.1933266 23 0.09473211 0.11874598 1.48406e-01 0.1780668 0.2020807 24 0.10483493 0.12860668 1.57968e-01 0.1873294 0.2111011 25 0.11516076 0.13870015 1.67775e-01 0.1968489 0.2203882 26 0.12570956 0.14902638 1.77826e-01 0.2066253 0.2299421 27 0.13648327 0.15958645 1.88122e-01 0.2166576 0.2397608 28 0.14748286 0.17038090 1.98663e-01 0.2269453 0.2498433 29 0.15870881 0.18140998 2.09449e-01 0.2374880 0.2601892 30 0.17016110 0.19267368 2.20480e-01 0.2482859 0.2707984 31 0.18183922 0.20417172 2.31755e-01 0.2593391 0.2816716 32 0.19374227 0.21590361 2.43276e-01 0.2706482 0.2928095 33 0.20587062 0.22786955 2.55041e-01 0.2822129 0.3042118 34 0.21822524 0.24007008 2.67051e-01 0.2940328 0.3158776 35 0.23080666 0.25250549 2.79306e-01 0.3061075 0.3278063 36 0.24361488 0.26517577 2.91806e-01 0.3184370 0.3399979 37 0.25664938 0.27808064 3.04551e-01 0.3310217 0.3524530 38 0.26990862 0.29121926 3.17541e-01 0.3438624 0.3651730 39 0.28339034 0.30459037 3.30775e-01 0.3569602 0.3781603 40 0.29709467 0.31819405 3.44255e-01 0.3703152 0.3914146 41 0.31102144 0.33203019 3.57979e-01 0.3839275 0.4049363 42 0.32517059 0.34609876 3.71948e-01 0.3977971 0.4187252 43 0.33954481 0.36040126 3.86162e-01 0.4119224 0.4327789 44 0.35414537 0.37493839 4.00621e-01 0.4263028 0.4470958 45 0.36897279 0.38971043 4.15324e-01 0.4409381 0.4616757 46 0.38402708 0.40471738 4.30273e-01 0.4558281 0.4765184 47 0.39930767 0.41995895 4.45466e-01 0.4709732 0.4916245 48 0.41479557 0.43541678 4.60887e-01 0.4863568 0.5069780 49 0.43039487 0.45099622 4.76442e-01 0.5018872 0.5224885 50 0.44609197 0.46668362 4.92117e-01 0.5175506 0.5381422 51 0.46188684 0.48247895 5.07913e-01 0.5333471 0.5539392 52 0.47773555 0.49833835 5.23786e-01 0.5492329 0.5698357 53 0.49336687 0.51398935 5.39461e-01 0.5649325 0.5855550 54 0.50873469 0.52938518 5.54891e-01 0.5803975 0.6010480 55 0.52383955 0.54452615 5.70077e-01 0.5956277 0.6163143 56 0.53868141 0.55941225 5.85018e-01 0.6106231 0.6313539 57 0.55325974 0.57404316 5.99714e-01 0.6253839 0.6461673 58 0.56757320 0.58841816 6.14165e-01 0.6399109 0.6607558 59 0.58161907 0.60253574 6.28371e-01 0.6542056 0.6751223 60 0.59539741 0.61639593 6.42332e-01 0.6682680 0.6892665 61 0.60890835 0.62999881 6.56048e-01 0.6820980 0.7031884 62 0.62215175 0.64334429 6.69520e-01 0.6956957 0.7168882 63 0.63512996 0.65643368 6.82747e-01 0.7090597 0.7303634 64 0.64784450 0.66926783 6.95729e-01 0.7221893 0.7436126 65 0.66029589 0.68184700 7.08466e-01 0.7350841 0.7566352 66 0.67248408 0.69417118 7.20958e-01 0.7477442 0.7694313 67 0.68440855 0.70624008 7.33205e-01 0.7601699 0.7820014 68 0.69606829 0.71805313 7.45207e-01 0.7723617 0.7943465 69 0.70746295 0.72961016 7.56965e-01 0.7843198 0.8064670 70 0.71859343 0.74091165 7.68478e-01 0.7960438 0.8183620 71 0.72946023 0.75195789 7.79746e-01 0.8075332 0.8300309 72 0.74006337 0.76274887 7.90769e-01 0.8187883 0.8414738 73 0.75040233 0.77328433 8.01547e-01 0.8298091 0.8526911 74 0.76047612 0.78356369 8.12080e-01 0.8405963 0.8636839 75 0.77028266 0.79358583 8.22368e-01 0.8511510 0.8744542 76 0.77982200 0.80335076 8.32412e-01 0.8614732 0.8850020 77 0.78909446 0.81285866 8.42211e-01 0.8715627 0.8953269 78 0.79809990 0.82210946 8.51765e-01 0.8814196 0.9054292 79 0.80683951 0.83110382 8.61074e-01 0.8910433 0.9153076 80 0.81531459 0.83984244 8.70138e-01 0.9004329 0.9249608 81 0.82352559 0.84832559 8.78957e-01 0.9095884 0.9343884 82 0.83147249 0.85655324 8.87531e-01 0.9185095 0.9435903 83 0.83915483 0.86452515 8.95861e-01 0.9271968 0.9525671 84 0.84657171 0.87224082 9.03946e-01 0.9356505 0.9613196 85 0.85372180 0.87969951 9.11786e-01 0.9438715 0.9698492 86 0.86060525 0.88690131 9.19381e-01 0.9518597 0.9781558 87 0.86722242 0.89384640 9.26731e-01 0.9596149 0.9862389 88 0.87357322 0.90053476 9.33836e-01 0.9671371 0.9940986 89 0.87965804 0.90696658 9.40696e-01 0.9744261 1.0017347 90 0.88547781 0.91314239 9.47312e-01 0.9814814 1.0091460 91 0.89103290 0.91906239 9.53683e-01 0.9883028 1.0163323 92 0.89632328 0.92472655 9.59808e-01 0.9948904 1.0232937 93 0.90134850 0.93013464 9.65689e-01 1.0012443 1.0300304 94 0.90610776 0.93528622 9.71326e-01 1.0073650 1.0365434 95 0.91060065 0.94018104 9.76717e-01 1.0132527 1.0428331 96 0.91482784 0.94481950 9.81863e-01 1.0189071 1.0488987 97 0.91878971 0.94920179 9.86765e-01 1.0243279 1.0547400 98 0.92248624 0.95332789 9.91422e-01 1.0295152 1.0603569 99 0.92591703 0.95719761 9.95833e-01 1.0344692 1.0657498 100 0.92908136 0.96081053 1.00000e+00 1.0391902 1.0709194 knots : [1] -1.0000020 -0.9183673 -0.7959184 -0.7142857 -0.5918367 -0.5102041 [7] -0.3877551 -0.2653061 -0.1836735 -0.0612245 0.0204082 0.1428571 [13] 0.2244898 0.3469388 0.4693878 0.5510204 0.6734694 0.7551020 [19] 0.8775510 1.0000020 coef : [1] -4.01161e-07 8.18714e-03 3.36534e-02 6.66159e-02 1.04576e-01 [6] 1.50032e-01 2.00486e-01 2.70027e-01 3.35473e-01 4.05918e-01 [11] 4.83858e-01 5.64259e-01 6.37163e-01 7.05069e-01 7.77561e-01 [16] 8.30474e-01 8.78390e-01 9.18810e-01 9.54232e-01 9.87743e-01 [21] 1.00000e+00 5.99960e-01 > > plot(x, y, main = "cobs(x,y, constraint=\"increase\", pointwise = *)") > matlines(x, cbind(fitted(coR), fitted(coR1), fitted(coS)), + col = 2:4, lty=1) > > ##-- real data example (still n = 50) > data(cars) > attach(cars) > co1 <- cobs(speed, dist, "increase") qbsks2(): Performing general knot selection ... Deleting unnecessary knots ... > co1.1 <- cobs(speed, dist, "increase", knots.add = TRUE) qbsks2(): Performing general knot selection ... Deleting unnecessary knots ... Searching for missing knots ... > co1.2 <- cobs(speed, dist, "increase", knots.add = TRUE, repeat.delete.add = TRUE) qbsks2(): Performing general knot selection ... Deleting unnecessary knots ... Searching for missing knots ... > ## These three all give the same -- only remaining knots (outermost data): > ic <- which("call" == names(co1)) > stopifnot(all.equal(co1[-ic], co1.1[-ic]), + all.equal(co1[-ic], co1.2[-ic])) > 1 - sum(co1 $ resid ^2) / sum((dist - mean(dist))^2) # R^2 = 64.2% [1] 0.642288 > > co2 <- cobs(speed, dist, "increase", lambda = -1)# 6 warnings Searching for optimal lambda. This may take a while. While you are waiting, here is something you can consider to speed up the process: (a) Use a smaller number of knots; (b) Set lambda==0 to exclude the penalty term; (c) Use a coarser grid by reducing the argument 'lambda.length' from the default value of 25. WARNING: Some lambdas had problems in rq.fit.sfnc(): lambda icyc ifl fidel sum|res|_s k [1,] 2.30776 16 23 250.3 7.5999 11 The algorithm has converged. You might plot() the returned object (which plots 'sic' against 'lambda') to see if you have found the global minimum of the information criterion so that you can determine if you need to adjust any or all of 'lambda.lo', 'lambda.hi' and 'lambda.length' and refit the model. Warning message: In cobs(speed, dist, "increase", lambda = -1) : drqssbc2(): Not all flags are normal (== 1), ifl : 11111111112311111111111111 > summaryCobs(co2) List of 24 $ call : language cobs(x = speed, y = dist, constraint = "increase", lambda = -1) $ tau : num 0.5 $ degree : num 2 $ constraint : chr "increase" $ ic : NULL $ pointwise : NULL $ select.knots : logi TRUE $ select.lambda: logi TRUE $ x : num [1:50] 4 4 7 7 8 9 10 10 10 11 ... $ y : num [1:50] 2 10 4 22 16 10 18 26 34 17 ... $ resid : num [1:50] -4.86 3.14 -9.75 8.25 0 ... $ fitted : num [1:50] 6.86 6.86 13.75 13.75 16 ... $ coef : num [1:20] 6.86 10.37 14.88 17.12 19.55 ... $ knots : num [1:18] 4 7 8 9 10 ... $ k0 : int [1:25] 16 16 16 16 16 16 15 15 14 12 ... $ k : int 3 $ x.ps :Formal class 'matrix.csr' [package "SparseM"] with 4 slots $ SSy : num 32539 $ lambda : Named num 66.3 ..- attr(*, "names")= chr "lambda" $ icyc : int [1:25] 17 17 15 16 16 16 18 16 17 19 ... $ ifl : int [1:25] 1 1 1 1 1 1 1 1 1 1 ... $ pp.lambda : num [1:25] 0 0.01 0.01 0.02 0.04 0.08 0.16 0.31 0.6 1.18 ... $ pp.sic : num [1:25] 2.23 2.23 2.23 2.23 2.23 ... $ i.mask : logi [1:25] TRUE TRUE TRUE TRUE TRUE TRUE ... cb.lo ci.lo fit ci.up cb.up 1 -18.0106902 -9.829675 6.86289 23.5554 31.7365 2 -15.9869427 -8.308682 7.35806 23.0248 30.7031 3 -14.7253903 -7.299595 7.85201 23.0036 30.4294 4 -14.0304377 -6.671152 8.34475 23.3607 30.7199 5 -13.6842238 -6.277147 8.83627 23.9497 31.3568 6 -13.4881973 -5.984332 9.32657 24.6375 32.1413 7 -13.2846859 -5.686895 9.81565 25.3182 32.9160 8 -12.9604500 -5.308840 10.30352 25.9159 33.5675 9 -12.4418513 -4.800750 10.79017 26.3811 34.0222 10 -11.6889866 -4.135844 11.27560 26.6871 34.2402 11 -10.6923973 -3.307777 11.75982 26.8274 34.2120 12 -9.4739641 -2.331232 12.24282 26.8169 33.9596 13 -8.0930597 -1.246053 12.72459 26.6952 33.5422 14 -6.6587120 -0.125409 13.20516 26.5357 33.0690 15 -5.3461743 0.913089 13.68450 26.4559 32.7152 16 -4.3525007 1.737247 14.16278 26.5883 32.6781 17 -3.5579640 2.427497 14.64024 26.8530 32.8385 18 -2.7821201 3.104937 15.11690 27.1289 33.0159 19 -1.9790693 3.800369 15.59275 27.3851 33.1646 20 -1.2507247 4.445431 16.06788 27.6903 33.3865 21 -0.6706167 4.992698 16.54814 28.1036 33.7669 22 -0.0321786 5.581929 17.03697 28.4920 34.1061 23 0.7878208 6.295824 17.53436 28.7729 34.2809 24 1.7680338 7.120056 18.04033 28.9606 34.3126 25 2.7272662 7.933027 18.55487 29.1767 34.3825 26 3.5589282 8.663206 19.07798 29.4928 34.5970 27 4.4415126 9.430376 19.60966 29.7890 34.7778 28 5.4482980 10.283717 20.14992 30.0161 34.8515 29 6.4928117 11.165196 20.69874 30.2323 34.9047 30 7.3396986 11.916867 21.25613 30.5954 35.1726 31 8.0441586 12.575775 21.82210 31.0684 35.6000 32 8.8220660 13.286792 22.39663 31.5065 35.9712 33 9.7293382 14.087444 22.97973 31.8720 36.2301 34 10.6439776 14.895860 23.57141 32.2470 36.4988 35 11.3712676 15.581364 24.17165 32.7619 36.9720 36 12.0903660 16.264191 24.78047 33.2968 37.4706 37 12.9621618 17.052310 25.39786 33.7434 37.8336 38 13.9690548 17.933912 26.02382 34.1137 38.0786 39 14.8961150 18.764757 26.65834 34.5519 38.4206 40 15.5880299 19.440617 27.30144 35.1623 39.0149 41 16.2838155 20.121892 27.95311 35.7843 39.6224 42 17.1058166 20.890689 28.61335 36.3360 40.1209 43 17.9817714 21.698514 29.28216 36.8658 40.5826 44 18.6610233 22.377150 29.95954 37.5419 41.2581 45 19.1808813 22.951637 30.64550 38.3394 42.1101 46 19.7841459 23.584917 31.34002 39.0951 42.8959 47 20.5213873 24.310926 32.04311 39.7753 43.5648 48 21.2465778 25.031668 32.75477 40.4779 44.2630 49 21.7264172 25.590574 33.47501 41.3594 45.2236 50 22.1476742 26.112985 34.20381 42.2946 46.2600 51 22.6982036 26.724968 34.94119 43.1574 47.1842 52 23.3692423 27.420644 35.68713 43.9536 48.0050 53 23.9709413 28.072605 36.44165 44.8107 48.9124 54 24.3957772 28.608693 37.20474 45.8008 50.0137 55 24.9012324 29.201704 37.97639 46.7511 51.0516 56 25.6136292 29.936410 38.75662 47.5768 51.8996 57 26.4819493 30.778576 39.54542 48.3123 52.6089 58 27.2901515 31.583215 40.34279 49.1024 53.3954 59 28.0053951 32.328289 41.14873 49.9692 54.2921 60 28.8530207 33.165023 41.96324 50.7615 55.0735 61 29.9067993 34.142924 42.78632 51.4297 55.6658 62 31.0646746 35.193503 43.61797 52.0424 56.1713 63 32.0654071 36.141443 44.45820 52.7749 56.8510 64 32.9512818 37.015121 45.30699 53.5989 57.6627 65 33.9291102 37.953328 46.16435 54.3754 58.3996 66 35.0297017 38.976740 47.03029 55.0838 59.0309 67 36.0927814 39.977797 47.90479 55.8318 59.7168 68 36.9113073 40.817553 48.78787 56.7582 60.6644 69 37.7036248 41.642540 49.67951 57.7165 61.6554 70 38.6422928 42.568561 50.57973 58.5909 62.5172 71 39.7057083 43.581119 51.48852 59.3959 63.2713 72 40.6774154 44.534950 52.40587 60.2768 64.1343 73 41.4311354 45.345310 53.33180 61.3183 65.2325 74 42.1677718 46.147024 54.26630 62.3856 66.3648 75 42.9301723 46.968847 55.20937 63.4499 67.4886 76 43.5601364 47.704612 56.16101 64.6174 68.7619 77 43.7706750 48.161720 57.12122 66.0807 70.4718 78 43.6707129 48.413272 58.09000 67.7667 72.5093 79 43.5686662 48.666244 59.06735 69.4685 74.5660 80 43.6408522 49.038961 60.05327 71.0676 76.4657 81 43.9707369 49.587438 61.04777 72.5081 78.1248 82 44.5808788 50.326813 62.05083 73.7748 79.5208 83 45.4473581 51.241035 63.06246 74.8839 80.6776 84 46.5017521 52.284184 64.08267 75.8812 81.6636 85 47.6254964 53.376692 65.11144 76.8462 82.5974 86 48.6454643 54.402376 66.14879 77.8952 83.6521 87 49.6079288 55.392288 67.19471 78.9971 84.7815 88 50.7825571 56.527401 68.24919 79.9710 85.7158 89 52.2754967 57.878951 69.31225 80.7456 86.3490 90 54.0486439 59.421366 70.38388 81.3464 86.7191 91 55.8745252 61.001989 71.46408 81.9262 87.0536 92 57.4111269 62.391297 72.55285 82.7144 87.6946 93 58.7265102 63.634965 73.65019 83.6654 88.5739 94 59.8812030 64.773613 74.75610 84.7386 89.6310 95 60.8442106 65.786441 75.87058 85.9547 90.8969 96 61.4961859 66.593355 76.99363 87.3939 92.4911 97 61.6555082 67.072471 78.12525 89.1780 94.5950 98 61.1305173 67.095165 79.26545 91.4357 97.4004 99 59.7777137 66.565137 80.41421 94.2633 101.0507 100 57.5292654 65.436863 81.57154 97.7062 105.6138 knots : [1] 3.99998 7.00000 8.00000 9.00000 10.00000 11.00000 12.00000 13.00000 [9] 14.00000 15.00000 16.00000 17.00000 18.00000 19.00000 20.00000 22.00000 [17] 23.00000 25.00002 coef : [1] 6.862887 10.368778 14.880952 17.119048 19.547619 22.166667 24.976190 [8] 27.976190 31.166667 34.547619 38.119048 41.880952 45.833333 49.976190 [15] 54.309524 61.095238 68.452381 76.095292 81.571544 0.190476 > 1 - sum(co2 $ resid ^2) / sum((dist - mean(dist))^2)# R^2= 67.4% [1] 0.652418 > > co3 <- cobs(speed, dist, "convex", lambda = -1)# 3 warnings Searching for optimal lambda. This may take a while. While you are waiting, here is something you can consider to speed up the process: (a) Use a smaller number of knots; (b) Set lambda==0 to exclude the penalty term; (c) Use a coarser grid by reducing the argument 'lambda.length' from the default value of 25. Error in x %*% coefficients : NA/NaN/Inf in foreign function call (arg 2) Calls: cobs -> drqssbc2 -> rq.fit.sfnc -> %*% -> %*% Execution halted Running the tests in ‘tests/multi-constr.R’ failed. Complete output: > #### Examples which use the new feature of more than one 'constraint'. > > suppressMessages(library(cobs)) > > ## do *not* show platform info here (as have *.Rout.save), but in 0_pt-ex.R > options(digits = 6) > > if(!dev.interactive(orNone=TRUE)) pdf("multi-constr.pdf") > > source(system.file("util.R", package = "cobs")) > source(system.file(package="Matrix", "test-tools-1.R", mustWork=TRUE)) Loading required package: tools > ##--> tryCatch.W.E(), showProc.time(), assertError(), relErrV(), ... > Lnx <- Sys.info()[["sysname"]] == "Linux" > isMac <- Sys.info()[["sysname"]] == "Darwin" > x86 <- (arch <- Sys.info()[["machine"]]) == "x86_64" > noLdbl <- (.Machine$sizeof.longdouble <= 8) ## TRUE when --disable-long-double > ## IGNORE_RDIFF_BEGIN > Sys.info() sysname "Linux" release "6.10.11-amd64" version "#1 SMP PREEMPT_DYNAMIC Debian 6.10.11-1 (2024-09-22)" nodename "gimli2" machine "x86_64" login "hornik" user "hornik" effective_user "hornik" > noLdbl [1] FALSE > ## IGNORE_RDIFF_END > > > Rsq <- function(obj) { + stopifnot(inherits(obj, "cobs"), is.numeric(res <- obj$resid)) + 1 - sum(res^2)/obj$SSy + } > list_ <- function (...) `names<-`(list(...), vapply(sys.call()[-1L], as.character, "")) > is.cobs <- function(x) inherits(x, "cobs") > > set.seed(908) > x <- seq(-1,2, len = 50) > f.true <- pnorm(2*x) > y <- f.true + rnorm(50)/10 > plot(x,y); lines(x, f.true, col="gray", lwd=2, lty=3) > > ## constraint on derivative at right end: > (con <- rbind(c(2 , max(x), 0))) # f'(x_n) == 0 [,1] [,2] [,3] [1,] 2 2 0 > > ## Using 'trace = 3' --> 'trace = 2' inside drqssbc2() > > ## Regression splines (lambda = 0) > c2 <- cobs(x,y, trace = 3) qbsks2(): Performing general knot selection ... loo.design2(): -> Xeq 50 x 3 (nz = 150 =^= 1%) loo.design2(): -> Xeq 50 x 4 (nz = 150 =^= 0.75%) loo.design2(): -> Xeq 50 x 5 (nz = 150 =^= 0.6%) loo.design2(): -> Xeq 50 x 6 (nz = 150 =^= 0.5%) loo.design2(): -> Xeq 50 x 7 (nz = 150 =^= 0.43%) Deleting unnecessary knots ... loo.design2(): -> Xeq 50 x 4 (nz = 150 =^= 0.75%) loo.design2(): -> Xeq 50 x 4 (nz = 150 =^= 0.75%) loo.design2(): -> Xeq 50 x 3 (nz = 150 =^= 1%) loo.design2(): -> Xeq 50 x 4 (nz = 150 =^= 0.75%) > c2i <- cobs(x,y, constraint = c("increase"), trace = 3) qbsks2(): Performing general knot selection ... loo.design2(): -> Xeq 50 x 3 (nz = 150 =^= 1%) Xieq 2 x 3 (nz = 6 =^= 1%) loo.design2(): -> Xeq 50 x 4 (nz = 150 =^= 0.75%) Xieq 3 x 4 (nz = 9 =^= 0.75%) loo.design2(): -> Xeq 50 x 5 (nz = 150 =^= 0.6%) Xieq 4 x 5 (nz = 12 =^= 0.6%) loo.design2(): -> Xeq 50 x 6 (nz = 150 =^= 0.5%) Xieq 5 x 6 (nz = 15 =^= 0.5%) loo.design2(): -> Xeq 50 x 7 (nz = 150 =^= 0.43%) Xieq 6 x 7 (nz = 18 =^= 0.43%) Deleting unnecessary knots ... loo.design2(): -> Xeq 50 x 5 (nz = 150 =^= 0.6%) Xieq 4 x 5 (nz = 12 =^= 0.6%) loo.design2(): -> Xeq 50 x 5 (nz = 150 =^= 0.6%) Xieq 4 x 5 (nz = 12 =^= 0.6%) loo.design2(): -> Xeq 50 x 5 (nz = 150 =^= 0.6%) Xieq 4 x 5 (nz = 12 =^= 0.6%) loo.design2(): -> Xeq 50 x 4 (nz = 150 =^= 0.75%) Xieq 3 x 4 (nz = 9 =^= 0.75%) loo.design2(): -> Xeq 50 x 4 (nz = 150 =^= 0.75%) Xieq 3 x 4 (nz = 9 =^= 0.75%) loo.design2(): -> Xeq 50 x 5 (nz = 150 =^= 0.6%) Xieq 4 x 5 (nz = 12 =^= 0.6%) > c2c <- cobs(x,y, constraint = c("concave"), trace = 3) qbsks2(): Performing general knot selection ... loo.design2(): -> Xeq 50 x 3 (nz = 150 =^= 1%) Xieq 1 x 3 (nz = 3 =^= 1%) loo.design2(): -> Xeq 50 x 4 (nz = 150 =^= 0.75%) Xieq 2 x 4 (nz = 6 =^= 0.75%) loo.design2(): -> Xeq 50 x 5 (nz = 150 =^= 0.6%) Xieq 3 x 5 (nz = 9 =^= 0.6%) loo.design2(): -> Xeq 50 x 6 (nz = 150 =^= 0.5%) Xieq 4 x 6 (nz = 12 =^= 0.5%) loo.design2(): -> Xeq 50 x 7 (nz = 150 =^= 0.43%) Xieq 5 x 7 (nz = 15 =^= 0.43%) Deleting unnecessary knots ... loo.design2(): -> Xeq 50 x 3 (nz = 150 =^= 1%) Xieq 1 x 3 (nz = 3 =^= 1%) loo.design2(): -> Xeq 50 x 4 (nz = 150 =^= 0.75%) Xieq 2 x 4 (nz = 6 =^= 0.75%) > > c2IC <- cobs(x,y, constraint = c("inc", "concave"), trace = 3) qbsks2(): Performing general knot selection ... loo.design2(): -> Xeq 50 x 3 (nz = 150 =^= 1%) Xieq 3 x 3 (nz = 9 =^= 1%) loo.design2(): -> Xeq 50 x 4 (nz = 150 =^= 0.75%) Xieq 5 x 4 (nz = 15 =^= 0.75%) loo.design2(): -> Xeq 50 x 5 (nz = 150 =^= 0.6%) Xieq 7 x 5 (nz = 21 =^= 0.6%) loo.design2(): -> Xeq 50 x 6 (nz = 150 =^= 0.5%) Xieq 9 x 6 (nz = 27 =^= 0.5%) loo.design2(): -> Xeq 50 x 7 (nz = 150 =^= 0.43%) Xieq 11 x 7 (nz = 33 =^= 0.43%) Deleting unnecessary knots ... loo.design2(): -> Xeq 50 x 3 (nz = 150 =^= 1%) Xieq 3 x 3 (nz = 9 =^= 1%) > ## here, it's the same as just "i": > all.equal(fitted(c2i), fitted(c2IC)) [1] "Mean relative difference: 0.0808156" > > c1 <- cobs(x,y, degree = 1, trace = 3) qbsks2(): Performing general knot selection ... l1.design2(): -> Xeq 50 x 2 (nz = 100 =^= 1%) l1.design2(): -> Xeq 50 x 3 (nz = 100 =^= 0.67%) l1.design2(): -> Xeq 50 x 4 (nz = 100 =^= 0.5%) l1.design2(): -> Xeq 50 x 5 (nz = 100 =^= 0.4%) l1.design2(): -> Xeq 50 x 6 (nz = 100 =^= 0.33%) Deleting unnecessary knots ... l1.design2(): -> Xeq 50 x 4 (nz = 100 =^= 0.5%) l1.design2(): -> Xeq 50 x 4 (nz = 100 =^= 0.5%) l1.design2(): -> Xeq 50 x 4 (nz = 100 =^= 0.5%) l1.design2(): -> Xeq 50 x 5 (nz = 100 =^= 0.4%) > c1i <- cobs(x,y, degree = 1, constraint = c("increase"), trace = 3) qbsks2(): Performing general knot selection ... l1.design2(): -> Xeq 50 x 2 (nz = 100 =^= 1%) Xieq 1 x 2 (nz = 2 =^= 1%) l1.design2(): -> Xeq 50 x 3 (nz = 100 =^= 0.67%) Xieq 2 x 3 (nz = 4 =^= 0.67%) l1.design2(): -> Xeq 50 x 4 (nz = 100 =^= 0.5%) Xieq 3 x 4 (nz = 6 =^= 0.5%) l1.design2(): -> Xeq 50 x 5 (nz = 100 =^= 0.4%) Xieq 4 x 5 (nz = 8 =^= 0.4%) l1.design2(): -> Xeq 50 x 6 (nz = 100 =^= 0.33%) Xieq 5 x 6 (nz = 10 =^= 0.33%) Deleting unnecessary knots ... l1.design2(): -> Xeq 50 x 4 (nz = 100 =^= 0.5%) Xieq 3 x 4 (nz = 6 =^= 0.5%) l1.design2(): -> Xeq 50 x 4 (nz = 100 =^= 0.5%) Xieq 3 x 4 (nz = 6 =^= 0.5%) l1.design2(): -> Xeq 50 x 4 (nz = 100 =^= 0.5%) Xieq 3 x 4 (nz = 6 =^= 0.5%) l1.design2(): -> Xeq 50 x 5 (nz = 100 =^= 0.4%) Xieq 4 x 5 (nz = 8 =^= 0.4%) > c1c <- cobs(x,y, degree = 1, constraint = c("concave"), trace = 3) qbsks2(): Performing general knot selection ... l1.design2(): -> Xeq 50 x 2 (nz = 100 =^= 1%) l1.design2(): -> Xeq 50 x 3 (nz = 100 =^= 0.67%) Xieq 1 x 3 (nz = 3 =^= 1%) l1.design2(): -> Xeq 50 x 4 (nz = 100 =^= 0.5%) Xieq 2 x 4 (nz = 6 =^= 0.75%) l1.design2(): -> Xeq 50 x 5 (nz = 100 =^= 0.4%) Xieq 3 x 5 (nz = 9 =^= 0.6%) l1.design2(): -> Xeq 50 x 6 (nz = 100 =^= 0.33%) Xieq 4 x 6 (nz = 12 =^= 0.5%) Deleting unnecessary knots ... l1.design2(): -> Xeq 50 x 3 (nz = 100 =^= 0.67%) Xieq 1 x 3 (nz = 3 =^= 1%) l1.design2(): -> Xeq 50 x 3 (nz = 100 =^= 0.67%) Xieq 1 x 3 (nz = 3 =^= 1%) l1.design2(): -> Xeq 50 x 2 (nz = 100 =^= 1%) l1.design2(): -> Xeq 50 x 3 (nz = 100 =^= 0.67%) Xieq 1 x 3 (nz = 3 =^= 1%) > > plot(c1) > lines(predict(c1i), col="forest green") > all.equal(fitted(c1), fitted(c1i), tol = 1e-9)# but not 1e-10 [1] TRUE > > ## now gives warning (not error): > c1IC <- cobs(x,y, degree = 1, constraint = c("inc", "concave"), trace = 3) qbsks2(): Performing general knot selection ... l1.design2(): -> Xeq 50 x 2 (nz = 100 =^= 1%) Xieq 1 x 2 (nz = 2 =^= 1%) l1.design2(): -> Xeq 50 x 3 (nz = 100 =^= 0.67%) Xieq 3 x 3 (nz = 7 =^= 0.78%) l1.design2(): -> Xeq 50 x 4 (nz = 100 =^= 0.5%) Xieq 5 x 4 (nz = 12 =^= 0.6%) l1.design2(): -> Xeq 50 x 5 (nz = 100 =^= 0.4%) Xieq 7 x 5 (nz = 17 =^= 0.49%) l1.design2(): -> Xeq 50 x 6 (nz = 100 =^= 0.33%) Xieq 9 x 6 (nz = 22 =^= 0.41%) Deleting unnecessary knots ... l1.design2(): -> Xeq 50 x 3 (nz = 100 =^= 0.67%) Xieq 3 x 3 (nz = 7 =^= 0.78%) l1.design2(): -> Xeq 50 x 3 (nz = 100 =^= 0.67%) Xieq 3 x 3 (nz = 7 =^= 0.78%) l1.design2(): -> Xeq 50 x 2 (nz = 100 =^= 1%) Xieq 1 x 2 (nz = 2 =^= 1%) l1.design2(): -> Xeq 50 x 3 (nz = 100 =^= 0.67%) Xieq 3 x 3 (nz = 7 =^= 0.78%) Warning messages: 1: In l1.design2(x, w, constraint, ptConstr, knots, pw, nrq = n, nl1, : too few knots ==> nk <= 4; could not add constraint 'concave' 2: In l1.design2(x, w, constraint, ptConstr, knots, pw, nrq = n, nl1, : too few knots ==> nk <= 4; could not add constraint 'concave' > > cp2 <- cobs(x,y, pointwise = con, trace = 3) qbsks2(): Performing general knot selection ... loo.design2(): -> Xeq 50 x 3 (nz = 150 =^= 1%) Xieq 2 x 3 (nz = 6 =^= 1%) loo.design2(): -> Xeq 50 x 4 (nz = 150 =^= 0.75%) Xieq 2 x 4 (nz = 6 =^= 0.75%) loo.design2(): -> Xeq 50 x 5 (nz = 150 =^= 0.6%) Xieq 2 x 5 (nz = 6 =^= 0.6%) loo.design2(): -> Xeq 50 x 6 (nz = 150 =^= 0.5%) Xieq 2 x 6 (nz = 6 =^= 0.5%) loo.design2(): -> Xeq 50 x 7 (nz = 150 =^= 0.43%) Xieq 2 x 7 (nz = 6 =^= 0.43%) Deleting unnecessary knots ... loo.design2(): -> Xeq 50 x 4 (nz = 150 =^= 0.75%) Xieq 2 x 4 (nz = 6 =^= 0.75%) loo.design2(): -> Xeq 50 x 4 (nz = 150 =^= 0.75%) Xieq 2 x 4 (nz = 6 =^= 0.75%) loo.design2(): -> Xeq 50 x 5 (nz = 150 =^= 0.6%) Xieq 2 x 5 (nz = 6 =^= 0.6%) > > ## Here, warning ".. 'ifl'.. " on *some* platforms (e.g. Windows 32bit) : > r2i <- tryCatch.W.E( cobs(x,y, constraint = "increase", pointwise = con) ) qbsks2(): Performing general knot selection ... Deleting unnecessary knots ... > cp2i <- r2i$value > ## IGNORE_RDIFF_BEGIN > r2i$warning NULL > ## IGNORE_RDIFF_END > ## when plotting it, we see that it gave a trivial constant!! > cp2c <- cobs(x,y, constraint = "concave", pointwise = con, trace = 3) qbsks2(): Performing general knot selection ... loo.design2(): -> Xeq 50 x 3 (nz = 150 =^= 1%) Xieq 3 x 3 (nz = 9 =^= 1%) loo.design2(): -> Xeq 50 x 4 (nz = 150 =^= 0.75%) Xieq 4 x 4 (nz = 12 =^= 0.75%) loo.design2(): -> Xeq 50 x 5 (nz = 150 =^= 0.6%) Xieq 5 x 5 (nz = 15 =^= 0.6%) loo.design2(): -> Xeq 50 x 6 (nz = 150 =^= 0.5%) Xieq 6 x 6 (nz = 18 =^= 0.5%) loo.design2(): -> Xeq 50 x 7 (nz = 150 =^= 0.43%) Xieq 7 x 7 (nz = 21 =^= 0.43%) Deleting unnecessary knots ... loo.design2(): -> Xeq 50 x 3 (nz = 150 =^= 1%) Xieq 3 x 3 (nz = 9 =^= 1%) > > ## now gives warning (not error): but no warning on M1 mac -> IGNORE > ## IGNORE_RDIFF_BEGIN > cp2IC <- cobs(x,y, constraint = c("inc", "concave"), pointwise = con, trace = 3) qbsks2(): Performing general knot selection ... loo.design2(): -> Xeq 50 x 3 (nz = 150 =^= 1%) Xieq 5 x 3 (nz = 15 =^= 1%) loo.design2(): -> Xeq 50 x 4 (nz = 150 =^= 0.75%) Xieq 7 x 4 (nz = 21 =^= 0.75%) loo.design2(): -> Xeq 50 x 5 (nz = 150 =^= 0.6%) Xieq 9 x 5 (nz = 27 =^= 0.6%) loo.design2(): -> Xeq 50 x 6 (nz = 150 =^= 0.5%) Xieq 11 x 6 (nz = 33 =^= 0.5%) loo.design2(): -> Xeq 50 x 7 (nz = 150 =^= 0.43%) Xieq 13 x 7 (nz = 39 =^= 0.43%) Deleting unnecessary knots ... loo.design2(): -> Xeq 50 x 3 (nz = 150 =^= 1%) Xieq 5 x 3 (nz = 15 =^= 1%) Error in x %*% coefficients : NA/NaN/Inf in foreign function call (arg 2) Calls: cobs -> qbsks2 -> drqssbc2 -> rq.fit.sfnc -> %*% -> %*% Execution halted Running the tests in ‘tests/wind.R’ failed. Complete output: > suppressMessages(library(cobs)) > > source(system.file("util.R", package = "cobs")) > (doExtra <- doExtras()) [1] FALSE > source(system.file("test-tools-1.R", package="Matrix", mustWork=TRUE)) Loading required package: tools > showProc.time() # timing here (to be faster by default) Time (user system elapsed): 0.001 0 0.001 > > data(DublinWind) > attach(DublinWind)##-> speed & day (instead of "wind.x" & "DUB.") > iday <- sort.list(day) > > if(!dev.interactive(orNone=TRUE)) pdf("wind.pdf", width=10) > > stopifnot(identical(day,c(rep(c(rep(1:365,3),1:366),4), + rep(1:365,2)))) > co50.1 <- cobs(day, speed, constraint= "periodic", tau= .5, lambda= 2.2, + degree = 1) Warning message: In cobs(day, speed, constraint = "periodic", tau = 0.5, lambda = 2.2, : drqssbc2(): Not all flags are normal (== 1), ifl : 37 > co50.2 <- cobs(day, speed, constraint= "periodic", tau= .5, lambda= 2.2, + degree = 2) Warning message: In cobs(day, speed, constraint = "periodic", tau = 0.5, lambda = 2.2, : drqssbc2(): Not all flags are normal (== 1), ifl : 38 > > showProc.time() Time (user system elapsed): 0.416 0.012 0.502 > > plot(day,speed, pch = ".", col = "gray20") > lines(day[iday], fitted(co50.1)[iday], col="orange", lwd = 2) > lines(day[iday], fitted(co50.2)[iday], col="sky blue", lwd = 2) > rug(knots(co50.1), col=3, lwd=2) > > nknots <- 13 > > > if(doExtra) { + ## Compute the quadratic median smoothing B-spline using SIC + ## lambda selection + co.o50 <- + cobs(day, speed, knots.add = TRUE, constraint="periodic", nknots = nknots, + tau = .5, lambda = -1, method = "uniform") + summary(co.o50) # [does print] + + showProc.time() + + op <- par(mfrow = c(3,1), mgp = c(1.5, 0.6,0), mar=.1 + c(3,3:1)) + with(co.o50, plot(pp.sic ~ pp.lambda, type ="o", + col=2, log = "x", main = "co.o50: periodic")) + with(co.o50, plot(pp.sic ~ pp.lambda, type ="o", ylim = robrng(pp.sic), + col=2, log = "x", main = "co.o50: periodic")) + of <- 0.64430538125795 + with(co.o50, plot(pp.sic - of ~ pp.lambda, type ="o", ylim = c(6e-15, 8e-15), + ylab = paste("sic -",formatC(of, dig=14, small.m = "'")), + col=2, log = "x", main = "co.o50: periodic")) + par(op) + } > > showProc.time() Time (user system elapsed): 0.026 0.008 0.092 > > ## cobs99: Since SIC chooses a lambda that corresponds to the smoothest > ## possible fit, rerun cobs with a larger lstart value > ## (lstart <- log(.Machine$double.xmax)^3) # 3.57 e9 > ## > co.o50. <- + cobs(day,speed, knots.add = TRUE, constraint = "periodic", nknots = 10, + tau = .5, lambda = -1, method = "quantile") Searching for optimal lambda. This may take a while. While you are waiting, here is something you can consider to speed up the process: (a) Use a smaller number of knots; (b) Set lambda==0 to exclude the penalty term; (c) Use a coarser grid by reducing the argument 'lambda.length' from the default value of 25. Error in drqssbc2(x, y, w, pw = pw, knots = knots, degree = degree, Tlambda = if (select.lambda) lambdaSet else lambda, : The problem is degenerate for the range of lambda specified. Calls: cobs -> drqssbc2 In addition: Warning message: In min(sol1["k", i.keep]) : no non-missing arguments to min; returning Inf Execution halted Flavor: r-devel-linux-x86_64-debian-clang

Version: 1.3-8
Check: tests
Result: ERROR Running ‘0_pt-ex.R’ [4s/12s] Running ‘ex1.R’ [12s/60s] Running ‘ex2-long.R’ [8s/29s] Running ‘ex3.R’ Comparing ‘ex3.Rout’ to ‘ex3.Rout.save’ ... OK Running ‘multi-constr.R’ [7s/22s] Comparing ‘multi-constr.Rout’ to ‘multi-constr.Rout.save’ ... OK Running ‘roof.R’ [5s/20s] Running ‘small-ex.R’ [5s/18s] Comparing ‘small-ex.Rout’ to ‘small-ex.Rout.save’ ... OK Running ‘spline-ex.R’ [4s/21s] Comparing ‘spline-ex.Rout’ to ‘spline-ex.Rout.save’ ... OK Running ‘temp.R’ [5s/25s] Comparing ‘temp.Rout’ to ‘temp.Rout.save’ ...29,31d28 < Warning message: < In cobs(year, temp, knots.add = TRUE, degree = 1, constraint = "increase", : < drqssbc2(): Not all flags are normal (== 1), ifl : 22 35,42c32,35 < < **** ERROR in algorithm: ifl = 22 < < < {tau=0.5}-quantile; dimensionality of fit: 5 from {5} < x$knots[1:5]: 1880, 1908, 1936, 1964, 1992 < coef[1:5]: -0.39324840, -0.28115087, 0.05916295, -0.07465159, 0.31227753 < R^2 = 73.22% ; empirical tau (over all): 63/113 = 0.5575221 (target tau= 0.5) --- > {tau=0.5}-quantile; dimensionality of fit: 4 from {4} > x$knots[1:4]: 1880, 1936, 1964, 1992 > coef[1:4]: -0.47054145, -0.01648649, -0.01648649, 0.27562279 > R^2 = 70.37% ; empirical tau (over all): 56/113 = 0.4955752 (target tau= 0.5) 52,54d44 < Warning message: < In cobs(year, temp, nknots = 9, knots.add = TRUE, degree = 1, constraint = "increase", : < drqssbc2(): Not all flags are normal (== 1), ifl : 22 58,65c48,51 < < **** ERROR in algorithm: ifl = 22 < < < {tau=0.5}-quantile; dimensionality of fit: 5 from {5} < x$knots[1:5]: 1880, 1908, 1936, 1964, 1992 < coef[1:5]: -0.39324840, -0.28115087, 0.05916295, -0.07465159, 0.31227753 < R^2 = 73.22% ; empirical tau (over all): 63/113 = 0.5575221 (target tau= 0.5) --- > {tau=0.5}-quantile; dimensionality of fit: 4 from {4} > x$knots[1:4]: 1880, 1936, 1964, 1992 > coef[1:4]: -0.47054145, -0.01648649, -0.01648649, 0.27562279 > R^2 = 70.37% ; empirical tau (over all): 56/113 = 0.4955752 (target tau= 0.5) 69,71d54 < Warning message: < In cobs(year, temp, nknots = length(a50$knots), knots = a50$knot, : < drqssbc2(): Not all flags are normal (== 1), ifl : 22 75,82c58,61 < < **** ERROR in algorithm: ifl = 22 < < < {tau=0.1}-quantile; dimensionality of fit: 5 from {5} < x$knots[1:5]: 1880, 1908, 1936, 1964, 1992 < coef[1:5]: -0.39324885, -0.28115087, 0.05916295, -0.07465159, 0.31227907 < empirical tau (over all): 63/113 = 0.5575221 (target tau= 0.1) --- > {tau=0.1}-quantile; dimensionality of fit: 4 from {4} > x$knots[1:4]: 1880, 1936, 1964, 1992 > coef[1:4]: -0.5700016, -0.1700000, -0.1700000, 0.1300024 > empirical tau (over all): 12/113 = 0.1061947 (target tau= 0.1) 85,87d63 < Warning message: < In cobs(year, temp, nknots = length(a50$knots), knots = a50$knot, : < drqssbc2(): Not all flags are normal (== 1), ifl : 22 91,98c67,70 < < **** ERROR in algorithm: ifl = 22 < < < {tau=0.9}-quantile; dimensionality of fit: 5 from {5} < x$knots[1:5]: 1880, 1908, 1936, 1964, 1992 < coef[1:5]: -0.39324885, -0.28115087, 0.05916295, -0.07465159, 0.31227907 < empirical tau (over all): 63/113 = 0.5575221 (target tau= 0.9) --- > {tau=0.9}-quantile; dimensionality of fit: 4 from {4} > x$knots[1:4]: 1880, 1936, 1964, 1992 > coef[1:4]: -0.2576939, 0.1300000, 0.1300000, 0.4961568 > empirical tau (over all): 104/113 = 0.920354 (target tau= 0.9) 101,103c73 < [1] 1 2 9 10 17 18 20 21 22 23 26 27 35 36 42 47 48 49 52 < [20] 53 58 59 61 62 63 64 65 68 73 74 78 79 80 81 82 83 84 88 < [39] 90 91 94 98 100 101 102 104 108 109 111 112 --- > [1] 10 18 21 22 47 61 74 102 111 105,108c75 < [1] 3 4 5 6 7 8 11 12 13 14 15 16 19 24 25 28 29 30 31 < [20] 32 33 34 37 38 39 40 41 43 44 45 46 50 51 54 55 56 57 60 < [39] 66 67 69 70 71 72 75 76 77 85 86 87 89 92 93 95 96 97 99 < [58] 103 105 106 107 110 113 --- > [1] 5 8 25 28 38 39 85 86 92 95 97 113 113,225c80,192 < [1,] 1880 -0.393247953 -0.568567598 -0.217928308 -0.497693198 -0.2888027083 < [2,] 1881 -0.389244486 -0.556686706 -0.221802266 -0.488996819 -0.2894921527 < [3,] 1882 -0.385241019 -0.544932639 -0.225549398 -0.480375996 -0.2901060418 < [4,] 1883 -0.381237552 -0.533324789 -0.229150314 -0.471842280 -0.2906328235 < [5,] 1884 -0.377234084 -0.521886218 -0.232581951 -0.463409410 -0.2910587589 < [6,] 1885 -0.373230617 -0.510644405 -0.235816829 -0.455093758 -0.2913674769 < [7,] 1886 -0.369227150 -0.499632120 -0.238822180 -0.446914845 -0.2915394558 < [8,] 1887 -0.365223683 -0.488888394 -0.241558972 -0.438895923 -0.2915514428 < [9,] 1888 -0.361220216 -0.478459556 -0.243980875 -0.431064594 -0.2913758376 < [10,] 1889 -0.357216749 -0.468400213 -0.246033284 -0.423453388 -0.2909801092 < [11,] 1890 -0.353213282 -0.458773976 -0.247652588 -0.416100202 -0.2903263615 < [12,] 1891 -0.349209814 -0.449653605 -0.248766024 -0.409048381 -0.2893712477 < [13,] 1892 -0.345206347 -0.441120098 -0.249292596 -0.402346180 -0.2880665146 < [14,] 1893 -0.341202880 -0.433260133 -0.249145628 -0.396045236 -0.2863605248 < [15,] 1894 -0.337199413 -0.426161346 -0.248237480 -0.390197757 -0.2842010691 < [16,] 1895 -0.333195946 -0.419905293 -0.246486599 -0.384852330 -0.2815395617 < [17,] 1896 -0.329192479 -0.414558712 -0.243826246 -0.380048714 -0.2783362437 < [18,] 1897 -0.325189012 -0.410164739 -0.240213284 -0.375812606 -0.2745654171 < [19,] 1898 -0.321185545 -0.406736420 -0.235634669 -0.372151779 -0.2702193101 < [20,] 1899 -0.317182077 -0.404254622 -0.230109533 -0.369054834 -0.2653093212 < [21,] 1900 -0.313178610 -0.402671075 -0.223686145 -0.366493014 -0.2598642062 < [22,] 1901 -0.309175143 -0.401915491 -0.216434795 -0.364424447 -0.2539258394 < [23,] 1902 -0.305171676 -0.401904507 -0.208438845 -0.362799469 -0.2475438831 < [24,] 1903 -0.301168209 -0.402550192 -0.199786225 -0.361565696 -0.2407707212 < [25,] 1904 -0.297164742 -0.403766666 -0.190562818 -0.360671966 -0.2336575172 < [26,] 1905 -0.293161275 -0.405474370 -0.180848179 -0.360070883 -0.2262516664 < [27,] 1906 -0.289157807 -0.407602268 -0.170713347 -0.359720126 -0.2185954887 < [28,] 1907 -0.285154340 -0.410088509 -0.160220171 -0.359582850 -0.2107258307 < [29,] 1908 -0.281150873 -0.412880143 -0.149421603 -0.359627508 -0.2026742377 < [30,] 1909 -0.268996808 -0.394836115 -0.143157501 -0.343964546 -0.1940290700 < [31,] 1910 -0.256842743 -0.376961386 -0.136724100 -0.328402442 -0.1852830438 < [32,] 1911 -0.244688678 -0.359281315 -0.130096042 -0.312956304 -0.1764210522 < [33,] 1912 -0.232534613 -0.341825431 -0.123243796 -0.297643724 -0.1674255025 < [34,] 1913 -0.220380548 -0.324627946 -0.116133151 -0.282485083 -0.1582760137 < [35,] 1914 -0.208226483 -0.307728160 -0.108724807 -0.267503793 -0.1489491732 < [36,] 1915 -0.196072418 -0.291170651 -0.100974185 -0.252726413 -0.1394184235 < [37,] 1916 -0.183918353 -0.275005075 -0.092831631 -0.238182523 -0.1296541835 < [38,] 1917 -0.171764288 -0.259285340 -0.084243236 -0.223904239 -0.1196243373 < [39,] 1918 -0.159610223 -0.244067933 -0.075152513 -0.209925213 -0.1092952334 < [40,] 1919 -0.147456158 -0.229409203 -0.065503113 -0.196279015 -0.0986333019 < [41,] 1920 -0.135302093 -0.215361603 -0.055242584 -0.182996891 -0.0876072953 < [42,] 1921 -0.123148028 -0.201969188 -0.044326869 -0.170105089 -0.0761909673 < [43,] 1922 -0.110993963 -0.189263062 -0.032724864 -0.157622139 -0.0643657877 < [44,] 1923 -0.098839898 -0.177257723 -0.020422074 -0.145556676 -0.0521231208 < [45,] 1924 -0.086685833 -0.165949224 -0.007422442 -0.133906350 -0.0394653164 < [46,] 1925 -0.074531768 -0.155315688 0.006252152 -0.122658128 -0.0264054087 < [47,] 1926 -0.062377703 -0.145320002 0.020564595 -0.111789900 -0.0129655072 < [48,] 1927 -0.050223638 -0.135913981 0.035466704 -0.101272959 0.0008256822 < [49,] 1928 -0.038069573 -0.127043003 0.050903856 -0.091074767 0.0149356198 < [50,] 1929 -0.025915508 -0.118650261 0.066819244 -0.081161479 0.0293304619 < [51,] 1930 -0.013761444 -0.110680090 0.083157203 -0.071499934 0.0439770474 < [52,] 1931 -0.001607379 -0.103080234 0.099865477 -0.062059002 0.0588442451 < [53,] 1932 0.010546686 -0.095803129 0.116896502 -0.052810346 0.0739037194 < [54,] 1933 0.022700751 -0.088806436 0.134207939 -0.043728744 0.0891302464 < [55,] 1934 0.034854816 -0.082053049 0.151762682 -0.034792088 0.1045017213 < [56,] 1935 0.047008881 -0.075510798 0.169528561 -0.025981216 0.1199989785 < [57,] 1936 0.059162946 -0.069151984 0.187477877 -0.017279624 0.1356055167 < [58,] 1937 0.054383856 -0.068135824 0.176903535 -0.018606241 0.1273739530 < [59,] 1938 0.049604765 -0.067303100 0.166512631 -0.020042139 0.1192516703 < [60,] 1939 0.044825675 -0.066681512 0.156332862 -0.021603820 0.1112551700 < [61,] 1940 0.040046585 -0.066303231 0.146396400 -0.023310448 0.1034036175 < [62,] 1941 0.035267494 -0.066205361 0.136740349 -0.025184129 0.0957191177 < [63,] 1942 0.030488404 -0.066430243 0.127407050 -0.027250087 0.0882268946 < [64,] 1943 0.025709313 -0.067025439 0.118444066 -0.029536657 0.0809552836 < [65,] 1944 0.020930223 -0.068043207 0.109903653 -0.032074970 0.0739354160 < [66,] 1945 0.016151132 -0.069539210 0.101841475 -0.034898188 0.0672004530 < [67,] 1946 0.011372042 -0.071570257 0.094314341 -0.038040154 0.0607842381 < [68,] 1947 0.006592951 -0.074190969 0.087376871 -0.041533408 0.0547193111 < [69,] 1948 0.001813861 -0.077449530 0.081077252 -0.045406656 0.0490343779 < [70,] 1949 -0.002965230 -0.081383054 0.075452595 -0.049682007 0.0437515481 < [71,] 1950 -0.007744320 -0.086013419 0.070524779 -0.054372496 0.0388838557 < [72,] 1951 -0.012523410 -0.091344570 0.066297749 -0.059480471 0.0344336506 < [73,] 1952 -0.017302501 -0.097362010 0.062757009 -0.064997299 0.0303922971 < [74,] 1953 -0.022081591 -0.104034636 0.059871454 -0.070904448 0.0267412650 < [75,] 1954 -0.026860682 -0.111318392 0.057597028 -0.077175672 0.0234543081 < [76,] 1955 -0.031639772 -0.119160824 0.055881280 -0.083779723 0.0205001786 < [77,] 1956 -0.036418863 -0.127505585 0.054667859 -0.090683032 0.0178453070 < [78,] 1957 -0.041197953 -0.136296186 0.053900280 -0.097851948 0.0154560415 < [79,] 1958 -0.045977044 -0.145478720 0.053524633 -0.105254354 0.0133002664 < [80,] 1959 -0.050756134 -0.155003532 0.053491263 -0.112860669 0.0113484004 < [81,] 1960 -0.055535225 -0.164826042 0.053755593 -0.120644335 0.0095738862 < [82,] 1961 -0.060314315 -0.174906951 0.054278321 -0.128581941 0.0079533109 < [83,] 1962 -0.065093405 -0.185212049 0.055025238 -0.136653105 0.0064662939 < [84,] 1963 -0.069872496 -0.195711803 0.055966811 -0.144840234 0.0050952422 < [85,] 1964 -0.074651586 -0.206380857 0.057077684 -0.153128222 0.0038250490 < [86,] 1965 -0.060832745 -0.185766914 0.064101424 -0.135261254 0.0135957648 < [87,] 1966 -0.047013903 -0.165458364 0.071430557 -0.117576222 0.0235484155 < [88,] 1967 -0.033195062 -0.145508157 0.079118034 -0.100104670 0.0337145466 < [89,] 1968 -0.019376220 -0.125978144 0.087225704 -0.082883444 0.0441310044 < [90,] 1969 -0.005557378 -0.106939362 0.095824605 -0.065954866 0.0548401092 < [91,] 1970 0.008261463 -0.088471368 0.104994294 -0.049366330 0.0658892560 < [92,] 1971 0.022080305 -0.070660043 0.114820653 -0.033168999 0.0773296085 < [93,] 1972 0.035899146 -0.053593318 0.125391611 -0.017415258 0.0892135504 < [94,] 1973 0.049717988 -0.037354556 0.136790532 -0.002154768 0.1015907442 < [95,] 1974 0.063536830 -0.022014046 0.149087705 0.012570595 0.1145030640 < [96,] 1975 0.077355671 -0.007620056 0.162331398 0.026732077 0.1279792657 < [97,] 1976 0.091174513 0.005808280 0.176540746 0.040318278 0.1420307479 < [98,] 1977 0.104993354 0.018284008 0.191702701 0.053336970 0.1566497385 < [99,] 1978 0.118812196 0.029850263 0.207774129 0.065813852 0.1718105399 < [100,] 1979 0.132631038 0.040573785 0.224688290 0.077788682 0.1874733929 < [101,] 1980 0.146449879 0.050536128 0.242363630 0.089310046 0.2035897119 < [102,] 1981 0.160268721 0.059824930 0.260712511 0.100430154 0.2201072876 < [103,] 1982 0.174087562 0.068526868 0.279648256 0.111200642 0.2369744825 < [104,] 1983 0.187906404 0.076722940 0.299089868 0.121669764 0.2541430435 < [105,] 1984 0.201725246 0.084485905 0.318964586 0.131880867 0.2715696238 < [106,] 1985 0.215544087 0.091879376 0.339208798 0.141871847 0.2892163274 < [107,] 1986 0.229362929 0.098957959 0.359767899 0.151675234 0.3070506231 < [108,] 1987 0.243181770 0.105767982 0.380595558 0.161318630 0.3250449108 < [109,] 1988 0.257000612 0.112348478 0.401652745 0.170825286 0.3431759375 < [110,] 1989 0.270819454 0.118732216 0.422906691 0.180214725 0.3614241817 < [111,] 1990 0.284638295 0.124946675 0.444329916 0.189503318 0.3797732721 < [112,] 1991 0.298457137 0.131014917 0.465899357 0.198704804 0.3982094699 < [113,] 1992 0.312275978 0.136956333 0.487595623 0.207830734 0.4167212231 --- > [1,] 1880 -0.470540541 -0.580395233 -0.360685849 -0.541226637 -0.399854444 > [2,] 1881 -0.462432432 -0.569650451 -0.355214414 -0.531421959 -0.393442906 > [3,] 1882 -0.454324324 -0.558928137 -0.349720511 -0.521631738 -0.387016910 > [4,] 1883 -0.446216216 -0.548230020 -0.344202412 -0.511857087 -0.380575346 > [5,] 1884 -0.438108108 -0.537557989 -0.338658227 -0.502099220 -0.374116996 > [6,] 1885 -0.430000000 -0.526914115 -0.333085885 -0.492359472 -0.367640528 > [7,] 1886 -0.421891892 -0.516300667 -0.327483116 -0.482639300 -0.361144484 > [8,] 1887 -0.413783784 -0.505720132 -0.321847435 -0.472940307 -0.354627261 > [9,] 1888 -0.405675676 -0.495175238 -0.316176113 -0.463264247 -0.348087105 > [10,] 1889 -0.397567568 -0.484668976 -0.310466159 -0.453613044 -0.341522091 > [11,] 1890 -0.389459459 -0.474204626 -0.304714293 -0.443988810 -0.334930108 > [12,] 1891 -0.381351351 -0.463785782 -0.298916920 -0.434393857 -0.328308845 > [13,] 1892 -0.373243243 -0.453416379 -0.293070107 -0.424830717 -0.321655770 > [14,] 1893 -0.365135135 -0.443100719 -0.287169552 -0.415302157 -0.314968113 > [15,] 1894 -0.357027027 -0.432843496 -0.281210558 -0.405811200 -0.308242854 > [16,] 1895 -0.348918919 -0.422649821 -0.275188017 -0.396361132 -0.301476706 > [17,] 1896 -0.340810811 -0.412525238 -0.269096384 -0.386955521 -0.294666101 > [18,] 1897 -0.332702703 -0.402475737 -0.262929668 -0.377598222 -0.287807183 > [19,] 1898 -0.324594595 -0.392507759 -0.256681430 -0.368293379 -0.280895810 > [20,] 1899 -0.316486486 -0.382628180 -0.250344793 -0.359045416 -0.273927557 > [21,] 1900 -0.308378378 -0.372844288 -0.243912468 -0.349859024 -0.266897733 > [22,] 1901 -0.300270270 -0.363163733 -0.237376807 -0.340739124 -0.259801417 > [23,] 1902 -0.292162162 -0.353594450 -0.230729874 -0.331690821 -0.252633503 > [24,] 1903 -0.284054054 -0.344144557 -0.223963551 -0.322719340 -0.245388768 > [25,] 1904 -0.275945946 -0.334822217 -0.217069675 -0.313829934 -0.238061958 > [26,] 1905 -0.267837838 -0.325635470 -0.210040206 -0.305027774 -0.230647901 > [27,] 1906 -0.259729730 -0.316592032 -0.202867427 -0.296317828 -0.223141632 > [28,] 1907 -0.251621622 -0.307699075 -0.195544168 -0.287704708 -0.215538535 > [29,] 1908 -0.243513514 -0.298962989 -0.188064038 -0.279192527 -0.207834500 > [30,] 1909 -0.235405405 -0.290389150 -0.180421661 -0.270784743 -0.200026067 > [31,] 1910 -0.227297297 -0.281981702 -0.172612893 -0.262484025 -0.192110570 > [32,] 1911 -0.219189189 -0.273743385 -0.164634993 -0.254292134 -0.184086245 > [33,] 1912 -0.211081081 -0.265675409 -0.156486753 -0.246209849 -0.175952313 > [34,] 1913 -0.202972973 -0.257777400 -0.148168546 -0.238236929 -0.167709017 > [35,] 1914 -0.194864865 -0.250047417 -0.139682313 -0.230372126 -0.159357604 > [36,] 1915 -0.186756757 -0.242482039 -0.131031475 -0.222613238 -0.150900276 > [37,] 1916 -0.178648649 -0.235076516 -0.122220781 -0.214957209 -0.142340088 > [38,] 1917 -0.170540541 -0.227824968 -0.113256113 -0.207400255 -0.133680826 > [39,] 1918 -0.162432432 -0.220720606 -0.104144259 -0.199938008 -0.124926856 > [40,] 1919 -0.154324324 -0.213755974 -0.094892674 -0.192565671 -0.116082978 > [41,] 1920 -0.146216216 -0.206923176 -0.085509256 -0.185278162 -0.107154270 > [42,] 1921 -0.138108108 -0.200214092 -0.076002124 -0.178070257 -0.098145959 > [43,] 1922 -0.130000000 -0.193620560 -0.066379440 -0.170936704 -0.089063296 > [44,] 1923 -0.121891892 -0.187134533 -0.056649251 -0.163872326 -0.079911458 > [45,] 1924 -0.113783784 -0.180748200 -0.046819367 -0.156872096 -0.070695472 > [46,] 1925 -0.105675676 -0.174454074 -0.036897277 -0.149931196 -0.061420156 > [47,] 1926 -0.097567568 -0.168245056 -0.026890080 -0.143045058 -0.052090077 > [48,] 1927 -0.089459459 -0.162114471 -0.016804448 -0.136209390 -0.042709529 > [49,] 1928 -0.081351351 -0.156056093 -0.006646610 -0.129420182 -0.033282521 > [50,] 1929 -0.073243243 -0.150064140 0.003577654 -0.122673716 -0.023812771 > [51,] 1930 -0.065135135 -0.144133276 0.013863006 -0.115966557 -0.014303713 > [52,] 1931 -0.057027027 -0.138258588 0.024204534 -0.109295545 -0.004758509 > [53,] 1932 -0.048918919 -0.132435569 0.034597732 -0.102657780 0.004819942 > [54,] 1933 -0.040810811 -0.126660095 0.045038473 -0.096050607 0.014428985 > [55,] 1934 -0.032702703 -0.120928393 0.055522988 -0.089471600 0.024066194 > [56,] 1935 -0.024594595 -0.115237021 0.066047832 -0.082918542 0.033729353 > [57,] 1936 -0.016486486 -0.109582838 0.076609865 -0.076389415 0.043416442 > [58,] 1937 -0.016486486 -0.105401253 0.072428280 -0.073698770 0.040725797 > [59,] 1938 -0.016486486 -0.101403226 0.068430253 -0.071126236 0.038153263 > [60,] 1939 -0.016486486 -0.097615899 0.064642926 -0.068689277 0.035716305 > [61,] 1940 -0.016486486 -0.094070136 0.061097163 -0.066407753 0.033434780 > [62,] 1941 -0.016486486 -0.090800520 0.057827547 -0.064303916 0.031330943 > [63,] 1942 -0.016486486 -0.087845022 0.054872049 -0.062402198 0.029429225 > [64,] 1943 -0.016486486 -0.085244160 0.052271187 -0.060728671 0.027755698 > [65,] 1944 -0.016486486 -0.083039523 0.050066550 -0.059310095 0.026337122 > [66,] 1945 -0.016486486 -0.081271575 0.048298602 -0.058172508 0.025199535 > [67,] 1946 -0.016486486 -0.079976806 0.047003833 -0.057339388 0.024366415 > [68,] 1947 -0.016486486 -0.079184539 0.046211566 -0.056829602 0.023856629 > [69,] 1948 -0.016486486 -0.078913907 0.045940934 -0.056655464 0.023682491 > [70,] 1949 -0.016486486 -0.079171667 0.046198694 -0.056821320 0.023848347 > [71,] 1950 -0.016486486 -0.079951382 0.046978409 -0.057323028 0.024350055 > [72,] 1951 -0.016486486 -0.081234197 0.048261224 -0.058148457 0.025175484 > [73,] 1952 -0.016486486 -0.082991006 0.050018033 -0.059278877 0.026305904 > [74,] 1953 -0.016486486 -0.085185454 0.052212481 -0.060690897 0.027717924 > [75,] 1954 -0.016486486 -0.087777140 0.054804167 -0.062358519 0.029385546 > [76,] 1955 -0.016486486 -0.090724471 0.057751498 -0.064254982 0.031282009 > [77,] 1956 -0.016486486 -0.093986883 0.061013910 -0.066354184 0.033381211 > [78,] 1957 -0.016486486 -0.097526332 0.064553359 -0.068631645 0.035658672 > [79,] 1958 -0.016486486 -0.101308145 0.068335172 -0.071065056 0.038092083 > [80,] 1959 -0.016486486 -0.105301366 0.072328393 -0.073634498 0.040661525 > [81,] 1960 -0.016486486 -0.109478765 0.076505793 -0.076322449 0.043349476 > [82,] 1961 -0.016486486 -0.113816631 0.080843658 -0.079113653 0.046140680 > [83,] 1962 -0.016486486 -0.118294454 0.085321481 -0.081994911 0.049021938 > [84,] 1963 -0.016486486 -0.122894566 0.089921593 -0.084954858 0.051981885 > [85,] 1964 -0.016486486 -0.127601781 0.094628808 -0.087983719 0.055010746 > [86,] 1965 -0.006054054 -0.111440065 0.099331957 -0.073864774 0.061756666 > [87,] 1966 0.004378378 -0.095541433 0.104298190 -0.059915111 0.068671868 > [88,] 1967 0.014810811 -0.079951422 0.109573043 -0.046164030 0.075785651 > [89,] 1968 0.025243243 -0.064723125 0.115209611 -0.032645694 0.083132181 > [90,] 1969 0.035675676 -0.049917365 0.121268716 -0.019399240 0.090750592 > [91,] 1970 0.046108108 -0.035602017 0.127818233 -0.006468342 0.098684559 > [92,] 1971 0.056540541 -0.021849988 0.134931069 0.006100087 0.106980994 > [93,] 1972 0.066972973 -0.008735416 0.142681362 0.018258345 0.115687601 > [94,] 1973 0.077405405 0.003672103 0.151138707 0.029961648 0.124849163 > [95,] 1974 0.087837838 0.015314778 0.160360898 0.041172812 0.134502863 > [96,] 1975 0.098270270 0.026154092 0.170386449 0.051867053 0.144673488 > [97,] 1976 0.108702703 0.036176523 0.181228883 0.062035669 0.155369736 > [98,] 1977 0.119135135 0.045395695 0.192874575 0.071687429 0.166582842 > [99,] 1978 0.129567568 0.053850212 0.205284923 0.080847170 0.178287965 > [100,] 1979 0.140000000 0.061597925 0.218402075 0.089552117 0.190447883 > [101,] 1980 0.150432432 0.068708461 0.232156404 0.097847072 0.203017792 > [102,] 1981 0.160864865 0.075255962 0.246473767 0.105779742 0.215949987 > [103,] 1982 0.171297297 0.081313324 0.261281271 0.113397031 0.229197563 > [104,] 1983 0.181729730 0.086948395 0.276511065 0.120742598 0.242716862 > [105,] 1984 0.192162162 0.092221970 0.292102355 0.127855559 0.256468766 > [106,] 1985 0.202594595 0.097187112 0.308002077 0.134770059 0.270419130 > [107,] 1986 0.213027027 0.101889333 0.324164721 0.141515381 0.284538673 > [108,] 1987 0.223459459 0.106367224 0.340551695 0.148116359 0.298802560 > [109,] 1988 0.233891892 0.110653299 0.357130484 0.154593913 0.313189871 > [110,] 1989 0.244324324 0.114774857 0.373873791 0.160965608 0.327683041 > [111,] 1990 0.254756757 0.118754798 0.390758715 0.167246179 0.342267335 > [112,] 1991 0.265189189 0.122612348 0.407766030 0.173447997 0.356930381 > [113,] 1992 0.275621622 0.126363680 0.424879564 0.179581470 0.371661774 228,340c195,307 < [1,] 1880 -0.393247953 -0.638616081 -0.147879825 -0.539424009 -0.247071897 < [2,] 1881 -0.389244486 -0.623587786 -0.154901186 -0.528852590 -0.249636382 < [3,] 1882 -0.385241019 -0.608736988 -0.161745049 -0.518386915 -0.252095123 < [4,] 1883 -0.381237552 -0.594090828 -0.168384275 -0.508043150 -0.254431953 < [5,] 1884 -0.377234084 -0.579681581 -0.174786588 -0.497840525 -0.256627644 < [6,] 1885 -0.373230617 -0.565547708 -0.180913527 -0.487801951 -0.258659284 < [7,] 1886 -0.369227150 -0.551735068 -0.186719232 -0.477954750 -0.260499551 < [8,] 1887 -0.365223683 -0.538298290 -0.192149076 -0.468331465 -0.262115901 < [9,] 1888 -0.361220216 -0.525302213 -0.197138218 -0.458970724 -0.263469708 < [10,] 1889 -0.357216749 -0.512823261 -0.201610236 -0.449918056 -0.264515441 < [11,] 1890 -0.353213282 -0.500950461 -0.205476102 -0.441226498 -0.265200065 < [12,] 1891 -0.349209814 -0.489785646 -0.208633983 -0.432956717 -0.265462912 < [13,] 1892 -0.345206347 -0.479442174 -0.210970520 -0.425176244 -0.265236451 < [14,] 1893 -0.341202880 -0.470041356 -0.212364405 -0.417957348 -0.264448412 < [15,] 1894 -0.337199413 -0.461705842 -0.212692984 -0.411373100 -0.263025726 < [16,] 1895 -0.333195946 -0.454549774 -0.211842118 -0.405491497 -0.260900395 < [17,] 1896 -0.329192479 -0.448666556 -0.209718402 -0.400368183 -0.258016774 < [18,] 1897 -0.325189012 -0.444116558 -0.206261466 -0.396039125 -0.254338899 < [19,] 1898 -0.321185545 -0.440918038 -0.201453051 -0.392515198 -0.249855891 < [20,] 1899 -0.317182077 -0.439044218 -0.195319937 -0.389780451 -0.244583704 < [21,] 1900 -0.313178610 -0.438427544 -0.187929677 -0.387794638 -0.238562582 < [22,] 1901 -0.309175143 -0.438969642 -0.179380644 -0.386499155 -0.231851132 < [23,] 1902 -0.305171676 -0.440553844 -0.169789508 -0.385824495 -0.224518857 < [24,] 1903 -0.301168209 -0.443057086 -0.159279332 -0.385697347 -0.216639071 < [25,] 1904 -0.297164742 -0.446359172 -0.147970311 -0.386046103 -0.208283380 < [26,] 1905 -0.293161275 -0.450348759 -0.135973790 -0.386804433 -0.199518116 < [27,] 1906 -0.289157807 -0.454926427 -0.123389188 -0.387913107 -0.190402508 < [28,] 1907 -0.285154340 -0.460005614 -0.110303066 -0.389320557 -0.180988124 < [29,] 1908 -0.281150873 -0.465512212 -0.096789534 -0.390982633 -0.171319113 < [30,] 1909 -0.268996808 -0.445114865 -0.092878751 -0.373917700 -0.164075916 < [31,] 1910 -0.256842743 -0.424954461 -0.088731025 -0.356993924 -0.156691562 < [32,] 1911 -0.244688678 -0.405066488 -0.084310868 -0.340232447 -0.149144910 < [33,] 1912 -0.232534613 -0.385492277 -0.079576949 -0.323657890 -0.141411336 < [34,] 1913 -0.220380548 -0.366279707 -0.074481389 -0.307298779 -0.133462317 < [35,] 1914 -0.208226483 -0.347483782 -0.068969185 -0.291187880 -0.125265087 < [36,] 1915 -0.196072418 -0.329166890 -0.062977947 -0.275362361 -0.116782475 < [37,] 1916 -0.183918353 -0.311398525 -0.056438181 -0.259863623 -0.107973083 < [38,] 1917 -0.171764288 -0.294254136 -0.049274440 -0.244736614 -0.098791963 < [39,] 1918 -0.159610223 -0.277812779 -0.041407667 -0.230028429 -0.089192017 < [40,] 1919 -0.147456158 -0.262153318 -0.032758999 -0.215786053 -0.079126264 < [41,] 1920 -0.135302093 -0.247349160 -0.023255026 -0.202053217 -0.068550970 < [42,] 1921 -0.123148028 -0.233461966 -0.012834091 -0.188866654 -0.057429402 < [43,] 1922 -0.110993963 -0.220535266 -0.001452661 -0.176252299 -0.045735628 < [44,] 1923 -0.098839898 -0.208589350 0.010909553 -0.164222236 -0.033457560 < [45,] 1924 -0.086685833 -0.197618695 0.024247028 -0.152773178 -0.020598488 < [46,] 1925 -0.074531768 -0.187592682 0.038529145 -0.141886883 -0.007176654 < [47,] 1926 -0.062377703 -0.178459370 0.053703964 -0.131532407 0.006777000 < [48,] 1927 -0.050223638 -0.170151322 0.069704045 -0.121669575 0.021222298 < [49,] 1928 -0.038069573 -0.162592093 0.086452946 -0.112252846 0.036113699 < [50,] 1929 -0.025915508 -0.155702177 0.103871160 -0.103234855 0.051403838 < [51,] 1930 -0.013761444 -0.149403669 0.121880782 -0.094569190 0.067046303 < [52,] 1931 -0.001607379 -0.143623435 0.140408678 -0.086212283 0.082997525 < [53,] 1932 0.010546686 -0.138294906 0.159388279 -0.078124475 0.099217848 < [54,] 1933 0.022700751 -0.133358827 0.178760330 -0.070270466 0.115671969 < [55,] 1934 0.034854816 -0.128763266 0.198472899 -0.062619318 0.132328951 < [56,] 1935 0.047008881 -0.124463200 0.218480963 -0.055144209 0.149161972 < [57,] 1936 0.059162946 -0.120419862 0.238745755 -0.047822043 0.166147936 < [58,] 1937 0.054383856 -0.117088225 0.225855937 -0.047769234 0.156536946 < [59,] 1938 0.049604765 -0.114013317 0.213222848 -0.047869369 0.147078900 < [60,] 1939 0.044825675 -0.111233903 0.200885253 -0.048145542 0.137796893 < [61,] 1940 0.040046585 -0.108795008 0.188888177 -0.048624577 0.128717746 < [62,] 1941 0.035267494 -0.106748562 0.177283550 -0.049337410 0.119872398 < [63,] 1942 0.030488404 -0.105153822 0.166130629 -0.050319343 0.111296150 < [64,] 1943 0.025709313 -0.104077355 0.155495982 -0.051610033 0.103028659 < [65,] 1944 0.020930223 -0.103592297 0.145452743 -0.053253050 0.095113496 < [66,] 1945 0.016151132 -0.103776551 0.136078816 -0.055294804 0.087597069 < [67,] 1946 0.011372042 -0.104709625 0.127453709 -0.057782662 0.080526746 < [68,] 1947 0.006592951 -0.106467962 0.119653865 -0.060762163 0.073948066 < [69,] 1948 0.001813861 -0.109119001 0.112746722 -0.064273484 0.067901206 < [70,] 1949 -0.002965230 -0.112714681 0.106784222 -0.068347568 0.062417108 < [71,] 1950 -0.007744320 -0.117285623 0.101796983 -0.073002655 0.057514015 < [72,] 1951 -0.012523410 -0.122837348 0.097790527 -0.078242036 0.053195215 < [73,] 1952 -0.017302501 -0.129349568 0.094744566 -0.084053625 0.049448623 < [74,] 1953 -0.022081591 -0.136778751 0.092615568 -0.090411486 0.046248303 < [75,] 1954 -0.026860682 -0.145063238 0.091341874 -0.097278888 0.043557524 < [76,] 1955 -0.031639772 -0.154129620 0.090850076 -0.104612098 0.041332553 < [77,] 1956 -0.036418863 -0.163899035 0.091061309 -0.112364133 0.039526407 < [78,] 1957 -0.041197953 -0.174292425 0.091896518 -0.120487896 0.038091990 < [79,] 1958 -0.045977044 -0.185234342 0.093280255 -0.128938440 0.036984353 < [80,] 1959 -0.050756134 -0.196655293 0.095143025 -0.137674365 0.036162097 < [81,] 1960 -0.055535225 -0.208492888 0.097422439 -0.146658502 0.035588053 < [82,] 1961 -0.060314315 -0.220692125 0.100063495 -0.155858084 0.035229454 < [83,] 1962 -0.065093405 -0.233205123 0.103018312 -0.165244586 0.035057775 < [84,] 1963 -0.069872496 -0.245990553 0.106245561 -0.174793388 0.035048396 < [85,] 1964 -0.074651586 -0.259012925 0.109709752 -0.184483346 0.035180173 < [86,] 1965 -0.060832745 -0.235684019 0.114018529 -0.164998961 0.043333472 < [87,] 1966 -0.047013903 -0.212782523 0.118754717 -0.145769203 0.051741396 < [88,] 1967 -0.033195062 -0.190382546 0.123992423 -0.126838220 0.060448097 < [89,] 1968 -0.019376220 -0.168570650 0.129818210 -0.108257582 0.069505142 < [90,] 1969 -0.005557378 -0.147446255 0.136331499 -0.090086516 0.078971760 < [91,] 1970 0.008261463 -0.127120705 0.143643631 -0.072391356 0.088914283 < [92,] 1971 0.022080305 -0.107714195 0.151874804 -0.055243707 0.099404316 < [93,] 1972 0.035899146 -0.089349787 0.161148080 -0.038716881 0.110515174 < [94,] 1973 0.049717988 -0.072144153 0.171580129 -0.022880386 0.122316362 < [95,] 1974 0.063536830 -0.056195664 0.183269323 -0.007792824 0.134866483 < [96,] 1975 0.077355671 -0.041571875 0.196283217 0.006505558 0.148205784 < [97,] 1976 0.091174513 -0.028299564 0.210648590 0.019998808 0.162350217 < [98,] 1977 0.104993354 -0.016360474 0.226347183 0.032697804 0.177288905 < [99,] 1978 0.118812196 -0.005694233 0.243318625 0.044638509 0.192985883 < [100,] 1979 0.132631038 0.003792562 0.261469513 0.055876570 0.209385506 < [101,] 1980 0.146449879 0.012214052 0.280685706 0.066479983 0.226419775 < [102,] 1981 0.160268721 0.019692889 0.300844552 0.076521819 0.244015623 < [103,] 1982 0.174087562 0.026350383 0.321824742 0.086074346 0.262100779 < [104,] 1983 0.187906404 0.032299891 0.343512917 0.095205097 0.280607711 < [105,] 1984 0.201725246 0.037643248 0.365807243 0.103974737 0.299475754 < [106,] 1985 0.215544087 0.042469480 0.388618694 0.112436305 0.318651869 < [107,] 1986 0.229362929 0.046855011 0.411870847 0.120635329 0.338090528 < [108,] 1987 0.243181770 0.050864680 0.435498861 0.128610437 0.357753104 < [109,] 1988 0.257000612 0.054553115 0.459448109 0.136394171 0.377607052 < [110,] 1989 0.270819454 0.057966177 0.483672730 0.144013855 0.397625052 < [111,] 1990 0.284638295 0.061142326 0.508134265 0.151492399 0.417784191 < [112,] 1991 0.298457137 0.064113837 0.532800436 0.158849032 0.438065241 < [113,] 1992 0.312275978 0.066907850 0.557644107 0.166099922 0.458452034 --- > [1,] 1880 -0.570000000 -0.7989007 -0.3410992837 -0.71728636 -0.422713636 > [2,] 1881 -0.562857143 -0.7862639 -0.3394503795 -0.70660842 -0.419105867 > [3,] 1882 -0.555714286 -0.7736739 -0.3377546582 -0.69596060 -0.415467975 > [4,] 1883 -0.548571429 -0.7611343 -0.3360085204 -0.68534522 -0.411797641 > [5,] 1884 -0.541428571 -0.7486491 -0.3342080272 -0.67476481 -0.408092333 > [6,] 1885 -0.534285714 -0.7362226 -0.3323488643 -0.66422216 -0.404349273 > [7,] 1886 -0.527142857 -0.7238594 -0.3304263043 -0.65372029 -0.400565421 > [8,] 1887 -0.520000000 -0.7115648 -0.3284351643 -0.64326256 -0.396737440 > [9,] 1888 -0.512857143 -0.6993445 -0.3263697605 -0.63285261 -0.392861675 > [10,] 1889 -0.505714286 -0.6872047 -0.3242238599 -0.62249446 -0.388934114 > [11,] 1890 -0.498571429 -0.6751522 -0.3219906288 -0.61219250 -0.384950360 > [12,] 1891 -0.491428571 -0.6631946 -0.3196625782 -0.60195155 -0.380905594 > [13,] 1892 -0.484285714 -0.6513399 -0.3172315093 -0.59177689 -0.376794541 > [14,] 1893 -0.477142857 -0.6395973 -0.3146884583 -0.58167428 -0.372611433 > [15,] 1894 -0.470000000 -0.6279764 -0.3120236430 -0.57165002 -0.368349976 > [16,] 1895 -0.462857143 -0.6164879 -0.3092264155 -0.56171097 -0.364003318 > [17,] 1896 -0.455714286 -0.6051433 -0.3062852230 -0.55186455 -0.359564026 > [18,] 1897 -0.448571429 -0.5939553 -0.3031875831 -0.54211879 -0.355024067 > [19,] 1898 -0.441428571 -0.5829371 -0.2999200783 -0.53248233 -0.350374809 > [20,] 1899 -0.434285714 -0.5721031 -0.2964683783 -0.52296440 -0.345607030 > [21,] 1900 -0.427142857 -0.5614684 -0.2928172976 -0.51357475 -0.340710959 > [22,] 1901 -0.420000000 -0.5510491 -0.2889508980 -0.50432366 -0.335676342 > [23,] 1902 -0.412857143 -0.5408616 -0.2848526441 -0.49522175 -0.330492537 > [24,] 1903 -0.405714286 -0.5309229 -0.2805056214 -0.48627991 -0.325148662 > [25,] 1904 -0.398571429 -0.5212500 -0.2758928205 -0.47750909 -0.319633772 > [26,] 1905 -0.391428571 -0.5118597 -0.2709974894 -0.46892006 -0.313937087 > [27,] 1906 -0.384285714 -0.5027679 -0.2658035488 -0.46052317 -0.308048262 > [28,] 1907 -0.377142857 -0.4939897 -0.2602960562 -0.45232803 -0.301957682 > [29,] 1908 -0.370000000 -0.4855383 -0.2544616963 -0.44434322 -0.295656778 > [30,] 1909 -0.362857143 -0.4774250 -0.2482892691 -0.43657594 -0.289138345 > [31,] 1910 -0.355714286 -0.4696584 -0.2417701364 -0.42903175 -0.282396824 > [32,] 1911 -0.348571429 -0.4622443 -0.2348985912 -0.42171431 -0.275428543 > [33,] 1912 -0.341428571 -0.4551850 -0.2276721117 -0.41462526 -0.268231879 > [34,] 1913 -0.334285714 -0.4484800 -0.2200914777 -0.40776409 -0.260807334 > [35,] 1914 -0.327142857 -0.4421250 -0.2121607344 -0.40112820 -0.253157511 > [36,] 1915 -0.320000000 -0.4361130 -0.2038870084 -0.39471301 -0.245286995 > [37,] 1916 -0.312857143 -0.4304341 -0.1952801960 -0.38851213 -0.237202155 > [38,] 1917 -0.305714286 -0.4250760 -0.1863525523 -0.38251770 -0.228910875 > [39,] 1918 -0.298571429 -0.4200246 -0.1771182205 -0.37672060 -0.220422257 > [40,] 1919 -0.291428571 -0.4152644 -0.1675927388 -0.37111085 -0.211746298 > [41,] 1920 -0.284285714 -0.4107789 -0.1577925583 -0.36567785 -0.202893584 > [42,] 1921 -0.277142857 -0.4065511 -0.1477346004 -0.36041071 -0.193875002 > [43,] 1922 -0.270000000 -0.4025641 -0.1374358695 -0.35529850 -0.184701495 > [44,] 1923 -0.262857143 -0.3988012 -0.1269131329 -0.35033043 -0.175383852 > [45,] 1924 -0.255714286 -0.3952459 -0.1161826679 -0.34549603 -0.165932545 > [46,] 1925 -0.248571429 -0.3918828 -0.1052600744 -0.34078524 -0.156357614 > [47,] 1926 -0.241428571 -0.3886970 -0.0941601449 -0.33618857 -0.146668575 > [48,] 1927 -0.234285714 -0.3856746 -0.0828967845 -0.33169705 -0.136874376 > [49,] 1928 -0.227142857 -0.3828027 -0.0714829715 -0.32730235 -0.126983369 > [50,] 1929 -0.220000000 -0.3800693 -0.0599307484 -0.32299670 -0.117003301 > [51,] 1930 -0.212857143 -0.3774630 -0.0482512378 -0.31877296 -0.106941331 > [52,] 1931 -0.205714286 -0.3749739 -0.0364546744 -0.31462453 -0.096804042 > [53,] 1932 -0.198571429 -0.3725924 -0.0245504487 -0.31054538 -0.086597478 > [54,] 1933 -0.191428571 -0.3703100 -0.0125471577 -0.30652997 -0.076327171 > [55,] 1934 -0.184285714 -0.3681188 -0.0004526588 -0.30257325 -0.065998175 > [56,] 1935 -0.177142857 -0.3660116 0.0117258745 -0.29867061 -0.055615108 > [57,] 1936 -0.170000000 -0.3639819 0.0239818977 -0.29481782 -0.045182180 > [58,] 1937 -0.170000000 -0.3552689 0.0152688616 -0.28921141 -0.050788591 > [59,] 1938 -0.170000000 -0.3469383 0.0069383006 -0.28385110 -0.056148897 > [60,] 1939 -0.170000000 -0.3390468 -0.0009532311 -0.27877329 -0.061226710 > [61,] 1940 -0.170000000 -0.3316586 -0.0083414258 -0.27401935 -0.065980650 > [62,] 1941 -0.170000000 -0.3248458 -0.0151542191 -0.26963565 -0.070364348 > [63,] 1942 -0.170000000 -0.3186875 -0.0213124962 -0.26567310 -0.074326897 > [64,] 1943 -0.170000000 -0.3132682 -0.0267318303 -0.26218603 -0.077813972 > [65,] 1944 -0.170000000 -0.3086744 -0.0313255619 -0.25923019 -0.080769813 > [66,] 1945 -0.170000000 -0.3049906 -0.0350093787 -0.25685983 -0.083140168 > [67,] 1946 -0.170000000 -0.3022928 -0.0377072467 -0.25512389 -0.084876113 > [68,] 1947 -0.170000000 -0.3006419 -0.0393580695 -0.25406166 -0.085938337 > [69,] 1948 -0.170000000 -0.3000780 -0.0399219767 -0.25369882 -0.086301183 > [70,] 1949 -0.170000000 -0.3006151 -0.0393848898 -0.25404441 -0.085955594 > [71,] 1950 -0.170000000 -0.3022398 -0.0377602233 -0.25508980 -0.084910201 > [72,] 1951 -0.170000000 -0.3049127 -0.0350872623 -0.25680972 -0.083190282 > [73,] 1952 -0.170000000 -0.3085733 -0.0314266558 -0.25916514 -0.080834862 > [74,] 1953 -0.170000000 -0.3131458 -0.0268541535 -0.26210732 -0.077892681 > [75,] 1954 -0.170000000 -0.3185461 -0.0214539408 -0.26558209 -0.074417909 > [76,] 1955 -0.170000000 -0.3246873 -0.0153126807 -0.26953369 -0.070466310 > [77,] 1956 -0.170000000 -0.3314851 -0.0085148970 -0.27390773 -0.066092271 > [78,] 1957 -0.170000000 -0.3388601 -0.0011398598 -0.27865320 -0.061346797 > [79,] 1958 -0.170000000 -0.3467402 0.0067401824 -0.28372362 -0.056276377 > [80,] 1959 -0.170000000 -0.3550607 0.0150607304 -0.28907749 -0.050922513 > [81,] 1960 -0.170000000 -0.3637650 0.0237650445 -0.29467829 -0.045321714 > [82,] 1961 -0.170000000 -0.3728037 0.0328037172 -0.30049423 -0.039505772 > [83,] 1962 -0.170000000 -0.3821340 0.0421340134 -0.30649781 -0.033502185 > [84,] 1963 -0.170000000 -0.3917191 0.0517191202 -0.31266536 -0.027334640 > [85,] 1964 -0.170000000 -0.4015274 0.0615273928 -0.31897650 -0.021023499 > [86,] 1965 -0.159285714 -0.3788752 0.0603037544 -0.30058075 -0.017990680 > [87,] 1966 -0.148571429 -0.3567712 0.0596282943 -0.28253772 -0.014605137 > [88,] 1967 -0.137857143 -0.3353102 0.0595958975 -0.26490847 -0.010805813 > [89,] 1968 -0.127142857 -0.3146029 0.0603171930 -0.24776419 -0.006521525 > [90,] 1969 -0.116428571 -0.2947761 0.0619189162 -0.23118642 -0.001670726 > [91,] 1970 -0.105714286 -0.2759711 0.0645424939 -0.21526616 0.003837587 > [92,] 1971 -0.095000000 -0.2583398 0.0683398431 -0.20010116 0.010101164 > [93,] 1972 -0.084285714 -0.2420369 0.0734654391 -0.18579083 0.017219402 > [94,] 1973 -0.073571429 -0.2272072 0.0800643002 -0.17242847 0.025285614 > [95,] 1974 -0.062857143 -0.2139711 0.0882568427 -0.16009157 0.034377282 > [96,] 1975 -0.052142857 -0.2024090 0.0981233226 -0.14883176 0.044546046 > [97,] 1976 -0.041428571 -0.1925491 0.1096919157 -0.13866718 0.055810037 > [98,] 1977 -0.030714286 -0.1843628 0.1229342326 -0.12957956 0.068150987 > [99,] 1978 -0.020000000 -0.1777698 0.1377698370 -0.12151714 0.081517138 > [100,] 1979 -0.009285714 -0.1726496 0.1540781875 -0.11440236 0.095830930 > [101,] 1980 0.001428571 -0.1688571 0.1717142023 -0.10814187 0.110999008 > [102,] 1981 0.012142857 -0.1662377 0.1905233955 -0.10263625 0.126921969 > [103,] 1982 0.022857143 -0.1646396 0.2103538775 -0.09778779 0.143502079 > [104,] 1983 0.033571429 -0.1639214 0.2310642722 -0.09350551 0.160648370 > [105,] 1984 0.044285714 -0.1639565 0.2525279044 -0.08970790 0.178279332 > [106,] 1985 0.055000000 -0.1646342 0.2746342071 -0.08632382 0.196323821 > [107,] 1986 0.065714286 -0.1658598 0.2972883534 -0.08329225 0.214720820 > [108,] 1987 0.076428571 -0.1675528 0.3204099260 -0.08056144 0.233418585 > [109,] 1988 0.087142857 -0.1696455 0.3439311798 -0.07808781 0.252373526 > [110,] 1989 0.097857143 -0.1720809 0.3677952332 -0.07583476 0.271549041 > [111,] 1990 0.108571429 -0.1748115 0.3919543697 -0.07377157 0.290914428 > [112,] 1991 0.119285714 -0.1777971 0.4163685288 -0.07187248 0.310443909 > [113,] 1992 0.130000000 -0.1810040 0.4410040109 -0.07011580 0.330115800 343,455c310,422 < [1,] 1880 -0.393247953 -0.693805062 -0.092690844 -0.572302393 -0.214193513 < [2,] 1881 -0.389244486 -0.676297026 -0.102191945 -0.560253689 -0.218235282 < [3,] 1882 -0.385241019 -0.659006413 -0.111475624 -0.548334514 -0.222147524 < [4,] 1883 -0.381237552 -0.641966465 -0.120508639 -0.536564669 -0.225910434 < [5,] 1884 -0.377234084 -0.625216717 -0.129251452 -0.524967709 -0.229500459 < [6,] 1885 -0.373230617 -0.608804280 -0.137656955 -0.513571700 -0.232889535 < [7,] 1886 -0.369227150 -0.592785330 -0.145668970 -0.502410107 -0.236044193 < [8,] 1887 -0.365223683 -0.577226782 -0.153220584 -0.491522795 -0.238924571 < [9,] 1888 -0.361220216 -0.562208058 -0.160232373 -0.480957079 -0.241483352 < [10,] 1889 -0.357216749 -0.547822773 -0.166610724 -0.470768729 -0.243664768 < [11,] 1890 -0.353213282 -0.534179978 -0.172246585 -0.461022711 -0.245403852 < [12,] 1891 -0.349209814 -0.521404410 -0.177015219 -0.451793336 -0.246626293 < [13,] 1892 -0.345206347 -0.509634924 -0.180777771 -0.443163327 -0.247249368 < [14,] 1893 -0.341202880 -0.499020116 -0.183385645 -0.435221208 -0.247184553 < [15,] 1894 -0.337199413 -0.489710224 -0.184688602 -0.428056482 -0.246342344 < [16,] 1895 -0.333195946 -0.481845064 -0.184546828 -0.421752442 -0.244639450 < [17,] 1896 -0.329192479 -0.475539046 -0.182845912 -0.416377249 -0.242007708 < [18,] 1897 -0.325189012 -0.470866120 -0.179511904 -0.411974957 -0.238403066 < [19,] 1898 -0.321185545 -0.467848651 -0.174522438 -0.408558891 -0.233812198 < [20,] 1899 -0.317182077 -0.466453839 -0.167910316 -0.406109508 -0.228254646 < [21,] 1900 -0.313178610 -0.466598933 -0.159758288 -0.404577513 -0.221779708 < [22,] 1901 -0.309175143 -0.468163434 -0.150186852 -0.403891117 -0.214459169 < [23,] 1902 -0.305171676 -0.471004432 -0.139338920 -0.403965184 -0.206378168 < [24,] 1903 -0.301168209 -0.474971184 -0.127365234 -0.404709910 -0.197626508 < [25,] 1904 -0.297164742 -0.479916458 -0.114413025 -0.406037582 -0.188291901 < [26,] 1905 -0.293161275 -0.485703869 -0.100618680 -0.407866950 -0.178455599 < [27,] 1906 -0.289157807 -0.492211633 -0.086103982 -0.410125463 -0.168190151 < [28,] 1907 -0.285154340 -0.499333719 -0.070974961 -0.412749954 -0.157558727 < [29,] 1908 -0.281150873 -0.506979351 -0.055322395 -0.415686342 -0.146615404 < [30,] 1909 -0.268996808 -0.484727899 -0.053265717 -0.397516841 -0.140476775 < [31,] 1910 -0.256842743 -0.462766683 -0.050918803 -0.379520246 -0.134165240 < [32,] 1911 -0.244688678 -0.441139176 -0.048238181 -0.361722455 -0.127654901 < [33,] 1912 -0.232534613 -0.419896002 -0.045173225 -0.344153628 -0.120915598 < [34,] 1913 -0.220380548 -0.399095811 -0.041665286 -0.326848704 -0.113912392 < [35,] 1914 -0.208226483 -0.378805976 -0.037646990 -0.309847821 -0.106605145 < [36,] 1915 -0.196072418 -0.359102922 -0.033041915 -0.293196507 -0.098948329 < [37,] 1916 -0.183918353 -0.340071771 -0.027764935 -0.276945475 -0.090891232 < [38,] 1917 -0.171764288 -0.321804943 -0.021723634 -0.261149781 -0.082378795 < [39,] 1918 -0.159610223 -0.304399275 -0.014821172 -0.245867116 -0.073353330 < [40,] 1919 -0.147456158 -0.287951368 -0.006960949 -0.231155030 -0.063757286 < [41,] 1920 -0.135302093 -0.272551143 0.001946957 -0.217067092 -0.053537094 < [42,] 1921 -0.123148028 -0.258274127 0.011978071 -0.203648297 -0.042647760 < [43,] 1922 -0.110993963 -0.245173645 0.023185718 -0.190930411 -0.031057516 < [44,] 1923 -0.098839898 -0.233274545 0.035594749 -0.178928240 -0.018751557 < [45,] 1924 -0.086685833 -0.222570067 0.049198400 -0.167637754 -0.005733912 < [46,] 1925 -0.074531768 -0.213022703 0.063959166 -0.157036610 0.007973073 < [47,] 1926 -0.062377703 -0.204568828 0.079813422 -0.147086903 0.022331496 < [48,] 1927 -0.050223638 -0.197125838 0.096678562 -0.137739423 0.037292146 < [49,] 1928 -0.038069573 -0.190600095 0.114460948 -0.128938384 0.052799237 < [50,] 1929 -0.025915508 -0.184894207 0.133063191 -0.120625768 0.068794751 < [51,] 1930 -0.013761444 -0.179912750 0.152389863 -0.112744726 0.085221839 < [52,] 1931 -0.001607379 -0.175566138 0.172351381 -0.105241887 0.102027130 < [53,] 1932 0.010546686 -0.171772831 0.192866204 -0.098068675 0.119162048 < [54,] 1933 0.022700751 -0.168460244 0.213861747 -0.091181848 0.136583351 < [55,] 1934 0.034854816 -0.165564766 0.235274399 -0.084543511 0.154253144 < [56,] 1935 0.047008881 -0.163031246 0.257049009 -0.078120807 0.172138570 < [57,] 1936 0.059162946 -0.160812199 0.279138092 -0.071885448 0.190211340 < [58,] 1937 0.054383856 -0.155656272 0.264423984 -0.070745832 0.179513544 < [59,] 1938 0.049604765 -0.150814817 0.250024348 -0.069793562 0.169003093 < [60,] 1939 0.044825675 -0.146335320 0.235986670 -0.069056925 0.158708275 < [61,] 1940 0.040046585 -0.142272933 0.222366102 -0.068568777 0.148661946 < [62,] 1941 0.035267494 -0.138691265 0.209226254 -0.068367014 0.138902002 < [63,] 1942 0.030488404 -0.135662903 0.196639710 -0.068494879 0.129471686 < [64,] 1943 0.025709313 -0.133269386 0.184688012 -0.069000947 0.120419573 < [65,] 1944 0.020930223 -0.131600299 0.173460744 -0.069938588 0.111799033 < [66,] 1945 0.016151132 -0.130751068 0.163053332 -0.071364652 0.103666917 < [67,] 1946 0.011372042 -0.130819083 0.153563167 -0.073337158 0.096081242 < [68,] 1947 0.006592951 -0.131897983 0.145083886 -0.075911890 0.089097793 < [69,] 1948 0.001813861 -0.134070373 0.137698095 -0.079138060 0.082765782 < [70,] 1949 -0.002965230 -0.137399877 0.131469418 -0.083053571 0.077123112 < [71,] 1950 -0.007744320 -0.141924001 0.126435361 -0.087680768 0.072192128 < [72,] 1951 -0.012523410 -0.147649510 0.122602689 -0.093023679 0.067976858 < [73,] 1952 -0.017302501 -0.154551551 0.119946549 -0.099067500 0.064462498 < [74,] 1953 -0.022081591 -0.162576801 0.118413618 -0.105780463 0.061617281 < [75,] 1954 -0.026860682 -0.171649733 0.117928369 -0.113117575 0.059396211 < [76,] 1955 -0.031639772 -0.181680427 0.118400882 -0.121025265 0.057745721 < [77,] 1956 -0.036418863 -0.192572281 0.119734555 -0.129445984 0.056608259 < [78,] 1957 -0.041197953 -0.204228457 0.121832550 -0.138322042 0.055926136 < [79,] 1958 -0.045977044 -0.216556537 0.124602449 -0.147598382 0.055644294 < [80,] 1959 -0.050756134 -0.229471397 0.127959128 -0.157224290 0.055712022 < [81,] 1960 -0.055535225 -0.242896613 0.131826164 -0.167154239 0.056083790 < [82,] 1961 -0.060314315 -0.256764812 0.136136182 -0.177348092 0.056719462 < [83,] 1962 -0.065093405 -0.271017346 0.140830535 -0.187770909 0.057584098 < [84,] 1963 -0.069872496 -0.285603587 0.145858595 -0.198392529 0.058647537 < [85,] 1964 -0.074651586 -0.300480064 0.151176891 -0.209187055 0.059883882 < [86,] 1965 -0.060832745 -0.275012124 0.153346634 -0.188428358 0.066762869 < [87,] 1966 -0.047013903 -0.250067729 0.156039922 -0.167981559 0.073953753 < [88,] 1967 -0.033195062 -0.225737656 0.159347533 -0.147900737 0.081510614 < [89,] 1968 -0.019376220 -0.202127937 0.163375497 -0.128249061 0.089496621 < [90,] 1969 -0.005557378 -0.179360353 0.168245596 -0.109099079 0.097984322 < [91,] 1970 0.008261463 -0.157571293 0.174094219 -0.090532045 0.107054971 < [92,] 1971 0.022080305 -0.136907986 0.181068596 -0.072635669 0.116796279 < [93,] 1972 0.035899146 -0.117521176 0.189319469 -0.055499756 0.127298049 < [94,] 1973 0.049717988 -0.099553773 0.198989749 -0.039209443 0.138645419 < [95,] 1974 0.063536830 -0.083126277 0.210199936 -0.023836517 0.150910176 < [96,] 1975 0.077355671 -0.068321437 0.223032779 -0.009430275 0.164141617 < [97,] 1976 0.091174513 -0.055172054 0.237521080 0.003989742 0.178359283 < [98,] 1977 0.104993354 -0.043655763 0.253642472 0.016436858 0.193549851 < [99,] 1978 0.118812196 -0.033698615 0.271323007 0.027955127 0.209669265 < [100,] 1979 0.132631038 -0.025186198 0.290448273 0.038612710 0.226649365 < [101,] 1980 0.146449879 -0.017978697 0.310878456 0.048492899 0.244406859 < [102,] 1981 0.160268721 -0.011925874 0.332463316 0.057685199 0.262852243 < [103,] 1982 0.174087562 -0.006879134 0.355054259 0.066278133 0.281896992 < [104,] 1983 0.187906404 -0.002699621 0.378512429 0.074354424 0.301458384 < [105,] 1984 0.201725246 0.000737403 0.402713088 0.081988382 0.321462109 < [106,] 1985 0.215544087 0.003540988 0.427547186 0.089244975 0.341843199 < [107,] 1986 0.229362929 0.005804749 0.452921108 0.096179971 0.362545886 < [108,] 1987 0.243181770 0.007608108 0.478755433 0.102840688 0.383522853 < [109,] 1988 0.257000612 0.009017980 0.504983244 0.109266987 0.404734237 < [110,] 1989 0.270819454 0.010090540 0.531548367 0.115492336 0.426146571 < [111,] 1990 0.284638295 0.010872901 0.558403689 0.121544800 0.447731790 < [112,] 1991 0.298457137 0.011404596 0.585509677 0.127447933 0.469466340 < [113,] 1992 0.312275978 0.011718869 0.612833087 0.133221539 0.491330418 --- > [1,] 1880 -0.257692308 -3.867500e-01 -0.128634653 -0.340734568 -0.174650048 > [2,] 1881 -0.250769231 -3.767293e-01 -0.124809149 -0.331818355 -0.169720107 > [3,] 1882 -0.243846154 -3.667351e-01 -0.120957249 -0.322919126 -0.164773181 > [4,] 1883 -0.236923077 -3.567692e-01 -0.117076923 -0.314038189 -0.159807965 > [5,] 1884 -0.230000000 -3.468340e-01 -0.113165951 -0.305176970 -0.154823030 > [6,] 1885 -0.223076923 -3.369319e-01 -0.109221900 -0.296337036 -0.149816810 > [7,] 1886 -0.216153846 -3.270656e-01 -0.105242105 -0.287520102 -0.144787590 > [8,] 1887 -0.209230769 -3.172379e-01 -0.101223643 -0.278728048 -0.139733491 > [9,] 1888 -0.202307692 -3.074521e-01 -0.097163311 -0.269962936 -0.134652449 > [10,] 1889 -0.195384615 -2.977116e-01 -0.093057593 -0.261227027 -0.129542204 > [11,] 1890 -0.188461539 -2.880204e-01 -0.088902637 -0.252522800 -0.124400277 > [12,] 1891 -0.181538462 -2.783827e-01 -0.084694220 -0.243852973 -0.119223950 > [13,] 1892 -0.174615385 -2.688030e-01 -0.080427720 -0.235220519 -0.114010250 > [14,] 1893 -0.167692308 -2.592865e-01 -0.076098083 -0.226628691 -0.108755924 > [15,] 1894 -0.160769231 -2.498387e-01 -0.071699793 -0.218081038 -0.103457424 > [16,] 1895 -0.153846154 -2.404655e-01 -0.067226847 -0.209581422 -0.098110886 > [17,] 1896 -0.146923077 -2.311734e-01 -0.062672732 -0.201134035 -0.092712119 > [18,] 1897 -0.140000000 -2.219696e-01 -0.058030409 -0.192743405 -0.087256595 > [19,] 1898 -0.133076923 -2.128615e-01 -0.053292314 -0.184414399 -0.081739447 > [20,] 1899 -0.126153846 -2.038573e-01 -0.048450366 -0.176152218 -0.076155475 > [21,] 1900 -0.119230769 -1.949655e-01 -0.043496005 -0.167962369 -0.070499170 > [22,] 1901 -0.112307692 -1.861951e-01 -0.038420244 -0.159850635 -0.064764750 > [23,] 1902 -0.105384615 -1.775555e-01 -0.033213760 -0.151823015 -0.058946216 > [24,] 1903 -0.098461539 -1.690561e-01 -0.027867017 -0.143885645 -0.053037432 > [25,] 1904 -0.091538462 -1.607065e-01 -0.022370423 -0.136044696 -0.047032227 > [26,] 1905 -0.084615385 -1.525162e-01 -0.016714535 -0.128306245 -0.040924524 > [27,] 1906 -0.077692308 -1.444943e-01 -0.010890287 -0.120676126 -0.034708490 > [28,] 1907 -0.070769231 -1.366492e-01 -0.004889253 -0.113159760 -0.028378702 > [29,] 1908 -0.063846154 -1.289884e-01 0.001296074 -0.105761977 -0.021930331 > [30,] 1909 -0.056923077 -1.215182e-01 0.007672008 -0.098486840 -0.015359314 > [31,] 1910 -0.050000000 -1.142434e-01 0.014243419 -0.091337484 -0.008662516 > [32,] 1911 -0.043076923 -1.071674e-01 0.021013527 -0.084315978 -0.001837868 > [33,] 1912 -0.036153846 -1.002914e-01 0.027983751 -0.077423239 0.005115546 > [34,] 1913 -0.029230769 -9.361519e-02 0.035153653 -0.070658982 0.012197443 > [35,] 1914 -0.022307692 -8.713634e-02 0.042520952 -0.064021740 0.019406355 > [36,] 1915 -0.015384615 -8.085086e-02 0.050081630 -0.057508928 0.026739697 > [37,] 1916 -0.008461538 -7.475318e-02 0.057830107 -0.051116955 0.034193878 > [38,] 1917 -0.001538462 -6.883640e-02 0.065759473 -0.044841376 0.041764453 > [39,] 1918 0.005384615 -6.309252e-02 0.073861755 -0.038677059 0.049446290 > [40,] 1919 0.012307692 -5.751281e-02 0.082128191 -0.032618368 0.057233753 > [41,] 1920 0.019230769 -5.208797e-02 0.090549507 -0.026659334 0.065120873 > [42,] 1921 0.026153846 -4.680847e-02 0.099116161 -0.020793819 0.073101511 > [43,] 1922 0.033076923 -4.166472e-02 0.107818567 -0.015015652 0.081169499 > [44,] 1923 0.040000000 -3.664727e-02 0.116647271 -0.009318753 0.089318753 > [45,] 1924 0.046923077 -3.174694e-02 0.125593095 -0.003697214 0.097543368 > [46,] 1925 0.053846154 -2.695494e-02 0.134647244 0.001854623 0.105837685 > [47,] 1926 0.060769231 -2.226292e-02 0.143801377 0.007342124 0.114196337 > [48,] 1927 0.067692308 -1.766304e-02 0.153047656 0.012770335 0.122614280 > [49,] 1928 0.074615385 -1.314799e-02 0.162378762 0.018143964 0.131086806 > [50,] 1929 0.081538462 -8.710982e-03 0.171787905 0.023467379 0.139609544 > [51,] 1930 0.088461538 -4.345738e-03 0.181268815 0.028744616 0.148178461 > [52,] 1931 0.095384615 -4.649065e-05 0.190815721 0.033979388 0.156789843 > [53,] 1932 0.102307692 4.192055e-03 0.200423329 0.039175101 0.165440284 > [54,] 1933 0.109230769 8.374747e-03 0.210086792 0.044334874 0.174126664 > [55,] 1934 0.116153846 1.250601e-02 0.219801679 0.049461559 0.182846134 > [56,] 1935 0.123076923 1.658990e-02 0.229563945 0.054557757 0.191596090 > [57,] 1936 0.130000000 2.063010e-02 0.239369902 0.059625842 0.200374158 > [58,] 1937 0.130000000 2.554264e-02 0.234457361 0.062786820 0.197213180 > [59,] 1938 0.130000000 3.023953e-02 0.229760466 0.065809042 0.194190958 > [60,] 1939 0.130000000 3.468890e-02 0.225311102 0.068671989 0.191328011 > [61,] 1940 0.130000000 3.885447e-02 0.221145527 0.071352331 0.188647669 > [62,] 1941 0.130000000 4.269563e-02 0.217304372 0.073823926 0.186176074 > [63,] 1942 0.130000000 4.616776e-02 0.213832244 0.076058070 0.183941930 > [64,] 1943 0.130000000 4.922326e-02 0.210776742 0.078024136 0.181975864 > [65,] 1944 0.130000000 5.181327e-02 0.208186727 0.079690683 0.180309317 > [66,] 1945 0.130000000 5.389026e-02 0.206109736 0.081027125 0.178972875 > [67,] 1946 0.130000000 5.541136e-02 0.204588637 0.082005877 0.177994123 > [68,] 1947 0.130000000 5.634212e-02 0.203657879 0.082604774 0.177395226 > [69,] 1948 0.130000000 5.666006e-02 0.203339939 0.082809352 0.177190648 > [70,] 1949 0.130000000 5.635724e-02 0.203642757 0.082614504 0.177385496 > [71,] 1950 0.130000000 5.544123e-02 0.204558768 0.082025096 0.177974904 > [72,] 1951 0.130000000 5.393418e-02 0.206065824 0.081055380 0.178944620 > [73,] 1952 0.130000000 5.187027e-02 0.208129729 0.079727358 0.180272642 > [74,] 1953 0.130000000 4.929223e-02 0.210707774 0.078068513 0.181931487 > [75,] 1954 0.130000000 4.624751e-02 0.213752495 0.076109385 0.183890615 > [76,] 1955 0.130000000 4.278497e-02 0.217215029 0.073881414 0.186118586 > [77,] 1956 0.130000000 3.895228e-02 0.221047722 0.071415265 0.188584735 > [78,] 1957 0.130000000 3.479412e-02 0.225205878 0.068739695 0.191260305 > [79,] 1958 0.130000000 3.035124e-02 0.229648764 0.065880916 0.194119084 > [80,] 1959 0.130000000 2.565999e-02 0.234340014 0.062862328 0.197137672 > [81,] 1960 0.130000000 2.075236e-02 0.239247637 0.059704514 0.200295486 > [82,] 1961 0.130000000 1.565622e-02 0.244343776 0.056425398 0.203574602 > [83,] 1962 0.130000000 1.039566e-02 0.249604337 0.053040486 0.206959514 > [84,] 1963 0.130000000 4.991436e-03 0.255008564 0.049563131 0.210436869 > [85,] 1964 0.130000000 -5.386147e-04 0.260538615 0.046004815 0.213995185 > [86,] 1965 0.143076923 1.926909e-02 0.266884757 0.063412665 0.222741181 > [87,] 1966 0.156153846 3.876772e-02 0.273539971 0.080621643 0.231686050 > [88,] 1967 0.169230769 5.790379e-02 0.280557753 0.097597325 0.240864213 > [89,] 1968 0.182307692 7.661491e-02 0.288000479 0.114299577 0.250315807 > [90,] 1969 0.195384615 9.482963e-02 0.295939602 0.130682422 0.260086809 > [91,] 1970 0.208461538 1.124682e-01 0.304454863 0.146694551 0.270228526 > [92,] 1971 0.221538461 1.294450e-01 0.313631914 0.162280850 0.280796073 > [93,] 1972 0.234615385 1.456729e-01 0.323557850 0.177385278 0.291845491 > [94,] 1973 0.247692308 1.610702e-01 0.334314435 0.191955225 0.303429390 > [95,] 1974 0.260769231 1.755689e-01 0.345969561 0.205947004 0.315591457 > [96,] 1975 0.273846154 1.891238e-01 0.358568478 0.219331501 0.328360807 > [97,] 1976 0.286923077 2.017191e-01 0.372127073 0.232098492 0.341747662 > [98,] 1977 0.300000000 2.133707e-01 0.386629338 0.244258277 0.355741722 > [99,] 1978 0.313076923 2.241239e-01 0.402029922 0.255840039 0.370313807 > [100,] 1979 0.326153846 2.340468e-01 0.418260863 0.266887506 0.385420186 > [101,] 1980 0.339230769 2.432212e-01 0.435240360 0.277453314 0.401008224 > [102,] 1981 0.352307692 2.517341e-01 0.452881314 0.287593508 0.417021876 > [103,] 1982 0.365384615 2.596711e-01 0.471098085 0.297363192 0.433406039 > [104,] 1983 0.378461538 2.671121e-01 0.489810964 0.306813654 0.450109423 > [105,] 1984 0.391538461 2.741284e-01 0.508948530 0.315990851 0.467086072 > [106,] 1985 0.404615384 2.807823e-01 0.528448443 0.324934896 0.484295873 > [107,] 1986 0.417692308 2.871274e-01 0.548257238 0.333680190 0.501704425 > [108,] 1987 0.430769231 2.932089e-01 0.568329576 0.342255907 0.519282554 > [109,] 1988 0.443846154 2.990650e-01 0.588627259 0.350686626 0.537005682 > [110,] 1989 0.456923077 3.047279e-01 0.609118218 0.358992981 0.554853173 > [111,] 1990 0.470000000 3.102244e-01 0.629775550 0.367192284 0.572807716 > [112,] 1991 0.483076923 3.155772e-01 0.650576667 0.375299067 0.590854778 > [113,] 1992 0.496153846 3.208051e-01 0.671502569 0.383325558 0.608982134 478,480d444 < Warning message: < In cobs(year, temp, knots.add = TRUE, degree = 1, constraint = "none", : < drqssbc2(): Not all flags are normal (== 1), ifl : 22 490,492d453 < Warning message: < In cobs(year, temp, nknots = 9, knots.add = TRUE, degree = 1, constraint = "none", : < drqssbc2(): Not all flags are normal (== 1), ifl : 22 496,499d456 < < **** ERROR in algorithm: ifl = 22 < < 502,503c459,460 < coef[1:5]: -0.39324840, -0.28115087, 0.05916295, -0.07465159, 0.31227753 < R^2 = 73.22% ; empirical tau (over all): 63/113 = 0.5575221 (target tau= 0.5) --- > coef[1:5]: -0.40655906, -0.31473700, 0.05651823, -0.05681818, 0.28681956 > R^2 = 72.56% ; empirical tau (over all): 54/113 = 0.4778761 (target tau= 0.5) 509,512d465 < < **** ERROR in algorithm: ifl = 22 < < 515,517d467 < Warning message: < In cobs(year, temp, nknots = length(a50$knots), knots = a50$knot, : < drqssbc2(): Not all flags are normal (== 1), ifl : 22 522,525d471 < < **** ERROR in algorithm: ifl = 22 < < 528,530d473 < Warning message: < In cobs(year, temp, nknots = length(a50$knots), knots = a50$knot, : < drqssbc2(): Not all flags are normal (== 1), ifl : 22 532,534c475 < [1] 1 2 9 10 17 18 20 21 22 23 26 27 35 36 42 47 48 49 52 < [20] 53 58 59 61 62 63 64 65 68 73 74 78 79 80 81 82 83 84 88 < [39] 90 91 94 98 100 101 102 104 108 109 111 112 --- > [1] 10 18 21 22 47 61 68 74 78 79 102 111 536,539c477 < [1] 3 4 5 6 7 8 11 12 13 14 15 16 19 24 25 28 29 30 31 < [20] 32 33 34 37 38 39 40 41 43 44 45 46 50 51 54 55 56 57 60 < [39] 66 67 69 70 71 72 75 76 77 85 86 87 89 92 93 95 96 97 99 < [58] 103 105 106 107 110 113 --- > [1] 5 8 25 38 39 50 54 77 85 97 113 Running ‘wind.R’ [10s/29s] Running the tests in ‘tests/ex2-long.R’ failed. Complete output: > #### > suppressMessages(library(cobs)) > > source(system.file("util.R", package = "cobs")) > (doExtra <- doExtras()) [1] FALSE > source(system.file("test-tools-1.R", package="Matrix", mustWork=TRUE)) Loading required package: tools > showProc.time() Time (user system elapsed): 0.003 0 0.066 > > options(digits = 5) > if(!dev.interactive(orNone=TRUE)) pdf("ex2.pdf") > > set.seed(821) > x <- round(sort(rnorm(200)), 3) # rounding -> multiple values > sum(duplicated(x)) # 9 [1] 3 > y <- (fx <- exp(-x)) + rt(200,4)/4 > summaryCobs(cxy <- cobs(x,y, "decrease")) qbsks2(): Performing general knot selection ... Deleting unnecessary knots ... List of 24 $ call : language cobs(x = x, y = y, constraint = "decrease") $ tau : num 0.5 $ degree : num 2 $ constraint : chr "decrease" $ ic : chr "AIC" $ pointwise : NULL $ select.knots : logi TRUE $ select.lambda: logi FALSE $ x : num [1:200] -2.56 -2.14 -1.91 -1.81 -1.78 ... $ y : num [1:200] 12.7 8.24 6.67 5.88 6.42 ... $ resid : num [1:200] 0.72 -0.149 0 -0.195 0.545 ... $ fitted : num [1:200] 11.98 8.39 6.67 6.07 5.87 ... $ coef : num [1:5] 11.9769 3.5917 1.0544 0.0295 0.0295 $ knots : num [1:4] -2.557 -0.813 0.418 2.573 $ k0 : num 5 $ k : num 5 $ x.ps :Formal class 'matrix.csr' [package "SparseM"] with 4 slots $ SSy : num 488 $ lambda : num 0 $ icyc : int 11 $ ifl : int 1 $ pp.lambda : NULL $ pp.sic : NULL $ i.mask : NULL cb.lo ci.lo fit ci.up cb.up 1 11.4448128 11.6875576 11.976923 12.26629 12.50903 2 10.9843366 11.2126114 11.484728 11.75684 11.98512 3 10.5344633 10.7489871 11.004712 11.26044 11.47496 4 10.0951784 10.2966768 10.536874 10.77707 10.97857 5 9.6664684 9.8556730 10.081215 10.30676 10.49596 6 9.2483213 9.4259693 9.637736 9.84950 10.02715 7 8.8407282 9.0075609 9.206435 9.40531 9.57214 8 8.4436848 8.6004453 8.787313 8.97418 9.13094 9 8.0571928 8.2046236 8.380369 8.55612 8.70355 10 7.6812627 7.8201015 7.985605 8.15111 8.28995 11 7.3159159 7.4468904 7.603020 7.75915 7.89012 12 6.9611870 7.0850095 7.232613 7.38022 7.50404 13 6.6171269 6.7344861 6.874385 7.01428 7.13164 14 6.2838041 6.3953578 6.528336 6.66131 6.77287 15 5.9613061 6.0676719 6.194466 6.32126 6.42763 16 5.6497392 5.7514863 5.872775 5.99406 6.09581 17 5.3492272 5.4468683 5.563262 5.67966 5.77730 18 5.0599086 5.1538933 5.265928 5.37796 5.47195 19 4.7819325 4.8726424 4.980774 5.08891 5.17961 20 4.5154542 4.6031999 4.707798 4.81240 4.90014 21 4.2606295 4.3456507 4.447001 4.54835 4.63337 22 4.0176099 4.1000771 4.198383 4.29669 4.37916 23 3.7865383 3.8665567 3.961943 4.05733 4.13735 24 3.5675443 3.6451602 3.737683 3.83021 3.90782 25 3.3607413 3.4359491 3.525601 3.61525 3.69046 26 3.1662231 3.2389744 3.325698 3.41242 3.48517 27 2.9840608 3.0542750 3.137974 3.22167 3.29189 28 2.8142997 2.8818753 2.962429 3.04298 3.11056 29 2.6569546 2.7217833 2.799063 2.87634 2.94117 30 2.5120031 2.5739870 2.647875 2.72176 2.78375 31 2.3793776 2.4384496 2.508867 2.57928 2.63836 32 2.2589520 2.3151025 2.382037 2.44897 2.50512 33 2.1505256 2.2038366 2.267386 2.33094 2.38425 34 2.0538038 2.1044916 2.164914 2.22534 2.27602 35 1.9677723 2.0162522 2.074043 2.13183 2.18031 36 1.8846710 1.9316617 1.987677 2.04369 2.09068 37 1.8024456 1.8486425 1.903712 1.95878 2.00498 38 1.7213655 1.7673410 1.822146 1.87695 1.92293 39 1.6417290 1.6879196 1.742982 1.79804 1.84423 40 1.5638322 1.6105393 1.666217 1.72189 1.76860 41 1.4879462 1.5353474 1.591852 1.64836 1.69576 42 1.4143040 1.4624707 1.519888 1.57731 1.62547 43 1.3430975 1.3920136 1.450324 1.50864 1.55755 44 1.2744792 1.3240589 1.383161 1.44226 1.49184 45 1.2085658 1.2586702 1.318397 1.37812 1.42823 46 1.1454438 1.1958944 1.256034 1.31617 1.36662 47 1.0851730 1.1357641 1.196072 1.25638 1.30697 48 1.0277900 1.0782992 1.138509 1.19872 1.24923 49 0.9733099 1.0235079 1.083347 1.14319 1.19338 50 0.9217268 0.9713870 1.030585 1.08978 1.13944 51 0.8730129 0.9219214 0.980223 1.03852 1.08743 52 0.8271160 0.8750827 0.932262 0.98944 1.03741 53 0.7839554 0.8308269 0.886700 0.94257 0.98945 54 0.7434158 0.7890916 0.843540 0.89799 0.94366 55 0.7053406 0.7497913 0.802779 0.85577 0.90022 56 0.6695233 0.7128138 0.764419 0.81602 0.85931 57 0.6357022 0.6780170 0.728459 0.77890 0.82121 58 0.6035616 0.6452289 0.694899 0.74457 0.78624 59 0.5724566 0.6139693 0.663455 0.71294 0.75445 60 0.5410437 0.5829503 0.632905 0.68286 0.72477 61 0.5094333 0.5521679 0.603110 0.65405 0.69679 62 0.4778879 0.5217649 0.574069 0.62637 0.67025 63 0.4466418 0.4918689 0.545782 0.59970 0.64492 64 0.4158910 0.4625864 0.518250 0.57391 0.62061 65 0.3857918 0.4340022 0.491472 0.54894 0.59715 66 0.3564634 0.4061813 0.465448 0.52471 0.57443 67 0.3279928 0.3791711 0.440179 0.50119 0.55236 68 0.3004403 0.3530042 0.415663 0.47832 0.53089 69 0.2738429 0.3277009 0.391903 0.45610 0.50996 70 0.2482184 0.3032707 0.368896 0.43452 0.48957 71 0.2235676 0.2797141 0.346644 0.41357 0.46972 72 0.1998762 0.2570233 0.325146 0.39327 0.45042 73 0.1771158 0.2351830 0.304402 0.37362 0.43169 74 0.1552452 0.2141706 0.284413 0.35466 0.41358 75 0.1342101 0.1939567 0.265178 0.33640 0.39615 76 0.1139444 0.1745054 0.246697 0.31889 0.37945 77 0.0943704 0.1557743 0.228971 0.30217 0.36357 78 0.0753996 0.1377153 0.211999 0.28628 0.34860 79 0.0569347 0.1202755 0.195781 0.27129 0.33463 80 0.0388708 0.1033980 0.180318 0.25724 0.32177 81 0.0210989 0.0870233 0.165609 0.24419 0.31012 82 0.0035089 0.0710917 0.151654 0.23222 0.29980 83 -0.0140062 0.0555449 0.138454 0.22136 0.29091 84 -0.0315470 0.0403283 0.126008 0.21169 0.28356 85 -0.0492034 0.0253928 0.114316 0.20324 0.27783 86 -0.0670524 0.0106968 0.103378 0.19606 0.27381 87 -0.0851561 -0.0037936 0.093195 0.19018 0.27155 88 -0.1035613 -0.0181039 0.083766 0.18564 0.27109 89 -0.1223000 -0.0322515 0.075091 0.18243 0.27248 90 -0.1413914 -0.0462467 0.067171 0.18059 0.27573 91 -0.1608432 -0.0600938 0.060005 0.18010 0.28085 92 -0.1806546 -0.0737923 0.053594 0.18098 0.28784 93 -0.2008180 -0.0873382 0.047936 0.18321 0.29669 94 -0.2213213 -0.1007247 0.043033 0.18679 0.30739 95 -0.2421494 -0.1139438 0.038884 0.19171 0.31992 96 -0.2632855 -0.1269863 0.035490 0.19797 0.33427 97 -0.2847123 -0.1398427 0.032850 0.20554 0.35041 98 -0.3064126 -0.1525038 0.030964 0.21443 0.36834 99 -0.3283696 -0.1649603 0.029833 0.22463 0.38804 100 -0.3505674 -0.1772037 0.029456 0.23611 0.40948 knots : [1] -2.557 -0.813 0.418 2.573 coef : [1] 11.976924 3.591747 1.054378 0.029456 0.029456 > 1 - sum(cxy $ resid ^ 2) / sum((y - mean(y))^2) # R^2 = 97.6% [1] 0.95969 > showProc.time() Time (user system elapsed): 0.751 0.039 3.036 > > if(doExtra) { + ## Interpolation + cxyI <- cobs(x,y, "decrease", knots = unique(x)) + ## takes quite long : 63 sec. (Pent. III, 700 MHz) --- this is because + ## each knot is added sequentially... {{improve!}} + + summaryCobs(cxyI)# only 7 knots remaining! + showProc.time() + } > > summaryCobs(cxy1 <- cobs(x,y, "decrease", lambda = 0.1)) List of 24 $ call : language cobs(x = x, y = y, constraint = "decrease", lambda = 0.1) $ tau : num 0.5 $ degree : num 2 $ constraint : chr "decrease" $ ic : NULL $ pointwise : NULL $ select.knots : logi TRUE $ select.lambda: logi FALSE $ x : num [1:200] -2.56 -2.14 -1.91 -1.81 -1.78 ... $ y : num [1:200] 12.7 8.24 6.67 5.88 6.42 ... $ resid : num [1:200] 0 -0.315 0 -0.161 0.586 ... $ fitted : num [1:200] 12.7 8.56 6.67 6.04 5.83 ... $ coef : num [1:22] 12.7 5.78 3.16 2.43 2.11 ... $ knots : num [1:20] -2.557 -1.34 -1.03 -0.901 -0.772 ... $ k0 : int 15 $ k : int 15 $ x.ps :Formal class 'matrix.csr' [package "SparseM"] with 4 slots $ SSy : num 488 $ lambda : num 0.1 $ icyc : int 23 $ ifl : int 1 $ pp.lambda : NULL $ pp.sic : NULL $ i.mask : NULL cb.lo ci.lo fit ci.up cb.up 1 12.0912847 12.4849933 12.6970034 12.90901 13.30272 2 11.5452819 11.9166521 12.1166331 12.31661 12.68798 3 11.0146966 11.3650966 11.5537853 11.74247 12.09287 4 10.4995535 10.8303355 11.0084599 11.18658 11.51737 5 9.9998870 10.3123808 10.4806571 10.64893 10.96143 6 9.5157430 9.8112485 9.9703768 10.12951 10.42501 7 9.0471805 9.3269594 9.4776191 9.62828 9.90806 8 8.5942728 8.8595392 9.0023838 9.14523 9.41049 9 8.1571088 8.4090188 8.5446710 8.68032 8.93223 10 7.7357927 7.9754347 8.1044808 8.23353 8.47317 11 7.3304438 7.5588289 7.6818131 7.80480 8.03318 12 6.9411951 7.1592477 7.2766679 7.39409 7.61214 13 6.5681906 6.7767415 6.8890452 7.00135 7.20990 14 6.2115819 6.4113636 6.5189450 6.62653 6.82631 15 5.8715240 6.0631680 6.1663674 6.26957 6.46121 16 5.5481704 5.7322086 5.8313123 5.93042 6.11445 17 5.2416676 5.4185366 5.5137796 5.60902 5.78589 18 4.9521494 5.1221988 5.2137695 5.30534 5.47539 19 4.6797308 4.8432355 4.9312819 5.01933 5.18283 20 4.4245017 4.5816781 4.6663169 4.75096 4.90813 21 4.1865199 4.3375470 4.4188743 4.50020 4.65123 22 3.9658032 4.1108482 4.1889542 4.26706 4.41211 23 3.7623206 3.9015710 3.9765567 4.05154 4.19079 24 3.5759813 3.7096836 3.7816817 3.85368 3.98738 25 3.4043771 3.5329043 3.6021155 3.67133 3.79985 26 3.2347309 3.3585931 3.4252922 3.49199 3.61585 27 3.0652721 3.1848437 3.2492325 3.31362 3.43319 28 2.8962030 3.0117271 3.0739363 3.13615 3.25167 29 2.7276530 2.8392885 2.8994037 2.95952 3.07115 30 2.5596612 2.6675415 2.7256346 2.78373 2.89161 31 2.3944947 2.4988186 2.5549966 2.61117 2.71550 32 2.2444821 2.3455939 2.4000421 2.45449 2.55560 33 2.1114672 2.2097080 2.2626102 2.31551 2.41375 34 1.9954176 2.0911496 2.1427009 2.19425 2.28998 35 1.8963846 1.9899366 2.0403140 2.09069 2.18424 36 1.8125024 1.9041996 1.9535781 2.00296 2.09465 37 1.7347658 1.8248332 1.8733340 1.92183 2.01190 38 1.6620975 1.7506630 1.7983550 1.84605 1.93461 39 1.5945123 1.6816941 1.7286411 1.77559 1.86277 40 1.5278221 1.6138190 1.6601279 1.70644 1.79243 41 1.4573347 1.5423451 1.5881227 1.63390 1.71891 42 1.3839943 1.4682138 1.5135655 1.55892 1.64314 43 1.3227219 1.4063482 1.4513806 1.49641 1.58004 44 1.2787473 1.3619265 1.4067181 1.45151 1.53469 45 1.2488624 1.3317463 1.3763789 1.42101 1.50390 46 1.2168724 1.2994789 1.3439621 1.38845 1.47105 47 1.1806389 1.2628708 1.3071522 1.35143 1.43367 48 1.1401892 1.2219316 1.2659495 1.30997 1.39171 49 1.0941843 1.1754044 1.2191410 1.26288 1.34410 50 1.0326549 1.1134412 1.1569442 1.20045 1.28123 51 0.9535058 1.0339215 1.0772249 1.12053 1.20094 52 0.8632281 0.9433870 0.9865521 1.02972 1.10988 53 0.7875624 0.8676441 0.9107678 0.95389 1.03397 54 0.7267897 0.8069673 0.8501425 0.89332 0.97350 55 0.6673925 0.7477244 0.7909827 0.83424 0.91457 56 0.6072642 0.6877460 0.7310850 0.77442 0.85491 57 0.5471548 0.6278279 0.6712700 0.71471 0.79539 58 0.4995140 0.5804770 0.6240752 0.66767 0.74864 59 0.4686435 0.5499607 0.5937495 0.63754 0.71886 60 0.4531016 0.5348803 0.5789177 0.62296 0.70473 61 0.4381911 0.5206110 0.5649937 0.60938 0.69180 62 0.4199957 0.5032331 0.5480561 0.59288 0.67612 63 0.4036491 0.4879280 0.5333117 0.57870 0.66297 64 0.3952493 0.4807890 0.5268517 0.57291 0.65845 65 0.3926229 0.4796600 0.5265291 0.57340 0.66044 66 0.3900185 0.4787485 0.5265291 0.57431 0.66304 67 0.3870480 0.4776752 0.5264774 0.57528 0.66591 68 0.3738545 0.4665585 0.5164792 0.56640 0.65910 69 0.3432056 0.4380737 0.4891596 0.54025 0.63511 70 0.2950830 0.3922142 0.4445189 0.49682 0.59395 71 0.2295290 0.3291123 0.3827373 0.43636 0.53595 72 0.1670195 0.2693294 0.3244228 0.37952 0.48183 73 0.1216565 0.2269375 0.2836308 0.34032 0.44561 74 0.0934100 0.2019260 0.2603613 0.31880 0.42731 75 0.0787462 0.1907702 0.2510947 0.31142 0.42344 76 0.0658428 0.1813823 0.2435998 0.30582 0.42136 77 0.0538230 0.1727768 0.2368329 0.30089 0.41984 78 0.0427388 0.1649719 0.2307938 0.29662 0.41885 79 0.0325663 0.1579592 0.2254827 0.29301 0.41840 80 0.0232151 0.1517072 0.2208995 0.29009 0.41858 81 0.0145359 0.1461634 0.2170442 0.28792 0.41955 82 0.0063272 0.1412575 0.2139168 0.28658 0.42151 83 -0.0016568 0.1369034 0.2115173 0.28613 0.42469 84 -0.0096967 0.1330028 0.2098457 0.28669 0.42939 85 -0.0180957 0.1294496 0.2089021 0.28835 0.43590 86 -0.0272134 0.1260791 0.2086264 0.29117 0.44447 87 -0.0387972 0.1210358 0.2071052 0.29317 0.45301 88 -0.0534279 0.1135207 0.2034217 0.29332 0.46027 89 -0.0709531 0.1035871 0.1975762 0.29157 0.46611 90 -0.0912981 0.0912612 0.1895684 0.28788 0.47043 91 -0.1144525 0.0765465 0.1793985 0.28225 0.47325 92 -0.1404576 0.0594287 0.1670665 0.27470 0.47459 93 -0.1693951 0.0398791 0.1525723 0.26527 0.47454 94 -0.2013769 0.0178586 0.1359159 0.25397 0.47321 95 -0.2365365 -0.0066795 0.1170974 0.24087 0.47073 96 -0.2750210 -0.0337868 0.0961167 0.22602 0.46725 97 -0.3169840 -0.0635170 0.0729738 0.20946 0.46293 98 -0.3625797 -0.0959240 0.0476688 0.19126 0.45792 99 -0.4119579 -0.1310604 0.0202016 0.17146 0.45236 100 -0.4652595 -0.1689754 -0.0094278 0.15012 0.44640 knots : [1] -2.557 -1.340 -1.030 -0.901 -0.772 -0.586 -0.448 -0.305 -0.092 0.054 [11] 0.163 0.329 0.481 0.606 0.722 0.859 1.065 1.244 1.837 2.573 coef : [1] 12.6970048 5.7788265 3.1620633 2.4291174 2.1069607 1.8462166 [7] 1.6371062 1.4304905 1.3348346 1.1758220 0.9413974 0.7863913 [13] 0.5998958 0.5697029 0.5265291 0.5265291 0.5265291 0.2707227 [19] 0.2086712 0.2086712 -0.0094278 6.5257497 > 1 - sum(cxy1 $ resid ^ 2) / sum((y - mean(y))^2) # R^2 = 98.2% [1] 0.96169 > > summaryCobs(cxy2 <- cobs(x,y, "decrease", lambda = 1e-2)) List of 24 $ call : language cobs(x = x, y = y, constraint = "decrease", lambda = 0.01) $ tau : num 0.5 $ degree : num 2 $ constraint : chr "decrease" $ ic : NULL $ pointwise : NULL $ select.knots : logi TRUE $ select.lambda: logi FALSE $ x : num [1:200] -2.56 -2.14 -1.91 -1.81 -1.78 ... $ y : num [1:200] 12.7 8.24 6.67 5.88 6.42 ... $ resid : num [1:200] 0 -0.146 0.1468 -0.0463 0.6868 ... $ fitted : num [1:200] 12.7 8.39 6.52 5.92 5.73 ... $ coef : num [1:22] 12.7 5.34 3.59 2.19 2.13 ... $ knots : num [1:20] -2.557 -1.34 -1.03 -0.901 -0.772 ... $ k0 : int 21 $ k : int 21 $ x.ps :Formal class 'matrix.csr' [package "SparseM"] with 4 slots $ SSy : num 488 $ lambda : num 0.01 $ icyc : int 35 $ ifl : int 1 $ pp.lambda : NULL $ pp.sic : NULL $ i.mask : NULL cb.lo ci.lo fit ci.up cb.up 1 12.0477594 12.4997491 12.6970071 12.89427 13.34625 2 11.4687308 11.8950752 12.0811411 12.26721 12.69355 3 10.9090823 11.3113523 11.4869116 11.66247 12.06474 4 10.3688404 10.7485883 10.9143185 11.08005 11.45980 5 9.8480420 10.2067945 10.3633618 10.51993 10.87868 6 9.3467363 9.6859859 9.8340417 9.98210 10.32135 7 8.8649866 9.1861815 9.3263579 9.46653 9.78773 8 8.4028715 8.7074055 8.8403106 8.97322 9.27775 9 7.9604861 8.2496865 8.3758998 8.50211 8.79131 10 7.5379421 7.8130586 7.9331254 8.05319 8.32831 11 7.1353676 7.3975607 7.5119874 7.62641 7.88861 12 6.7529050 7.0032361 7.1124859 7.22174 7.47207 13 6.3907086 6.6301316 6.7346209 6.83911 7.07853 14 6.0489410 6.2782966 6.3783923 6.47849 6.70784 15 5.7277684 5.9477816 6.0438001 6.13982 6.35983 16 5.4273551 5.6386366 5.7308444 5.82305 6.03433 17 5.1478583 5.3509094 5.4395252 5.52814 5.73119 18 4.8894214 5.0846433 5.1698424 5.25504 5.45026 19 4.6521676 4.8398760 4.9217960 5.00372 5.19142 20 4.4361933 4.6166367 4.6953861 4.77414 4.95458 21 4.2415605 4.4149443 4.4906127 4.56628 4.73966 22 4.0682883 4.2348044 4.3074756 4.38015 4.54666 23 3.9163432 4.0762071 4.1459751 4.21574 4.37561 24 3.7856282 3.9391227 4.0061110 4.07310 4.22659 25 3.6683774 3.8159306 3.8803259 3.94472 4.09227 26 3.5214653 3.6636629 3.7257209 3.78778 3.92998 27 3.3383583 3.4756303 3.5355387 3.59545 3.73272 28 3.1192735 3.2518988 3.3097793 3.36766 3.50028 29 2.8643493 2.9925103 3.0484425 3.10437 3.23254 30 2.5736278 2.6974778 2.7515286 2.80558 2.92943 31 2.2696062 2.3893733 2.4416422 2.49391 2.61368 32 2.0718959 2.1879754 2.2386350 2.28929 2.40537 33 1.9979346 2.1107181 2.1599392 2.20916 2.32194 34 1.9710324 2.0809358 2.1288999 2.17686 2.28677 35 1.9261503 2.0335510 2.0804229 2.12729 2.23470 36 1.8645775 1.9698487 2.0157914 2.06173 2.16701 37 1.7927585 1.8961587 1.9412848 1.98641 2.08981 38 1.7116948 1.8133707 1.8577443 1.90212 2.00379 39 1.6214021 1.7214896 1.7651699 1.80885 1.90894 40 1.5242004 1.6229275 1.6660141 1.70910 1.80783 41 1.4229217 1.5205162 1.5631086 1.60570 1.70330 42 1.3194940 1.4161806 1.4583766 1.50057 1.59726 43 1.2442053 1.3402109 1.3821098 1.42401 1.52001 44 1.2075941 1.3030864 1.3447613 1.38644 1.48193 45 1.2023778 1.2975311 1.3390581 1.38059 1.47574 46 1.1914924 1.2863272 1.3277152 1.36910 1.46394 47 1.1698641 1.2642688 1.3054691 1.34667 1.44107 48 1.1375221 1.2313649 1.2723199 1.31327 1.40712 49 1.0934278 1.1866710 1.2273643 1.26806 1.36130 50 1.0300956 1.1228408 1.1633168 1.20379 1.29654 51 0.9459780 1.0382977 1.0785880 1.11888 1.21120 52 0.8492712 0.9412961 0.9814577 1.02162 1.11364 53 0.7724392 0.8643755 0.9044985 0.94462 1.03656 54 0.7154255 0.8074718 0.8476428 0.88781 0.97986 55 0.6587891 0.7510125 0.7912608 0.83151 0.92373 56 0.5994755 0.6918710 0.7321944 0.77252 0.86491 57 0.5383570 0.6309722 0.6713915 0.71181 0.80443 58 0.4898228 0.5827709 0.6233354 0.66390 0.75685 59 0.4588380 0.5521926 0.5929345 0.63368 0.72703 60 0.4438719 0.5377564 0.5787296 0.61970 0.71359 61 0.4293281 0.5239487 0.5652432 0.60654 0.70116 62 0.4110511 0.5066103 0.5483143 0.59002 0.68558 63 0.3944126 0.4911673 0.5333932 0.57562 0.67237 64 0.3857958 0.4839980 0.5268556 0.56971 0.66792 65 0.3830000 0.4829213 0.5265291 0.57014 0.67006 66 0.3802084 0.4820731 0.5265291 0.57099 0.67285 67 0.3770181 0.4810608 0.5264673 0.57187 0.67592 68 0.3616408 0.4680678 0.5145149 0.56096 0.66739 69 0.3254129 0.4343244 0.4818557 0.52939 0.63830 70 0.2683149 0.3798245 0.4284897 0.47715 0.58866 71 0.1904294 0.3047541 0.3546478 0.40454 0.51887 72 0.1179556 0.2354105 0.2866704 0.33793 0.45539 73 0.0689088 0.1897746 0.2425231 0.29527 0.41614 74 0.0432569 0.1678366 0.2222059 0.27658 0.40115 75 0.0359906 0.1645977 0.2207246 0.27685 0.40546 76 0.0301934 0.1628364 0.2207246 0.27861 0.41126 77 0.0245630 0.1611257 0.2207246 0.28032 0.41689 78 0.0191553 0.1594827 0.2207246 0.28197 0.42229 79 0.0139446 0.1578996 0.2207246 0.28355 0.42750 80 0.0088340 0.1563468 0.2207246 0.28510 0.43262 81 0.0036634 0.1547759 0.2207246 0.28667 0.43779 82 -0.0017830 0.1531211 0.2207246 0.28833 0.44323 83 -0.0077688 0.1513025 0.2207246 0.29015 0.44922 84 -0.0145948 0.1492286 0.2207246 0.29222 0.45604 85 -0.0225859 0.1468007 0.2207246 0.29465 0.46404 86 -0.0321107 0.1438739 0.2206774 0.29748 0.47347 87 -0.0445016 0.1389916 0.2190720 0.29915 0.48265 88 -0.0601227 0.1315395 0.2151851 0.29883 0.49049 89 -0.0788103 0.1215673 0.2090164 0.29647 0.49684 90 -0.1004844 0.1090993 0.2005661 0.29203 0.50162 91 -0.1251339 0.0941388 0.1898342 0.28553 0.50480 92 -0.1528032 0.0766725 0.1768206 0.27697 0.50644 93 -0.1835797 0.0566736 0.1615253 0.26638 0.50663 94 -0.2175834 0.0341058 0.1439484 0.25379 0.50548 95 -0.2549574 0.0089256 0.1240898 0.23925 0.50314 96 -0.2958592 -0.0189149 0.1019496 0.22281 0.49976 97 -0.3404537 -0.0494657 0.0775277 0.20452 0.49551 98 -0.3889062 -0.0827771 0.0508241 0.18443 0.49055 99 -0.4413769 -0.1188979 0.0218389 0.16258 0.48505 100 -0.4980173 -0.1578738 -0.0094279 0.13902 0.47916 knots : [1] -2.557 -1.340 -1.030 -0.901 -0.772 -0.586 -0.448 -0.305 -0.092 0.054 [11] 0.163 0.329 0.481 0.606 0.722 0.859 1.065 1.244 1.837 2.573 coef : [1] 12.697009 5.337850 3.591398 2.187733 2.133993 1.936435 1.631856 [8] 1.340650 1.340650 1.185401 0.931750 0.789326 0.598245 0.570221 [15] 0.526529 0.526529 0.526529 0.220725 0.220725 0.220725 -0.009428 [22] 46.342964 > 1 - sum(cxy2 $ resid ^ 2) / sum((y - mean(y))^2) # R^2 = 98.2% (tiny bit better) [1] 0.96257 > > summaryCobs(cxy3 <- cobs(x,y, "decrease", lambda = 1e-6, nknots = 60)) List of 24 $ call : language cobs(x = x, y = y, constraint = "decrease", nknots = 60, lambda = 1e-06) $ tau : num 0.5 $ degree : num 2 $ constraint : chr "decrease" $ ic : NULL $ pointwise : NULL $ select.knots : logi TRUE $ select.lambda: logi FALSE $ x : num [1:200] -2.56 -2.14 -1.91 -1.81 -1.78 ... $ y : num [1:200] 12.7 8.24 6.67 5.88 6.42 ... $ resid : num [1:200] 0 0 0 -0.382 0.309 ... $ fitted : num [1:200] 12.7 8.24 6.67 6.26 6.11 ... $ coef : num [1:62] 12.7 7.69 6.09 4.35 3.73 3.73 2.74 2.57 2.57 2.25 ... $ knots : num [1:60] -2.56 -1.81 -1.73 -1.38 -1.23 ... $ k0 : int 61 $ k : int 61 $ x.ps :Formal class 'matrix.csr' [package "SparseM"] with 4 slots $ SSy : num 488 $ lambda : num 1e-06 $ icyc : int 46 $ ifl : int 1 $ pp.lambda : NULL $ pp.sic : NULL $ i.mask : NULL cb.lo ci.lo fit ci.up cb.up 1 12.0247124 12.56890432 12.6970139 12.825123 13.36932 2 11.3797843 11.89599414 12.0175164 12.139039 12.65525 3 10.7668218 11.25721357 11.3726579 11.488102 11.97849 4 10.1860204 10.65259986 10.7624385 10.872277 11.33886 5 9.6375946 10.08219388 10.1868581 10.291522 10.73612 6 9.1217734 9.54603927 9.6459167 9.745794 10.17006 7 8.6387946 9.04418136 9.1396144 9.235048 9.64043 8 8.1888978 8.57666578 8.6679512 8.759237 9.14700 9 7.7723156 8.14353686 8.2309270 8.318317 8.68954 10 7.3892646 7.74483589 7.8285418 7.912248 8.26782 11 7.0399352 7.38059913 7.4607957 7.540992 7.88166 12 6.7244802 7.05085572 7.1276886 7.204521 7.53090 13 6.4430029 6.75562533 6.8292205 6.902816 7.21544 14 6.1955428 6.49491547 6.5653915 6.635868 6.93524 15 5.9820595 6.26871848 6.3362016 6.403685 6.69034 16 5.7696526 6.04428975 6.1089428 6.173596 6.44823 17 5.4339991 5.69759119 5.7596440 5.821697 6.08529 18 5.0454361 5.29908138 5.3587927 5.418504 5.67215 19 4.6993977 4.94405130 5.0016458 5.059240 5.30389 20 4.3963458 4.63268699 4.6883247 4.743962 4.98030 21 4.1365583 4.36504142 4.4188292 4.472617 4.70110 22 3.9202312 4.14115193 4.1931594 4.245167 4.46609 23 3.7474595 3.96103662 4.0113153 4.061594 4.27517 24 3.6182953 3.82478434 3.8733944 3.922005 4.12849 25 3.5335861 3.73343196 3.7804782 3.827524 4.02737 26 3.4937186 3.68729597 3.7328665 3.778437 3.97201 27 3.4752667 3.66292175 3.7070981 3.751274 3.93893 28 3.3043525 3.48641351 3.5292729 3.572132 3.75419 29 2.9458452 3.12249549 3.1640812 3.205667 3.38232 30 2.4899112 2.66132542 2.7016785 2.742031 2.91345 31 2.3652956 2.53186083 2.5710724 2.610284 2.77685 32 2.2382402 2.40029503 2.4384448 2.476594 2.63865 33 2.0486975 2.20653724 2.2436947 2.280852 2.43869 34 2.0511798 2.20522276 2.2414864 2.277750 2.43179 35 2.0553528 2.20601792 2.2414864 2.276955 2.42762 36 2.0385642 2.18623332 2.2209965 2.255760 2.40343 37 1.8391470 1.98414706 2.0182819 2.052417 2.19742 38 1.6312788 1.77395114 1.8075380 1.841125 1.98380 39 1.5314449 1.67192652 1.7049976 1.738069 1.87855 40 1.5208780 1.65927041 1.6918497 1.724429 1.86282 41 1.4986364 1.63513027 1.6672626 1.699395 1.83589 42 1.4498027 1.58470514 1.6164629 1.648221 1.78312 43 1.2247043 1.35830771 1.3897596 1.421211 1.55481 44 1.1772885 1.30980813 1.3410049 1.372202 1.50472 45 1.1781750 1.30997706 1.3410049 1.372033 1.50383 46 1.1786125 1.31005757 1.3410014 1.371945 1.50339 47 1.1644262 1.29555858 1.3264288 1.357299 1.48843 48 1.1223208 1.25286982 1.2836027 1.314336 1.44488 49 1.0583227 1.18805529 1.2185960 1.249137 1.37887 50 1.0360396 1.16504088 1.1954094 1.225778 1.35478 51 1.0366880 1.16516444 1.1954094 1.225654 1.35413 52 0.9728290 1.10089058 1.1310379 1.161185 1.28925 53 0.6458992 0.77387319 0.8039998 0.834127 0.96210 54 0.6278378 0.75589463 0.7860408 0.816187 0.94424 55 0.6233664 0.75144260 0.7815933 0.811744 0.93982 56 0.6203139 0.74853170 0.7787158 0.808900 0.93712 57 0.4831205 0.61171664 0.6419898 0.672263 0.80086 58 0.4152141 0.54435194 0.5747526 0.605153 0.73429 59 0.4143942 0.54419570 0.5747526 0.605309 0.73511 60 0.4133407 0.54399495 0.5747526 0.605510 0.73616 61 0.3912541 0.52305164 0.5540784 0.585105 0.71690 62 0.3615872 0.49479624 0.5261553 0.557514 0.69072 63 0.3595156 0.49440150 0.5261553 0.557909 0.69279 64 0.3572502 0.49396981 0.5261553 0.558341 0.69506 65 0.3545874 0.49346241 0.5261553 0.558848 0.69772 66 0.3515435 0.49288238 0.5261553 0.559428 0.70077 67 0.3482098 0.49224713 0.5261553 0.560063 0.70410 68 0.3447026 0.49157882 0.5261553 0.560732 0.70761 69 0.3265062 0.47651151 0.5118246 0.547138 0.69714 70 0.2579257 0.41132297 0.4474346 0.483546 0.63694 71 0.2081857 0.36515737 0.4021105 0.439064 0.59604 72 0.1349572 0.29569526 0.3335350 0.371375 0.53211 73 0.0020438 0.16674762 0.2055209 0.244294 0.40900 74 -0.0243664 0.14460810 0.1843868 0.224166 0.39314 75 -0.0362635 0.13720915 0.1780468 0.218884 0.39236 76 -0.0421115 0.13609478 0.1780468 0.219999 0.39820 77 -0.0482083 0.13493301 0.1780468 0.221161 0.40430 78 -0.0546034 0.13371440 0.1780468 0.222379 0.41070 79 -0.0610386 0.13248816 0.1780468 0.223605 0.41713 80 -0.0674722 0.13126221 0.1780468 0.224831 0.42357 81 -0.0740291 0.13001276 0.1780468 0.226081 0.43012 82 -0.0809567 0.12869267 0.1780468 0.227401 0.43705 83 -0.0885308 0.12724941 0.1780468 0.228844 0.44462 84 -0.0966886 0.12569491 0.1780468 0.230399 0.45278 85 -0.1053882 0.12403716 0.1780468 0.232056 0.46148 86 -0.1147206 0.12225885 0.1780468 0.233835 0.47081 87 -0.1248842 0.12032213 0.1780468 0.235771 0.48098 88 -0.1360096 0.11820215 0.1780468 0.237891 0.49210 89 -0.1480747 0.11590310 0.1780468 0.240190 0.50417 90 -0.1611528 0.11337745 0.1780053 0.242633 0.51716 91 -0.1772967 0.10838384 0.1756366 0.242889 0.52857 92 -0.1976403 0.09964452 0.1696291 0.239614 0.53690 93 -0.2221958 0.08715720 0.1599828 0.232808 0.54216 94 -0.2510614 0.07090314 0.1466976 0.222492 0.54446 95 -0.2844042 0.05085051 0.1297736 0.208697 0.54395 96 -0.3224450 0.02695723 0.1092109 0.191465 0.54087 97 -0.3654434 -0.00082617 0.0850093 0.170845 0.53546 98 -0.4136843 -0.03255395 0.0571689 0.146892 0.52802 99 -0.4674640 -0.06828261 0.0256897 0.119662 0.51884 100 -0.5270786 -0.10806856 -0.0094284 0.089212 0.50822 knots : [1] -2.557 -1.812 -1.726 -1.384 -1.233 -1.082 -1.046 -1.009 -0.932 -0.902 [11] -0.877 -0.838 -0.813 -0.765 -0.707 -0.665 -0.568 -0.498 -0.460 -0.413 [21] -0.347 -0.333 -0.299 -0.274 -0.226 -0.089 -0.024 -0.011 0.063 0.094 [31] 0.118 0.136 0.231 0.285 0.328 0.392 0.460 0.473 0.517 0.551 [41] 0.602 0.623 0.692 0.715 0.742 0.787 0.812 0.892 0.934 0.988 [51] 1.070 1.162 1.178 1.276 1.402 1.655 1.877 1.988 2.047 2.573 coef : [1] 12.6970155 7.6878537 6.0937652 4.3540061 3.7259911 3.7259911 [7] 2.7408131 2.5727608 2.5727608 2.2478639 2.2414864 2.2414864 [13] 2.2414864 2.2414864 2.2414864 1.9875889 1.6964374 1.6964374 [19] 1.6623718 1.6623718 1.3410049 1.3410049 1.3410049 1.3410049 [25] 1.3410049 1.3410049 1.1954094 1.1954094 1.1954094 1.1954094 [31] 0.9829296 0.8091342 0.7815933 0.7815933 0.7815933 0.5747526 [37] 0.5747526 0.5747526 0.5747526 0.5747526 0.5261553 0.5261553 [43] 0.5261553 0.5261553 0.5261553 0.5261553 0.5261553 0.5261553 [49] 0.5261553 0.5261553 0.4273578 0.3741431 0.2060752 0.1780468 [55] 0.1780468 0.1780468 0.1780468 0.1780468 0.1780468 0.1780468 [61] -0.0094285 432.6957871 > 1 - sum(cxy3 $ resid ^ 2) / sum((y - mean(y))^2) # R^2 = 98.36% [1] 0.96502 > showProc.time() Time (user system elapsed): 0.26 0.015 0.277 > > cpuTime(cxy4 <- cobs(x,y, "decrease", lambda = 1e-6, nknots = 100))# ~ 3 sec. Time elapsed: 0.281 > 1 - sum(cxy4 $ resid ^ 2) / sum((y - mean(y))^2) # R^2 = 98.443% [1] 0.96603 > > cpuTime(cxy5 <- cobs(x,y, "decrease", lambda = 1e-6, nknots = 150))# ~ 8.7 sec. Time elapsed: 0.273 > 1 - sum(cxy5 $ resid ^ 2) / sum((y - mean(y))^2) # R^2 = 98.4396% [1] 0.96835 > showProc.time() Time (user system elapsed): 0.575 0.008 2.819 > > > ## regularly spaced x : > X <- seq(-1,1, len = 201) > xx <- c(seq(-1.1, -1, len = 11), X, + seq( 1, 1.1, len = 11)) > y <- (fx <- exp(-X)) + rt(201,4)/4 > summaryCobs(cXy <- cobs(X,y, "decrease")) qbsks2(): Performing general knot selection ... Deleting unnecessary knots ... List of 24 $ call : language cobs(x = X, y = y, constraint = "decrease") $ tau : num 0.5 $ degree : num 2 $ constraint : chr "decrease" $ ic : chr "AIC" $ pointwise : NULL $ select.knots : logi TRUE $ select.lambda: logi FALSE $ x : num [1:201] -1 -0.99 -0.98 -0.97 -0.96 -0.95 -0.94 -0.93 -0.92 -0.91 ... $ y : num [1:201] 2.67 2.77 3.46 3.14 1.79 ... $ resid : num [1:201] 0 0.125 0.84 0.555 -0.77 ... $ fitted : num [1:201] 2.67 2.64 2.62 2.59 2.56 ... $ coef : num [1:4] 2.672 1.556 0.7 0.356 $ knots : num [1:3] -1 -0.2 1 $ k0 : num 4 $ k : num 4 $ x.ps :Formal class 'matrix.csr' [package "SparseM"] with 4 slots $ SSy : num 100 $ lambda : num 0 $ icyc : int 9 $ ifl : int 1 $ pp.lambda : NULL $ pp.sic : NULL $ i.mask : NULL cb.lo ci.lo fit ci.up cb.up 1 2.46750 2.55064 2.67153 2.79242 2.87556 2 2.42251 2.50122 2.61568 2.73013 2.80884 3 2.37783 2.45240 2.56081 2.66923 2.74379 4 2.33345 2.40414 2.50694 2.60973 2.68043 5 2.28933 2.35645 2.45404 2.55164 2.61876 6 2.24548 2.30932 2.40214 2.49496 2.55879 7 2.20189 2.26274 2.35122 2.43970 2.50055 8 2.15855 2.21672 2.30129 2.38586 2.44402 9 2.11547 2.17124 2.25234 2.33344 2.38922 10 2.07265 2.12633 2.20438 2.28244 2.33611 11 2.03013 2.08199 2.15741 2.23283 2.28470 12 1.98791 2.03824 2.11142 2.18461 2.23494 13 1.94605 1.99510 2.06642 2.13775 2.18680 14 1.90459 1.95260 2.02241 2.09222 2.14023 15 1.86359 1.91078 1.97938 2.04799 2.09517 16 1.82311 1.86966 1.93734 2.00502 2.05157 17 1.78322 1.82929 1.89629 1.96328 2.00936 18 1.74397 1.78971 1.85622 1.92273 1.96847 19 1.70544 1.75096 1.81714 1.88332 1.92883 20 1.66769 1.71307 1.77904 1.84502 1.89039 21 1.63079 1.67608 1.74193 1.80779 1.85308 22 1.59478 1.64002 1.70581 1.77160 1.81684 23 1.55972 1.60493 1.67067 1.73642 1.78163 24 1.52564 1.57083 1.63653 1.70222 1.74741 25 1.49260 1.53773 1.60336 1.66899 1.71412 26 1.46062 1.50567 1.57118 1.63670 1.68175 27 1.42972 1.47466 1.53999 1.60533 1.65026 28 1.39994 1.44470 1.50979 1.57488 1.61964 29 1.37128 1.41581 1.48057 1.54533 1.58987 30 1.34375 1.38800 1.45234 1.51668 1.56093 31 1.31736 1.36126 1.42510 1.48893 1.53283 32 1.29211 1.33560 1.39884 1.46207 1.50556 33 1.26800 1.31101 1.37357 1.43612 1.47914 34 1.24500 1.28749 1.34928 1.41107 1.45356 35 1.22310 1.26502 1.32598 1.38694 1.42886 36 1.20228 1.24360 1.30367 1.36374 1.40505 37 1.18250 1.22319 1.28234 1.34150 1.38218 38 1.16372 1.20377 1.26200 1.32023 1.36028 39 1.14589 1.18532 1.24265 1.29998 1.33941 40 1.12894 1.16779 1.22428 1.28077 1.31962 41 1.11271 1.15106 1.20683 1.26259 1.30094 42 1.09639 1.13439 1.18963 1.24488 1.28287 43 1.07982 1.11760 1.17253 1.22747 1.26525 44 1.06303 1.10072 1.15553 1.21034 1.24803 45 1.04607 1.08378 1.13862 1.19346 1.23117 46 1.02898 1.06681 1.12181 1.17681 1.21463 47 1.01180 1.04982 1.10509 1.16037 1.19838 48 0.99458 1.03284 1.08847 1.14411 1.18237 49 0.97734 1.01589 1.07195 1.12801 1.16656 50 0.96011 0.99899 1.05552 1.11205 1.15092 51 0.94294 0.98216 1.03919 1.09621 1.13543 52 0.92585 0.96541 1.02295 1.08049 1.12005 53 0.90885 0.94877 1.00681 1.06485 1.10477 54 0.89197 0.93223 0.99076 1.04930 1.08956 55 0.87523 0.91581 0.97482 1.03382 1.07440 56 0.85865 0.89952 0.95896 1.01840 1.05928 57 0.84223 0.88337 0.94321 1.00304 1.04419 58 0.82598 0.86736 0.92755 0.98773 1.02911 59 0.80991 0.85150 0.91198 0.97246 1.01405 60 0.79403 0.83579 0.89651 0.95723 0.99899 61 0.77834 0.82023 0.88114 0.94205 0.98394 62 0.76284 0.80482 0.86586 0.92690 0.96888 63 0.74753 0.78956 0.85068 0.91180 0.95383 64 0.73241 0.77446 0.83559 0.89673 0.93878 65 0.71747 0.75950 0.82060 0.88171 0.92374 66 0.70271 0.74468 0.80571 0.86674 0.90871 67 0.68812 0.73001 0.79091 0.85182 0.89371 68 0.67368 0.71546 0.77621 0.83696 0.87874 69 0.65939 0.70104 0.76161 0.82217 0.86382 70 0.64523 0.68674 0.74710 0.80745 0.84896 71 0.63118 0.67254 0.73268 0.79282 0.83419 72 0.61722 0.65844 0.71836 0.77829 0.81951 73 0.60333 0.64441 0.70414 0.76388 0.80495 74 0.58948 0.63045 0.69002 0.74958 0.79055 75 0.57565 0.61654 0.67599 0.73544 0.77632 76 0.56181 0.60266 0.66205 0.72145 0.76230 77 0.54792 0.58879 0.64821 0.70764 0.74851 78 0.53395 0.57491 0.63447 0.69403 0.73500 79 0.51986 0.56100 0.62083 0.68065 0.72179 80 0.50563 0.54705 0.60728 0.66750 0.70892 81 0.49121 0.53302 0.59382 0.65462 0.69643 82 0.47657 0.51891 0.58046 0.64202 0.68435 83 0.46169 0.50468 0.56720 0.62972 0.67271 84 0.44652 0.49033 0.55403 0.61774 0.66155 85 0.43105 0.47584 0.54096 0.60609 0.65087 86 0.41526 0.46119 0.52799 0.59478 0.64072 87 0.39912 0.44638 0.51511 0.58383 0.63109 88 0.38264 0.43141 0.50233 0.57324 0.62202 89 0.36579 0.41626 0.48964 0.56302 0.61349 90 0.34858 0.40093 0.47705 0.55317 0.60552 91 0.33101 0.38542 0.46455 0.54368 0.59810 92 0.31307 0.36975 0.45215 0.53456 0.59123 93 0.29478 0.35390 0.43985 0.52580 0.58492 94 0.27615 0.33788 0.42764 0.51741 0.57914 95 0.25717 0.32170 0.41553 0.50936 0.57389 96 0.23787 0.30536 0.40352 0.50167 0.56917 97 0.21824 0.28888 0.39160 0.49431 0.56495 98 0.19830 0.27225 0.37977 0.48730 0.56125 99 0.17806 0.25547 0.36804 0.48062 0.55803 100 0.15752 0.23857 0.35641 0.47426 0.55531 knots : [1] -1.0 -0.2 1.0 coef : [1] 2.67153 1.55592 0.70045 0.35641 > 1 - sum(cXy $ resid ^ 2) / sum((y - mean(y))^2) # R^2 = 77.2% [1] 0.77644 > showProc.time() Time (user system elapsed): 0.169 0.003 0.174 > > (cXy.9 <- cobs(X,y, "decrease", tau = 0.9)) qbsks2(): Performing general knot selection ... Deleting unnecessary knots ... COBS regression spline (degree = 2) from call: cobs(x = X, y = y, constraint = "decrease", tau = 0.9) {tau=0.9}-quantile; dimensionality of fit: 6 from {6} x$knots[1:5]: -1.0, -0.6, -0.2, 0.2, 1.0 > (cXy.1 <- cobs(X,y, "decrease", tau = 0.1)) qbsks2(): Performing general knot selection ... WARNING! Since the number of 6 knots selected by AIC reached the upper bound during general knot selection, you might want to rerun cobs with a larger number of knots. Deleting unnecessary knots ... WARNING! Since the number of 6 knots selected by AIC reached the upper bound during general knot selection, you might want to rerun cobs with a larger number of knots. COBS regression spline (degree = 2) from call: cobs(x = X, y = y, constraint = "decrease", tau = 0.1) {tau=0.1}-quantile; dimensionality of fit: 4 from {4} x$knots[1:3]: -1.0, 0.6, 1.0 > (cXy.99<- cobs(X,y, "decrease", tau = 0.99)) qbsks2(): Performing general knot selection ... Deleting unnecessary knots ... COBS regression spline (degree = 2) from call: cobs(x = X, y = y, constraint = "decrease", tau = 0.99) {tau=0.99}-quantile; dimensionality of fit: 4 from {4} x$knots[1:3]: -1.0, -0.2, 1.0 > (cXy.01<- cobs(X,y, "decrease", tau = 0.01)) qbsks2(): Performing general knot selection ... Deleting unnecessary knots ... COBS regression spline (degree = 2) from call: cobs(x = X, y = y, constraint = "decrease", tau = 0.01) {tau=0.01}-quantile; dimensionality of fit: 6 from {6} x$knots[1:5]: -1.0, -0.6, -0.2, 0.2, 1.0 > plot(X,y, xlim = range(xx), + main = "cobs(*, \"decrease\"), N=201, tau = 50% (Med.), 1,10, 90,99%") > lines(predict(cXy, xx), col = 2) > lines(predict(cXy.1, xx), col = 3) > lines(predict(cXy.9, xx), col = 3) > lines(predict(cXy.01, xx), col = 4) > lines(predict(cXy.99, xx), col = 4) > > showProc.time() Time (user system elapsed): 0.81 0.001 0.979 > > ## Interpolation > cpuTime(cXyI <- cobs(X,y, "decrease", knots = unique(X))) qbsks2(): Performing general knot selection ... Error in x %*% coefficients : NA/NaN/Inf in foreign function call (arg 2) Calls: cpuTime ... cobs -> qbsks2 -> drqssbc2 -> rq.fit.sfnc -> %*% -> %*% In addition: Warning message: In cobs(X, y, "decrease", knots = unique(X)) : The number of knots can't be equal to the number of unique x for degree = 2. 'cobs' has automatically deleted the middle knot. Timing stopped at: 1.843 0.024 7.219 Execution halted Running the tests in ‘tests/roof.R’ failed. Complete output: > suppressMessages(library(cobs)) > > data(USArmyRoofs) > attach(USArmyRoofs)#-> "age" and "fci" > > if(!dev.interactive(orNone=TRUE)) pdf("roof.pdf", width=10) > > ## Compute the quadratic median smoothing B-spline with SIC > ## chosen lambda > a50 <- cobs(age,fci,constraint = "decrease",lambda = -1,nknots = 10, + degree = 2,pointwise = rbind(c(0,0,100)), + trace = 2)# trace > 1 : more tracing Searching for optimal lambda. This may take a while. While you are waiting, here is something you can consider to speed up the process: (a) Use a smaller number of knots; (b) Set lambda==0 to exclude the penalty term; (c) Use a coarser grid by reducing the argument 'lambda.length' from the default value of 25. fieq=TRUE -> Tnobs = 184, n0 = 29, |ptConstr| = 2 Error in drqssbc2(x, y, w, pw = pw, knots = knots, degree = degree, Tlambda = if (select.lambda) lambdaSet else lambda, : The problem is degenerate for the range of lambda specified. Calls: cobs -> drqssbc2 In addition: Warning message: In min(sol1["k", i.keep]) : no non-missing arguments to min; returning Inf Execution halted Running the tests in ‘tests/wind.R’ failed. Complete output: > suppressMessages(library(cobs)) > > source(system.file("util.R", package = "cobs")) > (doExtra <- doExtras()) [1] FALSE > source(system.file("test-tools-1.R", package="Matrix", mustWork=TRUE)) Loading required package: tools > showProc.time() # timing here (to be faster by default) Time (user system elapsed): 0.001 0.002 0.032 > > data(DublinWind) > attach(DublinWind)##-> speed & day (instead of "wind.x" & "DUB.") > iday <- sort.list(day) > > if(!dev.interactive(orNone=TRUE)) pdf("wind.pdf", width=10) > > stopifnot(identical(day,c(rep(c(rep(1:365,3),1:366),4), + rep(1:365,2)))) > co50.1 <- cobs(day, speed, constraint= "periodic", tau= .5, lambda= 2.2, + degree = 1) > co50.2 <- cobs(day, speed, constraint= "periodic", tau= .5, lambda= 2.2, + degree = 2) > > showProc.time() Time (user system elapsed): 0.722 0.048 2.589 > > plot(day,speed, pch = ".", col = "gray20") > lines(day[iday], fitted(co50.1)[iday], col="orange", lwd = 2) > lines(day[iday], fitted(co50.2)[iday], col="sky blue", lwd = 2) > rug(knots(co50.1), col=3, lwd=2) > > nknots <- 13 > > > if(doExtra) { + ## Compute the quadratic median smoothing B-spline using SIC + ## lambda selection + co.o50 <- + cobs(day, speed, knots.add = TRUE, constraint="periodic", nknots = nknots, + tau = .5, lambda = -1, method = "uniform") + summary(co.o50) # [does print] + + showProc.time() + + op <- par(mfrow = c(3,1), mgp = c(1.5, 0.6,0), mar=.1 + c(3,3:1)) + with(co.o50, plot(pp.sic ~ pp.lambda, type ="o", + col=2, log = "x", main = "co.o50: periodic")) + with(co.o50, plot(pp.sic ~ pp.lambda, type ="o", ylim = robrng(pp.sic), + col=2, log = "x", main = "co.o50: periodic")) + of <- 0.64430538125795 + with(co.o50, plot(pp.sic - of ~ pp.lambda, type ="o", ylim = c(6e-15, 8e-15), + ylab = paste("sic -",formatC(of, dig=14, small.m = "'")), + col=2, log = "x", main = "co.o50: periodic")) + par(op) + } > > showProc.time() Time (user system elapsed): 0.049 0.003 0.144 > > ## cobs99: Since SIC chooses a lambda that corresponds to the smoothest > ## possible fit, rerun cobs with a larger lstart value > ## (lstart <- log(.Machine$double.xmax)^3) # 3.57 e9 > ## > co.o50. <- + cobs(day,speed, knots.add = TRUE, constraint = "periodic", nknots = 10, + tau = .5, lambda = -1, method = "quantile") Searching for optimal lambda. This may take a while. While you are waiting, here is something you can consider to speed up the process: (a) Use a smaller number of knots; (b) Set lambda==0 to exclude the penalty term; (c) Use a coarser grid by reducing the argument 'lambda.length' from the default value of 25. The algorithm has converged. You might plot() the returned object (which plots 'sic' against 'lambda') to see if you have found the global minimum of the information criterion so that you can determine if you need to adjust any or all of 'lambda.lo', 'lambda.hi' and 'lambda.length' and refit the model. > summary(co.o50.) COBS smoothing spline (degree = 2) from call: cobs(x = day, y = speed, constraint = "periodic", nknots = 10, method = "quantile", tau = 0.5, lambda = -1, knots.add = TRUE) {tau=0.5}-quantile; dimensionality of fit: 7 from {14,13,11,8,7,30} x$knots[1:10]: 0.999635, 41.000000, 82.000000, ... , 366.000365 lambda = 101002.6, selected via SIC, out of 25 ones. coef[1:12]: 1.121550e+01, 1.139573e+01, 1.089025e+01, 9.954427e+00, 8.148158e+00, ... , 5.373106e-04 R^2 = 8.22% ; empirical tau (over all): 3287/6574 = 0.5 (target tau= 0.5) > summary(pc.5 <- predict(co.o50., interval = "both")) z fit cb.lo cb.up Min. : 0.9996 Min. : 7.212 Min. : 6.351 Min. : 7.951 1st Qu.: 92.2498 1st Qu.: 7.790 1st Qu.: 7.000 1st Qu.: 8.600 Median :183.5000 Median : 9.436 Median : 8.555 Median :10.326 Mean :183.5000 Mean : 9.314 Mean : 8.388 Mean :10.241 3rd Qu.:274.7502 3rd Qu.:10.798 3rd Qu.: 9.716 3rd Qu.:11.787 Max. :366.0004 Max. :11.290 Max. :10.347 Max. :13.416 ci.lo ci.up Min. : 6.782 Min. : 7.598 1st Qu.: 7.370 1st Qu.: 8.213 Median : 8.974 Median : 9.901 Mean : 8.830 Mean : 9.798 3rd Qu.:10.197 3rd Qu.:11.311 Max. :10.797 Max. :12.366 > > showProc.time() Time (user system elapsed): 2.897 0.029 5.435 > > if(doExtra) { ## + repeat.delete.add + co.o50.. <- cobs(day,speed, knots.add = TRUE, repeat.delete.add=TRUE, + constraint = "periodic", nknots = 10, + tau = .5, lambda = -1, method = "quantile") + summary(co.o50..) + showProc.time() + } > > co.o9 <- ## Compute the .9 quantile smoothing B-spline + cobs(day,speed,knots.add = TRUE, constraint = "periodic", nknots = 10, + tau = .9,lambda = -1, method = "uniform") Searching for optimal lambda. This may take a while. While you are waiting, here is something you can consider to speed up the process: (a) Use a smaller number of knots; (b) Set lambda==0 to exclude the penalty term; (c) Use a coarser grid by reducing the argument 'lambda.length' from the default value of 25. Error in x %*% coefficients : NA/NaN/Inf in foreign function call (arg 2) Calls: cobs -> drqssbc2 -> rq.fit.sfnc -> %*% -> %*% Execution halted Flavor: r-devel-linux-x86_64-fedora-clang