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ABSTRACT

Financial volatility changes continuously, yet most portfolio optimization strategies rely on

static covariance estimates. This thesis introduces a time-dependent covariance matrix that up-

dates for each time period via kernel-weighted local principal components which is applied in

a time-varying minimum-variance portfolio (TV-MVP). The full workflow is implemented in

the open-source R package TVMVP. The package also includes a test for constant factor load-

ings, evaluated through Monte Carlo simulations across six data-generating processes. Results

confirm its statistical reliability: the test accepts constant loadings in over 80% of runs and con-

sistently rejects time-varying structures. Empirically, TV-MVP is applied to 50-250 Swedish

stocks and benchmarked against sample, Ledoit-Wolf, EWMA, POET, and graphical-lasso co-

variance estimates. In calm markets (2017-2019), TV-MVP achieves competitive risk levels

and returns. In the volatile 2022-2024 window, it delivers the lowest or second-lowest standard

deviation across all asset pools while preserving competitive Sharpe ratios and drawdowns.

TV-MVP therefore offers a practical, low-volatility alternative with accessible implementation

through its accompanying software package.

Keywords: R-Package, Modern Portfolio Theory, Time-Varying Portfolio Optimization, Mini-

mum Variance Portfolio
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1 Introduction

Constructing an optimal portfolio is a complex and inherently subjective task. In practice, the

term optimal portfolio is often used to denote the portfolio that maximizes returns for a given

level of risk. In this context, risk is typically decomposed into two components: systematic risk,

which affects the entire market (e.g., changes in interest rates or inflation), and idiosyncratic

risk, which is unique to individual assets, companies, or industries. While systematic risk

cannot be diversified away, idiosyncratic risk can be mitigated by constructing a diversified

portfolio that minimizes inter-asset correlations (Campbell et al., 2001).

There exists a wide array of methods to achieve an optimal trade-off between risk and return.

Modern Portfolio Theory (MPT), or the mean-variance framework introduced by Markowitz

(1952), is one of the most influential approaches to this problem. In the mean-variance setting,

the portfolio optimization problem is formulated as:

max
w

w1µ ´
λ

2
w1Σrw,

s.t. w11p “ 1,

(1)

where w is a p ˆ 1 vector of asset weights, Σr is the covariance matrix of the asset returns,

1p is a p ˆ 1 vector of 1’s, λ is a parameter reflecting the investor’s risk aversion (Palomar,

2025, Sec. 7.1.2). Although the original framework assumes portfolio weights form a convex

combination of assets, the solution may be extended to allow affine combinations when short

selling is permitted.

A key limitation of the classical mean-variance portfolio is its reliance on precise estimates

of µ and Σr. In practice, estimates of expected returns are notoriously noisy, often leading

to suboptimal performance (Chopra and Ziemba, 1993, Michaud, 1989). Furthermore, the as-

sumption of a static covariance matrix, Σr, is overly restrictive given that the relationships

between assets evolve over time due to shifts in economic conditions, structural breaks, and

regime changes (e.g. R. F. Engle et al., 2001 Bollerslev et al., 1988 & Pelletier, 2006). An

approach that dynamically captures these shifts would allow for more accurate volatility esti-

mation and, consequently, better portfolio construction.

This thesis aims to develop a method for estimating a time-dependent covariance matrix, Σr,t,

to construct optimal portfolios under evolving market conditions. In the literature, several
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methods have been proposed to incorporate the time dimension in volatility and covariance esti-

mation. Examples include multivariate GARCH models that capture the time varying volatility

and covariance structures between multiple assets simultainiously (Bollerslev et al., 1988, NG,

1991), the Dynamic Conditional Correlation (DCC) models introduced by R. Engle (2002)

which extends GARCH to capture dynamic correlations, and Exponentially Weighted Mov-

ing Average (EWMA) models that downweight older observations (Longerstaey and Spencer,

1996).

In this thesis, a time-varying factor model as proposed by Su and Wang (2017) is implemented

to estimate Σr,t. This approach is closely related to the methods described in Q. Fan et al.

(2024) and Wang et al. (2021), both of which utilize time-varying factor models to estimate co-

variance matrices for constructing Minimum Variance Portfolios (MVP). Although their results

are promising both in simulation studies and when applied to the empirical data, the practical

implementation of these models is challenging, which limits their widespread use by practi-

tioners. To address this, an R package has been developed that simplifies the implementation

of Time-Varying Minimum Variance Portfolios (TV-MVP). We aim to contribute to the field of

dynamic covariance estimation by further developing the method of time-dependent covariance

estimation introduced by Q. Fan et al. (2024), and lower the barriers of entry by writing and R

package.

Given that the primary focus of this thesis is in the estimation of the covariance matrix, per-

formance evaluation is based on the Minimum Variance Portfolio (MVP), a variation of the

mean-variance model that disregards expected asset returns and focuses solely on minimizing

volatility. The MVP problem is formulated as:

min
w

w1Σrw,

s.t. w11p “ 1,

(2)

with the analytical solution:

w˚ “
Σ´1

r 1p

11
pΣ

´1

r 1p

, (3)

given that there are no shorting restrictions (Palomar, 2025, Sec. 6.5.1).

The overarching question addressed in this thesis is: Is the performance of a Time Varying Min-

imum Variance Portfolio (TV-MVP) competitive with other popular portfolio selection meth-

ods? Moreover, can TV-MVP be implemented in an R package in a manner that is accessible
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and practical for the average investor?

The methodology, implementation, and how to use the package in practice are described in the

following section. The simulation design is presented in the section Monte Carlo Simulation,

followed by the setup for the Empirical Evaluation, and lastly, the Results and Discussion, and

the Concluding Remarks.

2 Methodology and Implementation

In this section, the necessary equations and computations is described in depth. The methods

described in this section is closely related to those presented in the articles by Q. Fan et al.

(2024), Wang et al. (2021), and Su and Wang (2017). Some inspiration has also been taken

from the GitHub repository containing the MatLab code base used by Q. Fan et al. (2024) in

their article (Wu and Fan, 2024).

This section discusses the Time Varying Factor model, a method for Determining the Number

of Factors, Testing for Time-Invariance in Factor Loadings, Time-Dependent Covariance esti-

mation, how we construct a portfolio optimization strategy for Out-of-Sample Prediction, and

lastly, a short installation guide for the R package.

2.1 Time Varying Factor Model

The time-varying factor model introduced by Su and Wang (2017) is used to estimate the time-

varying factor loadings λit and the factors Ft. We assume that the p-dimensional time series

of the asset returns with T observations trit, i “ 1, 2, ..., p; t “ 1, 2, ..., T u follows the time-

varying factor model with m latent factors Ft “ pF1t, ..., Fmtq
1:

rit “ λ1
itFt ` eit, (4)

where eit is the idosyncratic error. To estimate the time-varying factor loadings and common

factors, Su and Wang (2017) propose a local weighted least squares method:

min
tλixup

i“1
,tFtuTt“1

ppT q´1

pÿ

i“1

Tÿ

t“1

prit ´ λ1
ixFtq

2Kh

ˆ
t ´ x

T

˙
, (5)
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where we assume λi : r0, 1s Ñ R is a smooth function such that

λit “ λi

ˆ
t

T

˙
« λi

´ x

T

¯
“ λix when

t

T
«

x

T
. (6)

Kh “ h´1Kp¨{hq, K : R Ñ R
` is a kernel function and h “ hpT, pq is a bandwidth

parameter. The minimization problem in equation 5 can be rewritten as:

min
Fpxq,Λpxq

tr
”`
rpxq ´ FpxqΛx

˘ `
rpxq ´ FpxqΛx

˘1
ı
, (7)

where rpxq “ pr
pxq
1
, ..., r

pxq
p q, r

pxq
i “ pk

1{2
h,1xri1, ..., k

1{2
h,TxriT q1, Fpxq “ pk

1{2
h,1xF

0

1
, ..., k

1{2
h,TxF

0

T q1, and

Λx is the factor loadings at time x. Here kh,tx refers to kh,tx “ h´1Kppt´xq{pThqq. Under the

identification restrictions Fpxq1
Fpxq{T “ Im and Λ1

xΛx is a diagonal matrix, we can concentrate

out Λx “ rpxq1
FpxqpFpxq1

Fpxqq´1 “ rpxq1
Fpxq{T , and rewrite equation 7 as:

tr
”
rpxq1

rpxq
ı

´ T´1tr
”
Fpxq1

rpxqrpxq1

Fpxq
ı
. (8)

This is the conventional PCA problem: maximizing tr
“
Fpxq1

rpxqrpxq1
Fpxq

‰
with the restriction

Fpxq1
Fpxq{T “ Im. As stated by Su and Wang (2017), F̂pxq is

?
T times the eigenvectors of the

m largest eigenvalues of rpxqrpxq1
, and Λ̂x “ pFpxqFpxq1

q´1Fpxq1
rpxq “ Fpxq1

rpxq{T .

F̂
pxq
t is a consistent estimator of the weighted factor Fpxq “ kh,txFt, following Su and Wang

(2017) we use a two stage estimation to find a consistent estimator of Ft. In the first step above,

we find consistent estimators for Λt, Λ̂x, which we use to compute the consistent estimator for

Ft:

F̂t “
´
Λ̂

1

tΛ̂t

¯´1

Λ̂
1

trt. (9)

Before moving on, we need to define the boundary kernel k˚h,tx:

k˚
h,tx “ h´1K˚

x

ˆ
t ´ x

Th

˙
“

$
’’’’’&
’’’’’%

h´1K
`
t´x
Th

˘
{
ş8

´px{Thq
Kpuq du, if x P r0, tThus

h´1K
`
t´x
Th

˘
, if x P rtThu, T ´ tThus

h´1K
`
t´x
Th

˘ şp1´x{T q{h

´8
Kpuq du, if x P pT ´ tThu, T s.

(10)

The boundary correction is applied as proposed by Su and Wang (2017), and is necessary

in order not to lose efficiency near t “ 1 or t “ T when weighting the data. The kernel

function used in the analysis is the Epanechnikov kernel Kpuq “ 0.75p1 ´ u2q1t|u| ď 1u

where 1t¨u is the indicator function, the bandwidth used is Silverman’s rule of thumb: h “
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p2.35{
?
12qT´1{5p´1{10. The functions for Epanechnikov kernel and Silverman’s rule of thumb

are implemented in the package, however, the package also allows the user to specify their own

kernel and bandwidth functions to be used in the local PCA. The choice of bandwidth is due to

ease of use, however, other alternatives, such as a cross-validation approach as described by Su

and Wang (2017) and Q. Fan et al. (2024) could also be used.

These are the necessary steps for estimating the time-varying factor loadings and common

factors. The practical implementation of the procedure is described in algorithm 1.

2.2 Determining the Number of Factors

A BIC-type information criterion is used to determine the number of factors, m. What this aims

to estimate is m0, the true number of factors, which is assumed to be bounded by an above finite

integer mmax. m̂0 is estimated in the following manner:

m̂0 “ argmin
m

ICpmq

where ICpmq “ log V pm, tΛ̆xpmquq `
p ` Th

pTh
log

ˆ
pTh

p ` Th

˙
m,

and V pm, tΛ̆tpmquq “ min
F̆“pF̆1,...,F̆T q1

1

pT

pÿ

i“1

Tÿ

x“1

”
rit ´ F̆1

tλ̆itpmq
ı2

.

(11)

Here, Λ̆
m

t “ ppT q´1rpxq1
rpxqΛ̂

m

t , and it follows from equation 9 that F̆m
t “ pΛ̆

m1

t Λ̆
m

t qΛ̆
m1

t rt.

The asymptotic rank of Λ̆
m

t is given by minpm,m0q, compared to Λ̂
m

t , which is always a full

rank matrix. This lends itself to be useful here as Λ̆
m

t is informative on m0 when m ą m0.

More information on this can be found in Lemma A.8 in Su and Wang (2017). Given some

assumptions stated by Su and Wang (2017), it is shown that P pm̂0 “ m0q Ñ 1 as pp, T q Ñ 8.

The pseudo-code for this is given in algorithm 2. Using the package, this can easily be imple-

mented: determine_factors(returns, max_m, bandwidth) which outputs optimal_m and IC_

values. Through our own experience using the package, we have found that setting max_m=10

is often sufficient.
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Algorithm 1 Local PCA

Require: A returns matrix r P R
Tˆp, kernel parameter x, bandwidth h, number of factors m, kernel function

Kp¨q.

Ensure: A factors matrix F P R
Tˆm, a list of loadings tΛtu

T
t“1

, and a list of kernel weights twtu
T
t“1

.

1: Initialize F Ð empty T ˆ m matrix.

2: Initialize loadings list tΛtu
T
t“1

Ð empty.

3: Initialize weights list twtu
T
t“1

Ð empty.

4: Set previous factors Fprev Ð NULL.

5: for t “ 1 to T do

6: // Compute kernel weights for each time point

7: For x “ 1, . . . , T , compute k˚
h,txpxq

8: Compute weighted returns: rpxq “ pk
1{2
h,xr1, . . . , k

1{2
h,xrT q1.

9: // Eigen decomposition to obtain local factors

10: Compute the eigen decomposition: rpxq
r

pxq1

“ VDV
1.

11: Order the eigenvalues in descending order and select the first m eigenvectors, and compute the factors:

F̂ pxq “ rv1, . . . ,vms ¨
?
T

12: if Fprev ‰NULL then Ź Sign consistency ensures interpretability over time and maintains consistent

rotations.

13: for j “ 1 to m do

14: if corpFprev
j , F̂

pxq
j q ă 0 then

15: Flip the sign of the jth column: F̂
pxq
j Ð ´F̂

pxq
j .

16: end if

17: end for

18: end if

19: // Compute loadings and factor for time t

20: Λ̂t “ T´1
F̂

pxq1

r
pxq

21: F̂t “
´
Λ̂

1
tΛ̂t

¯´1

Λ̂
1
trt

22: Set Frt, :s Ð F̂
1
t.

23: Store Λ̂t in the loadings list.

24: Store the weights vector wt “ pkhp1q, . . . , khpT qq1.

25: Update F
prev Ð F̂

pxq.

26: end for

27: return tF, tF̂pxquTt“1
, tΛtu

T
t“1

,m, twtu
T
t“1

u.

2.3 Testing for Time-Invariance in Factor Loadings

Before employing the out-of-sample prediction for investment purposes, it is useful to first

investigate the time-varyingness of the covariance structure in the data. The hypothesis test
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Algorithm 2 Determine the Optimal Number of Factors

Require: Data matrix r P R
Tˆp, maximum number of factors mmax, bandwidth h

Ensure: Optimal number of factors m̂0 and the information criterion values tICpmqummax

m“1

1: Initialize vectors: V Ð 0 P R
mmax , penalty Ð 0 P Rmax , and IC_values Ð 0 P Rmax .

2: for m “ 1 to mmax do

3: Initialize residuals matrix e P R
Tˆp (e.g., with NA or zeros).

4: Set Fprev Ð NULL.

5: for t “ 1 to T do

6: Perform local PCA with m factors at time t. Lines 6-33 in algorithm 1.

7: Normalize factor loadings: λ̃
m

it “
?
p

λ̂
m

it

||λ̂m

it ||
s.t. 1

p
Λ̂

m1

t Λ̂
m

t “ Im

8: Compute estimate of factor loadings by Λ̆
m

t “ ppT q´1
r

pxq1

r
pxq

Λ̃
m

t

9: Compute factor estimates by F̆
m
t “ pΛ̆

m1

t Λ̆
m

t qΛ̆
m1

t rt

10: Compute the residuals: et Ð rt ´ F̆
m1

t Λ̆
m

t

11: Update F
prev Ð F̂

pxq.

12: end for

13: Compute the average sum of squared residuals: Vm Ð ppT q´1e1e

14: Compute the penalty term: penaltym Ð m ¨
`
N`T ¨h
N ¨T ¨h

˘
¨ log

´
N ¨T ¨h
N`T ¨h

¯
.

15: Form the information criterion: ICm Ð ln
`
Vm

˘
` penaltym.

16: end for

17: Determine the optimal number of factors: m̂0 Ð argminm ICpmq.

18: Return pm̂0, ICq.

proposed by Su and Wang (2017) is therefore included in the package. The hypotheses are:

H0 : λit “ λi0 for i “ 1, 2, ..., p and t “ 1, 2, ..., T

H1 : λit ‰ λi0 for some i, t,
(12)

i.e, we test whether the factor loadings are constant over time. Here, λ̂it are estimated using

algorithm 1, and λ̂i0 is estimated using regular PCA. This test statistic, JpT , is shown by Su

and Wang (2017) to be asymptotically standard normal under the null, if certain assumptions

hold (see Theorems 4.1 and 4.2 in Su and Wang, 2017). In the finite sample setting, there is

a risk that ĴpT does not converge in distribution, yielding a statistic that does not follow the

standard normal distribution under the null. To ensure the performance of the test in finite

sample settings, a bootstrap version is included in the package.

The test statistic is given by

ĴpT “ V̂
´1{2
pT

´
Tp1{2h1{2M̂ ´ B̂pT

¯
, (13)
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which is a scaled and centered version of M̂ :

M̂ “
1

pT

pÿ

i“1

Tÿ

t“1

´
λ̂

1

itF̂t ´ λ̃
1

i0F̃t

¯
, (14)

And the asymptotic variance and bias are given by

V̂pT “
2

phT 2

ÿ

1ďs‰rďT

k̄2

sr

´
F̂1

sΣ̂F F̂r

¯2

pê1
rêsq

2
, and

B̂pT “
h1{2

T 2p1{2

pÿ

i“1

Tÿ

t“1

Tÿ

s“1

´
kh,stF̂

1
sF̂t ´ F̃1

sF̃t

¯2

ê2is

(15)

respectively.

This, and the construction of the wild bootstrap, is summarized in algorithm 3. When im-

plementing the function in practice you run hyptest1(returns, m, B, kernel_func) which

outputs JpT , p´value, and bootstrap statistics J
bootstrap
pT .

2.4 Time-Dependent Covariance Matrix Estimation

Stock market data is inherently high-dimensional, with the number of variables p large rela-

tive to the sample size T. With this comes the problem of estimating the covariance matrix;

the sample covariance matrix often performs poorly when p is large in finite samples (Ledoit

and Wolf, 2004). A common approach to this problem is to assume a sparse covariance ma-

trix, i.e., assume that the covariances are zero, or close to zero, for many of the assets. As

such, many regularization techniques have been introduced to impose such sparsity in the co-

variance matrix, such as graphical LASSO, shrinkage, and thresholding methods (e.g. Bickel

and Levina, 2008; Friedman et al., 2007; Ledoit and Wolf, 2003). Wang et al. (2021) argue

that the sparsity assumption is often too restrictive in finance and economics settings, as the

variables are often highly correlated. As such, regularizing the covariance matrix too heavily

could yield inaccurate results. In the case of this thesis and package, it could yield inaccurate

weights, which would produce portfolios with uncertain performance. Financial data is also

inherently dynamic, with covariance structures changing over time due to extreme events such

as pandemics and war, as well as changes in production and gradual market shifts. To address

these problems, both Wang et al. (2021) and Q. Fan et al. (2024) propose a covariance esti-

mator constructed using time-varying factors and factor loadings, with some slight differences.

In our package we use a similar method where we kernel smooth the data using the boundary
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kernel specified in Eq. 10 around x “ T when performing the out-of-sample prediction, i.e.

we use F̂ and Λ̂t in the construction of the covariance matrix Σ̂r,t. Our method distinguishes

Algorithm 3 Hypothesis Test for Time-Varying Factor Loadnings

Require: Data matrix r P R
Tˆp, number of factors m, bootstrap iterations B (default: 200), kernel function K

(default: epanechnikov_kernel)

Ensure: Test statistic ĴpT , bootstrap p-value, and bootstrap statistics tJ
˚pbq
pT uBb“1

1: Standardize Data:

2: r Ð scaleprq

3: T Ð number of rows of r, p Ð number of columns of r

4: h Ð silvermanprq

5: Local PCA:

6: pF̂, Λ̂q Ð local PCApr, h,mq

7: Global Factor Analysis:

8: Compute truncated SVD: r « Um Dm V
J
m

9: F̃ Ð
?
T Um

10: Λ̃ Ð
´
T´1

F̃
1
r

¯1

11: Compute residuals and Error Scale:

12: ê Ð
řT

t“1
prt ´ F̂

1
tΛ̂tq

13: Σ̃ Ð σ̃0

ijp1 ´ ϵq|i´j| for all i, j “ 1, .., p Ź Let σ̃0

ij be the (i,j)th element of Σ̃0 “ T´1
řT

t“1
ẽtẽ

1
t

14: Compute Test Statistic:

15: M̂ Ð 1

pT

řp

i“1

řT

t“1

´
λ̂

1
itF̂t ´ λ̃

1
i0F̃t

¯

16: B̂pT Ð h1{2

T 2p1{2

řp

i“1

řT

t“1

řT

s“1

´
kh,stF̂

1
sF̂t ´ F̃

1
sF̃t

¯2

ê2is

17: V̂pT Ð 2

phT 2

ř
1ďs‰rďT k̄2sr

´
F̂

1
sΣ̂F F̂r

¯2

pê1
rêsq

2

18: ĴpT Ð
T

?
p

?
h M̂ ´ B̂pTb
V̂pT

19: Bootstrap Procedure:

20: Initialize J
bootstrap
pT ÐNULL

21: for b “ 1 to B do

22: Generate ζ P R
Tˆp with i.i.d. Np0, 1q entries

23: Compute bootstrap errors: e˚ Ð Σ̃
1{2

ζ

24: Generate bootstrap sample: r˚ Ð F̃Λ̃
1
` e

˚

25: Repeat steps on lines 5-18 for r˚

26: Append J˚
pT to J

bootstrap
pT

27: end for

28: Compute Bootstrap p-value:

29: pvalue Ð 1

B

řB

b“1
1tJ

˚pbq
pT ě JpT u

30: return tJpT , p_value, J
bootstrap
pT u
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itself in that we use a different method for calculating ΣF compared the Wang et al. (2021),

and a different method for regularizing Σe compared to Q. Fan et al. (2024). The original plan

was to implement the same regularization of Σe as Q. Fan et al. (2024), however due to the

computational complexity, we opted for a simpler approach.

We start by constructing a naive estimate of the residual covariance. Let êt “ rt ´ F̂1
tΛ̂t, the

sample covariance matrix is then:

Σ̂e “
1

T
ê1ê. (16)

To solve the problem of ill-behaved sample covariance matrices, we apply a general shrinkage

to the residual covariance matrix (see Z. Chen and Leng, 2016; Wang et al., 2021).

Σ̃
pxq

e “ rσ̃
pxq
e,ijspˆp, σ̃

pxq
e,ij “

$
’&
’%
σ̂

pxq
e,ij, if i “ j

Sρpxqpσ̂
pxq
e,ijq if i ‰ j

(17)

Where sρpzq is a shrinkage function which satisfies the following three conditions for all z P R:

(i) |sρpzq| ď |z|; (ii) srho “ 0 for z ď ρ; (iii) |sρpzq ´ z| ď ρ (Z. Chen and Leng, 2016). In this

thesis the focus is on soft thresholding: sρ “ signpzqp|z| ´ ρq`, however hard thresholding,

adaptive lasso, and smoothly clipped absolute deviation (SCAD) could easily be implemented

in the package and would be a good addition to the current functionality.

After estimating the residual covariance, we can compute the covariance matrix of the returns:

Σ̃r,t “ Λt
pΣFΛ

1
t ` Σ̃e, (18)

which is dependent on time by the time-dependent factor loadings. Here, pΣF is simply:

1

T
F1F. (19)

2.4.1 Choice of Tuning Parameter ρ

Following Wang et al. (2021) and J. Chen et al. (2019), we implement a three-step procedure

that allows the tuning variable to vary with x. The steps for choosing the tuning parameter ρ

are as follows:

(i) Let t¨u denote the floor function, for a given x, divide the sample into m “ 1, . . . , tT {2M0u

groups, split the data in each group into two sub-samples, T1 “ tT
2

p1 ´ 1{logpT {2qqu and
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T2 “ tT {2u ´ T1, leaving M0 observations out in between the two sub-samples. (ii) Compute

the shrunk residual covariance matrix of the first sub-sample Σ̃e,1,m, and the sample covariance

matrix of the second sub-sample Σ̂e,2,m. (iii) Choose tuning parameter ρ which minimizes the

sum of the squared Frobenius norm:

tT {2M0uÿ

m“1

||Σ̃e,1,m ´ Σ̂e,2,m||2F (20)

for ρ P rρ1, ρ2s, where ρ1 “ ϵ ` inftρ˚ ą 0|λminpΣ̃e,1,m ą 0, @ρ ą ρ˚u. Here, ϵ is a small

positive constant, and ρ2, the upper bound of ρ, should be a sufficiently large positive constant.

The Frobenius is used as the criterion as it balances bias (over-shrinking) and variance (under-

shrinking). The reason for excluding M0 observations between the two sub-samples is to ensure

that the correlation between the two is negligible. Both J. Chen et al. (2019) and Wang et al.

(2021) use M0 “ 10, and we follow this lead.

The full process of computing the covariance matrix and the optimal tuning parameter can be

seen in algorithms 4 and 5, respectively. These functions are internal, and a wrapper has been

written that incorporates the local PCA procedure and the covariance estimator:

cov_mat <- time_varying_cov(returns ,

m,

bandwidth = silverman(returns),

kernel_func = epanechnikov_kernel ,

M0 = 10,

rho_grid = seq (0.005 , 2,

length.out = 30),

floor_value = 1e-12,

epsilon2 = 1e-6,

full_output = FALSE)

This function computes the covariance matrix for the last time period in returns. The default

output is the covariance matrix, but if more detailed output is needed, the user can run the

function with full_output=TRUE.
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Algorithm 4 Estimate Covariance

Require: Local PCA results pΛx,Fq, returns r, M0, ρgrid, floor value ϵ

Ensure: Estimated covariance Σ̃r,t and residual covariance Σ̃e

1: Extract factor loadings Λt and factors F

2: Compute residuals et “ r ´ F1Λt

3: Compute best shrinkage parameter ρ˚ using ADAPTIVERHO on e Ź Algorithm 5

4: Compute raw residual covariance: Σ̂e “ 1

T
ê1ê

5: Compute shrinkage threshold: τ “ ρ˚ ¨ meanp|Σ̂e|off-diagonalq

6: Apply soft-thresholding to off-diagonal elements of Σ̂e:

Σ̃e “ rσ̃e,ijspˆp, σ̃e,ij “ signpσ̂e,ij maxp|σ̂e,ij| ´ τ, 0q, i ‰ j

7: Compute total covariance estimate: Σ̃r,t “ Λt
pΣFΛ

1
t ` Σ̃e

8: Perform eigenvalue flooring to ensure positive semidefiniteness:

Compute eigen-decomposition: Σ̃r,t “ QΛQ1

Floor eigenvalues: λi “ maxpλi, ϵq

Reconstruct PSD covariance: Σ̃r,t “ QΛQ1

9: Return Σ̃r,t

Algorithm 5 Adaptive Shrinkage Tuning Parameter Selection

Require: Residual matrix e, tuning parameter M0, candidate shrinkage values ρgrid, a small

positive constant ϵ

Ensure: Optimal shrinkage parameter ρ˚

1: Partition data into overlapping sub-groups of size tT {p2M0qu

2: for each ρ P ρgrid do

3: Divide into sub-samples T1 “ tT
2

p1 ´ 1{logpT {2qqu and T2 “ tT {2u ´ T1

4: Apply soft-thresholding to the first sub-sample’s covariance T1

5: Compute Σ̃e,1,m and Σ̂e,2,m

6: Compute Frobenius norm difference:
řtT {2M0u

m“1
||Σ̃e,1,m ´ Σ̂e,2,m||2F

7: end for

8: Compute ρ1 “ ϵ ` inftρ˚ ą 0|λminpΣ̃e,1,m ą 0, @ρ ą ρ˚u

9: Select ρ˚ P rρ1, ρ2s that minimizes Frobenius norm difference

10: Return ρ˚
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2.5 Out-of-Sample Prediction

The out-of-sample prediction uses many of the previously described methods. In this section,

the functions of the package that are used for prediction and how they have been constructed

are presented. Note that log returns are used throughout the analysis and are the expected input

for the functions included discussed in this section. The use of log returns are due to personal

preference, and the results could easily be converted to simple returns.

2.5.1 Portfolio Optimization and Prediction

The metrics of interest are risk, expected excess returns (ER), and the Sharpe ratio (SR):

Riskt “ w1
tΣr,twt “

1

11
pΣ

´1

r,t 1p

, EERt “ w1
tpµt ´ rf q, SR “

11
pΣ

´1

r,t pµt ´ rf qb
11
pΣ

´1

r,t 1p

, (21)

where rf refers to the risk-free rate. SR is a metric commonly used when evaluating equity

portfolio performance, and is a metric of the returns gained compared to the risk taken.

Out-of-sample forecasting aims to predict excess returns rt`j, j “ 1, . . . , J , where J is the

forecasting horizon. As we only have information up until t “ T , we estimate rt`j as:

rt`j “ zEERt, t “ T, (22)

and the cumulative excess returns:

zCERJ “ J ˆ zEERt, t “ T. (23)

Similarly, for the cumulative risk:

yCRJ “
?
J ˆ zRiskt, t “ T. (24)

The covariance matrix is computed as in algorithm 4, which is used to compute the weights

as in eq. 3. The package also offers the user to set a minimum returns constraint, i.e., eq. 3

is subject to both w11p “ 1 and w1pµ ´ rf q ě rmin{J , as well as the option to compute the

maximum SR portfolio. The full process can be seen in algorithm 6.

While the main focus of this thesis lies in the estimation of time-varying covariance matrices

and their application in portfolio optimization, portfolio construction also requires estimates
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Algorithm 6 Predict Portfolio

Require: A returns matrix r P R
Tˆp, forecast horizon, maximum number of factors, kernel function Kp¨q,

minimum returns constrataint (optional), maximum Sharpe ratio portfolio (TRUE or FALSE), risk free rate

rf .

Ensure: Portfolio weights w
˚, forecast estimates of cumulative excess log returns CER, cumulative risk CR,

and Sharpe ratio SR.

1: Select bandwidth using Silverman’s rule

2: Determine optimal number of factors via DETERMINE_FACTORS

3: Perform Local PCA Ź see Algorithm 1

4: Compute covariance matrix: Ź Algorithm 4

5: Compute expected excess returns: µ̂ Ð expected value of returns minus risk free rate r̂t`j ´ rf

6: Global Minimum Variance Portfolio (GMV):

7: w
˚GMV
T “

Σ̃
´1

r,T 1p

11
pΣ̃

´1

r,T 1p

Ź Normalize

8: Compute GMV performance:

9: {CER
GMV

J “ J ˆ w
˚GMV
T µ̂

10: yCR
GMV

J “
b
w

˚GMV
T Σ̃r,Tw

˚GMV
T ˆ

?
J

11: xSRGMV
“

{CER
GMV

J?
JˆyCR

GMV

J

12: if max_SR “ TRUE then

13: Maximum SR Portfolio:

14: w
˚sr
T 9Σ̃

´1

r,T µ̂ Ź Normalize

15: Compute Maximum SR performance Ź See lines 9-11

16: end if

17: if min_return ‰ null then

18: Minimum Variance Portfolio with Return Constraint

19: A Ð r1, µ̂spˆ2 Ź Constraint matrix

20: b Ð r1,min_return{Js2ˆ1 Ź Constraint values

21: w
˚constr.
T “ Σ̃

´1

r,TApA1
Σ̃

´1

r,TAq´1
b Ź Normalize

22: Compute Constrained Portfolio performance Ź See lines 9-11

23: end if

24: return { Minimum Variance Portfolio: pw˚GMV
T , CERGMV , CRGMV , SRGMV q,

25: Maximum SR Portfolio: pw˚sr
T , CERsr, CRsr, SRsrq [if computed],

26: Return-Constrained Portfolio: pw˚constr.
T , CERconstr., CRconstr., SRconstr.q [if computed] }

of expected returns. To this end, we employ a simple univariate ARIMA-based forecasting

approach. In the package, the expected returns are computed by ARIMA prediction. The

ARIMA specification is defined using a simple grid search to find the model with the lowest

AIC out of ARIMA(0,0,0), (1,0,0), (0,0,1), and (1,0,1). This is used to forecast the expected

portfolio returns and in the optimization of the maximum SR portfolio and the MVP with
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minimum returns constraint.

ARIMA serves as a pragmatic choice as a general-purpose forecasting method. The use of

more sophisticated methods of estimating the expected returns and rigorous evaluation of the

maximum SR portfolio and the MVP with minimum returns constraint is left for future re-

search.

An example of how to run the function from the package can be seen below:

optimal_portfolio <- predict_portfolio(returns = returns ,

horizon = 5,

max_factors = 5,

min_return = 0.015 ,

max_SR = TRUE)

2.5.2 Expanding Window Evaluation

The expanding window function expanding_tvmvp is simply an extension of

predict_portfolio used to evaluate the performance. For this function, the user states the

initial window to use for estimation of the covariance. The function then computes the weights,

which are applied for the duration of the rebalancing period, rebalance, and start over. Using

this expanding window allows us to investigate the performance of the method over time.

The evaluation metrics implemented in the function are cumulative log excess returns, standard

deviation, and Sharpe ratio. The cumulative log excess returns are calculated as:

CER “
KˆJÿ

t“1

per˚
t q. (25)

Where K denotes the number of windows, J denotes the length of the rebalancing period, and

er˚ denotes the weighted excess returns. The risk is simply the standard deviation:

SD “
1

K ˆ J ´ 1

KˆJÿ

t“1

per˚
t ´ ēr˚q, (26)

and the Sharpe ratio is SR “ ēr˚{SD. These three metrics gives a good representation of how

well the method works for the given data.
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Algorithm 7 Expanding Window Time-Varying Minimum Variance Portfolio (MVP)

Require: A returns matrix r P R
Tˆp, length of initial window used for estimation, maximum number of factors,

return type (daily, weekly, monthly), kernel function Kp¨q, risk free rate rf (scalar or vector of length T ´

initial window).

Ensure: Cumulative excess log returns (CER), mean excess log returns (MER), standard deviation, Sharpe ratio,

and annualized versions of the metrics.

1: rebalance_dates Ð tinitial_window ` 1, initial_window ` 1 ` rebal_period, . . . , T u

2: RT Ð |rebalance_dates|

3: Determine number of factors based on initial window Ź Algorithm 2

4: for j “ 1 to RT do

5: reb_t Ð rebalance_dates[j]

6: est_data Ð returns[1:(reb_t ´ 1)]

7: Predict length of rebalancing period ahead, m determined outside loop Ź Algorithm 6

8: Save w
˚
T˚ into weights list

9: hold_end Ð minpreb_t ` rebal_period ´ 1, T q

10: r
˚
j Ð {for t “ reb_t to hold_end, compute ŵ

1
rt}

11: end for

12: er = r
˚
j ´ rf

13: CER Ð
řK

k“1

řJ

j“1
w

˚
kerj , for K “ RT , J “ rebal_period

14: Compute performance metrics: mean, standard deviation, Sharpe ratio

15: Annualize standard deviation and Sharpe ratio

16: return list of computed metrics and portfolio weights

The complete sequence can be seen in algorithm 7. To use the function, simply run:

expanding_tvmvp(returns, initial_window, rebal_period, max_factors, return_type = "

daily"). For brevity, it is not shown in the algorithm, but the function also outputs the same

metrics for an equal weights portfolio as a benchmark to evaluate the performance against.

2.6 Package Installation

The methods described in section 2 are implemented in the R package TVMVP 1 which can be

installed using:

1The package version discussed in this thesis is a beta that I developed independently under the academic

guidance of my supervisor, Yukai Yang. A fully-refined release is being prepared jointly by Yang and me for

submission to CRAN.
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devtools :: install_github("erilill/TV -MVP", ref = "beta", build_

vignettes = TRUE),

given that the package devtools or remotes is installed.

And then be attached by running:

library(TVMVP)

Before using the package, it is recommended to read the vignette TVMVP-package, which gives

a brief presentation of how the package is intended to be used. This can be accessed by run-

ning vignette("TVMVP_overview", package = "TVMVP"). The source code can be found in our

GitHub repository (Lillrank and Yang, 2025). The package was written, and the analysis con-

ducted, using R 4.4.2 (R Core Team, 2021).

Important to note is that the functions that offer out-of-the-box portfolio optimization,

predict_portfolio, and expanding_tvmvp, require log excess returns, rt; the remaining func-

tions can be used interchangeably with simple excess returns.

3 Monte Carlo Simulation

To test that the hypothesis test works as intended, a simulation study is conducted. The per-

formance of the hypothesis test has been well documented by Su and Wang (2017) and Q. Fan

et al. (2024); because of this, only a smaller-scale simulation study is conducted to make sure

that the hypothesis test is correctly implemented in the package.

The simulation is run with 500 replications, T=200, p=100, m=2, and 200 bootstrap draws

when conducting the test. As the size of the test statistic is less reliable in the finite sample, the

main result presented is the rejection rate at 1, 5, and 10% significance, based on the bootstrap

p-value.

Six data-generating processes (DGP) have been chosen to evaluate the performance of the

package in varied settings of time-invariant and time-varying covariance. The DGP’s used are

mimicking the simulation design used by Su and Wang (2017).
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3.1 Data Generating Processes

A subset of the DGPs designed by Su and Wang (2017) is used, namely the first six DGPs

included in their simulation study. The choice to use this simulation design was made to ensure

comparability with the results found by Su and Wang (2017).

DGP 1 (IID):

λit „ Np0, I2q and eit „ Np0, 1q.

DGP 2 (Heteroskedastic):

λit „ Np0, I2q and eit “ σiνit, where σi „ Np0, 1q and νit „ Up0.5, 1.5q.

DGP 3 (Cross-Sectional Dependence)

λit „ Np0, I2q and et „ Np0,Σeq, where Σ “ pcqij, cij “ 0.5|i´j|.

DGP 4 (Structural Break):

λit “

$
’&
’%
λi0,k, for 1, . . . , T {2

λi0,k ` b, for T {2 ` 1, . . . , T

,

λi0,k „ Np1, 1q for k=1,2, eit “ σiνit, where σi „ Np0, 1q and νit „ Up0.5, 1.5q.

DGP 5 (Multiple Structural Breaks):

λit,1 “

$
’&
’%
λi0,1 ` 1 for 0.6T ă t ď 0.8T

λi0,1 ´ 0.5b for 0.2T ă t ď 0.4T

Where λi0,1 „ Np1, 1q, λit,2 “ λi0,2 „ Np0, 1q and eit „ Np0, 1q.

DGP 6 (Smooth Structural Changes):

λit,1 “ λi0,1 „ Np0, 1q, λit,2 “ b ˆ Gp10t{T, 2, 5i{p ` 2q, where Gpz : κ, γq “
␣
1 `

exp r´κ
śp

l“1
pz ´ γlqs

(´1
, and ei „ Np0, 1q.

The scenarios that are tested are both time-invariant (DGP 1-3) and time-varying (DGP 4-6).

The degree of time varyingness that is tested is b “ 2. Su and Wang (2017) also includes b “ 1,

however this is omitted due to time constraints.

With DGP 1-3, the aim is to test whether the hypothesis test correctly identifies time-invariant

time series with different structures. DGP 4-6 models time series with different time vary-

ing structures: A singular structural break, multiple structural breaks, and a smooth structural
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break.

The factors are constructed as:

f1t “ 0.6f1,t´1 ` u1

f2t “ 0.3f2,t´1 ` u2

(27)

where u1 and u2 are IID Np0, 1 ´ 0.62q and Np0, 1 ´ 0.32q respectively, which is the same as

in Su and Wang (2017).

The simulated data is then constructed as: rsimt “ Λsim
t Fsim

t ` esimt .

4 Empirical Evaluation

The out-of-sample performance of the method is evaluated using data consisting of stocks

traded on the Swedish stock market during two periods, between 2015-12-31 and 2019-12-

31, and 2020-12-31 and 2024-12-31. The reason is that we want to compare the performance

when applied during a financially stable period, to when it is applied during a less financially

stable period. After omitting assets that were not traded for the entire period, the first data

set consists of 261 stocks, and the second set consists of 347 stocks. After cleaning the data

of bank holidays, the first set includes 1004 time points, and the second set includes 1008,

i.e., approximately 251-252 trading days per year. The Stockholm Interbank Offered Rate

(STIBOR) is used as a proxy for the risk-free rate in the analysis. This is a benchmark of the

rates of unsecured bonds between banks issued by the Swedish Financial Benchmark facility

(SFBF) (Swedish Financial Benchmark Facility, n.d.). Using STIBOR as a proxy for the risk-

free rate is a common approach when studying the Swedish market (e.g. Dahlquist et al.,

2000; Engström, 2004). The STIBOR data consists of annualized interest rates reported as

tomorrow/next. The data was retrieved from Refinitiv Eikon (2025).

Log returns rt “ logpPtq ´ logpPt´1q, and logged risk free rate rf “ logp1 ` rannf {252q is

used throughout the analysis. The risk-free rate is rescaled to reflect the daily rate, there are

approximately 252 trading days every year.

To mimic a real-world investment environment, the performance is evaluated using weekly and

monthly rebalancing. The different scenarios that is used to evaluate the performance are 50,
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150, and 250 randomly selected stocks traded on the Swedish stock market. The performance

is evaluated using a expanding window that uses the first year (2016/2021) as the initial win-

dow (252 time points), and rolls over the next three years (752/756 time points). The number

of factors is updated yearly using determine_factors() with max_m=10. We assume no trans-

action cost and that there are no restrictions on shorting. The metrics that are used to evaluate

the model are cumulative log excess returns (CER), mean log excess returns (MER), standard

deviation (SD), Sharpe ratio (SR), as well as maximum drawdown (MDD), which is computed

as:

MDD “ max
t

tDrawdowntu

where Drawdownt “ 1 ´
Vt

maxτPr0,ts Vτ

.
(28)

Here, Vt denotes the cumulative simple returns at time t. MDD is a metric of how stable the

portfolio returns are over time, indicating whether there have been large negative spikes in

returns during the period. Since it measures the difference between the peak and the largest

through in percentage, we have to convert the log excess returns to simple excess returns to

compute the metric.

As the weights are optimized to minimize the covariance between the assets in the portfolio,

the most important metric is the standard deviation (risk). However, CER and MDD are also be

important when evaluating the performance, as low-risk portfolios would be expected to have

stable excess returns over time.

The results of TV-MVP are compared to other popular methods of estimating the covariance of

the returns, namely: Sample covariance, Ledoite-Wolf shrinkage (Schafer et al., 2021; Schäfer

and Strimmer, 2005), exponentially weighted moving average (EWMA) (Longerstaey and

Spencer, 1996; Reckziegel, 2025), Principal Orthogonal ComplEment Thresholding (POET)

(J. Fan et al., 2013, 2016), and Graphical Lasso (Glasso) (Friedman et al., 2007, 2019). As

a baseline, an equally weighted portfolio is also included. Shrinkage and Glasso are methods

which both aim to regularize an ill-conditioned sample covariance matrix, where Ledoit-Wolf

Shrinkage aims to shrink the sample covariance towards a well-conditioned covariance matrix,

and Glasso aims to estimate a sparse inverse covariance matrix (Friedman et al., 2007; Schäfer

and Strimmer, 2005). EWMA and POET share characteristics of TV-MVP, which makes the

comparison of these methods interesting. EWMA apply larger weights to recent observations

when estimating the covariance matrix, similar to the kernel-weighting approach used in TV-
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MVP, while POET, similairly to TV-MVP, uses a factor approach to estimate the covariance

(J. Fan et al., 2013; Longerstaey and Spencer, 1996).

5 Results and Discussion

In this section, the results from the simulation study and the empirical evaluation are presented

and discussed. The complete results can be found in the results folder of the GitHub repository

CodeForThesis (Lillrank, 2025). In the same repository, you also find the necessary scripts for

conducting the simulation study and the empirical analysis.

5.1 Simulation Results

Table 1 presents the proportions of bootstrap p-values exceeding various thresholds for each

data generating process (DGP) in our test of constant factor loadings, where H0 : λit “ λi0 for

i “ 1, 2, . . . , p and t “ 1, 2, . . . , T vs. H1 : λit ‰ λi0 for some i, t.

DGPs 1-3 feature time-invariant loadings. As shown in the table, the hypothesis test correctly

classifies these cases as time-invariant more than 80% of the time. In contrast, DGPs 4-6 are

generated with time-varying factor loadings. As can be seen from table 1, the hypothesis test

correctly identifies the time-varying DGP’s 100% of the time, for all p-value thresholds. This

suggests that the test reliably distinguishes between time-invariant and time-varying loadings.

Table 1: Rejection rates of hypothesis test in Monte Carlo simulation: Proportions of bootstrap

p-values above thresholds for each DGP in hypothesis test of constant loadings (see section

2.3 and Su and Wang (2017)). H0 : λit “ λi0 for i “ 1, 2, . . . , p and t “ 1, 2, . . . , T vs.

H1 : λit ‰ λi0 for some i, t.

Threshold DGP1 DGP2 DGP3 DGP4 DGP5 DGP6

p ă 0.1 0.148 0.112 0.198 1.000 1.000 1.000

p ă 0.05 0.114 0.080 0.154 1.000 1.000 1.000

p ă 0.01 0.066 0.056 0.096 1.000 1.000 1.000
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These results are in line with those found by Su and Wang (2017). Looking at the results of

their simulation study in Tables 3 and 4 (Su and Wang, 2017), we see that their results show

slightly better accuracy in identifying the time-invariant case, but with very similar results

for identifying the time-varying case. The discrepancies found when comparing the results for

DGP’s 1-3 could be due to some slight differences in the implementation of the data-generating

processes. Except for these small discrepancies, the results found here match the ones found by

Su and Wang (2017), which confirms that the hypothesis test has been correctly implemented

in the package.

5.2 Empirical Results

The results from the empirical analysis can be seen in tables 2 and 3, for 2017-2019 and 2022-

2024, respectively. Within the tables, subtables show the results for weekly and monthly rebal-

ancing separately. The asset pools that have been used to construct the portfolios consist of 50,

150, and 250 stocks, which were randomly chosen out of the 261 (table 2) and 347 (table 3)

stocks in the data set.

In table 2 we see the results from the expanding window during 2017-2019. For both weekly

and monthly rebalancing, we see low, positive returns for the equal weights portfolio and larger

positive returns for the optimized portfolios, except for Glasso, which performs poorly con-

cerning cumulative log excess returns (CER). Looking at the SD, we see that the shrinkage

method of estimating the covariance matrix yields the lowest SD for all asset pools, with TV-

MVP tied for lowest SD with p=150, and second lowest SD for p=250. We see quite similar

results between the portfolios in regards to risk, with only slightly lower SD compared to the

equal weights portfolio for all optimized portfolios.

If we instead look at the other metrics of interest, we see that POET has the largest CER and

SR, and the lowest MDD, for all asset pools. This indicates that this portfolio has the steadiest

upward development during the period, which would indicate that this is the portfolio that has

had the best performance. In this aspect, TV-MVP performs slightly worse compared with

Sample, Shrink, EWMA, and POET covariance estimation. These have larger CER and SR,

while having lower MDD for p=50 when using both weekly and monthly rebalancing. For

p=150, we see that TV-MVP has the second lowest MDD in table 2a, while for the monthly
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rebalancing in table 2b, it has slightly higher MDD than the other portfolios (except Glasso

and 1/N). We also see that TV-MVP has lower CER and SR for p=150 when compared to

Sample, Shrink, EWMA, and POET, for both weekly and monthly rebalancing. For p=250,

we see that the performance of TV-MVP is more competitive compared to the other portfolios,

with the third highest CER and SR, and the second lowest MDD, for both weekly and monthly

rebalancing.

Looking at the results for 2022-2024 in table 3, for all three asset pools, we see that the equal

weights portfolio produces negative cumulative excess log returns, mean excess log returns,

and Sharpe ratio. This shows that, on average, the assets within the pools have had a negative

development during the period. As such, it should be no surprise that the optimized portfolios

also show negative returns during the period. The MVP is optimized based on minimizing the

inter-asset correlation rather than maximizing returns; hence, in a declining market, we would

not expect these portfolios to perform well concerning excess returns. However, what we do

see is that the negative CER is smaller for the optimized portfolios, indicating that some of the

loss in returns has been avoided due to diversification.

Looking at SD, our metric measuring risk, what we see in the tables 3a and 3b is that for p=50,

the SD is quite similar between the portfolios, with the portfolios using the sample and EWMA

covariance estimation producing the lowest risk at 0.0094. The similarity in results could be

an indication that the variation in the asset pool is small; this would explain why all portfolios

perform similarly to the equal weights portfolio. For p=150 and p=250, we see that TV-MVP

produces the lowest SD with POET being a close second.

For all portfolios, we see large maximum drawdowns, indicating financial instability within the

asset pools. What we see is that POET and TV-MVP have the lowest MDD out of all portfolios,

however, POET has better performance in this aspect for p “ 50 and 150, for both weekly and

monthly rebalancing, and for p “ 250, the resulting MDD are very similar between the two

portfolios. If we also look at CER, we see in table 3a that POET has positive returns during

the period when using p=50, and the smallest losses when p “ 150, while Sample covariance

has the lowest negative CER with p “ 250, with TV-MVP being a close second. For monthly

rebalancing (table 3b), POET has the lowest loss of returns for p “ 50 and 150, and EWMA

for p “ 250. TV-MVP does not outperform the other methods in terms of portfolio returns and

drawdowns; however, it is consistently among the top three portfolios in this regard, and is the
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top performer in terms of SD.

These results are similar to those found by Q. Fan et al. (2024), and Wang et al. (2021), which

have used very similar methods for estimation of a time-varying covariance matrix to opti-

mize the minimum variance portfolio. Q. Fan et al. (2024) compares TV-MVP to different

established methods and found TV-MVP to be competitive but not better than methods such as

POET and DCC. Wang et al. (2021) compared the performance of their time-varying covari-

ance against POET in their empirical analysis, trying different numbers of factors, and found

that the methods perform similarly. These results are in line with what can be seen here, where

TV-MVP generally has some of the lowest risk, especially in financially turbulent times, but it

is not clearly better than the other methods with which it is being compared.

6 Concluding Remarks

In this thesis, we further developed and evaluated a recently introduced time-varying factor

model for estimating the covariance matrix in a dynamic setting, with particular emphasis on

portfolio optimization. Our methodology adapts a kernel-weighted principal component ap-

proach to capture evolving factor loadings and uses a shrinkage-based residual covariance esti-

mation to address potential high-dimensional challenges. We package this in a user-friendly R

package to facilitate practical adoption by researchers and practitioners alike.

Through simulation experiments, we confirmed that the included hypothesis test for time-

invariance in factor loadings effectively distinguishes between constant and time-varying co-

variance structures. Empirical applications to Swedish Stock data from stable (2017-2019) and

volatile (2022-2024) market conditions showed that the proposed time-varying minimum vari-

ance portfolio (TV-MVP) can achieve comparatively low volatility. While it does not outper-

form established methods (e.g., POET and shrinkage estimators) in terms of portfolio returns

and Sharpe ratio, it remains broadly competitive.

For future research, we leave several opportunities for expansion and improvements of the

method. First, evaluation of the maximum Sharpe ratio portfolio as well as other portfolio op-

timization techniques, as well as more sophisticated modelling of the expected returns, which
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could enhance the performance of these portfolios. Second, implementing different regulariza-

tion options for the residual covariance. Finally, expanding the package with more methods of

portfolio optimization and refining the code base for more efficient computation. By providing

a user-friendly implementation of the method and proving its competitiveness against estab-

lished methods, we anticipate that time-varying factor approaches will become increasingly

central to portfolio management.
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