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between_centrality Measures of betweenness-like centrality and centralisation

Description

These functions calculate common betweenness-related centrality measures for one- and two-mode
networks:

• node_betweenness() measures the betweenness centralities of nodes in a network.

• node_induced() measures the induced betweenness centralities of nodes in a network.

• node_flow() measures the flow betweenness centralities of nodes in a network, which uses
an electrical current model for information spreading in contrast to the shortest paths model
used by normal betweenness centrality.

• tie_betweenness() measures the number of shortest paths going through a tie.

• network_betweenness() measures the betweenness centralization for a network.

All measures attempt to use as much information as they are offered, including whether the networks
are directed, weighted, or multimodal. If this would produce unintended results, first transform the
salient properties using e.g. to_undirected() functions. All centrality and centralization measures
return normalized measures by default, including for two-mode networks.

Usage

node_betweenness(.data, normalized = TRUE, cutoff = NULL)

node_induced(.data, normalized = TRUE, cutoff = NULL)

node_flow(.data, normalized = TRUE)

tie_betweenness(.data, normalized = TRUE)

network_betweenness(
.data,
normalized = TRUE,
direction = c("all", "out", "in")

)

Arguments

.data An object of a {manynet}-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package
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normalized Logical scalar, whether the centrality scores are normalized. Different denomi-
nators are used depending on whether the object is one-mode or two-mode, the
type of centrality, and other arguments.

cutoff The maximum path length to consider when calculating betweenness. If nega-
tive or NULL (the default), there’s no limit to the path lengths considered.

direction Character string, “out” bases the measure on outgoing ties, “in” on incoming
ties, and "all" on either/the sum of the two. For two-mode networks, "all" uses
as numerator the sum of differences between the maximum centrality score for
the mode against all other centrality scores in the network, whereas "in" uses as
numerator the sum of differences between the maximum centrality score for the
mode against only the centrality scores of the other nodes in that mode.

Value

A numeric vector giving the betweenness centrality measure of each node.

References

Everett, Martin and Steve Borgatti. 2010. "Induced, endogenous and exogenous centrality" Social
Networks, 32: 339-344. doi:10.1016/j.socnet.2010.06.004

See Also

Other centrality: close_centrality, degree_centrality, eigenv_centrality

Other measures: close_centrality, closure, cohesion(), degree_centrality, eigenv_centrality,
features, heterogeneity, hierarchy, holes, net_diffusion, node_diffusion, periods

Examples

node_betweenness(mpn_elite_mex)
node_betweenness(ison_southern_women)
node_induced(mpn_elite_mex)
(tb <- tie_betweenness(ison_adolescents))
plot(tb)
#ison_adolescents %>% mutate_ties(weight = tb) %>%
# autographr()
network_betweenness(ison_southern_women, direction = "in")

brokerage_census Censuses of brokerage motifs

Description

These functions include ways to take a census of the brokerage positions of nodes in a network:

• node_brokerage_census() returns the Gould-Fernandez brokerage roles played by nodes in
a network.

• network_brokerage_census() returns the Gould-Fernandez brokerage roles in a network.

https://doi.org/10.1016/j.socnet.2010.06.004
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Usage

node_brokerage_census(.data, membership, standardized = FALSE)

network_brokerage_census(.data, membership, standardized = FALSE)

node_brokering_activity(.data, membership)

node_brokering_exclusivity(.data, membership)

node_brokering(.data, membership)

Arguments

.data An object of a {manynet}-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

membership A vector of partition membership as integers.

standardized Whether the score should be standardized into a z-score indicating how many
standard deviations above or below the average the score lies.

References

Gould, R.V. and Fernandez, R.M. 1989. “Structures of Mediation: A Formal Approach to Broker-
age in Transaction Networks.” Sociological Methodology, 19: 89-126.

Jasny, Lorien, and Mark Lubell. 2015. “Two-Mode Brokerage in Policy Networks.” Social Net-
works 41:36–47. doi:10.1016/j.socnet.2014.11.005.

Hamilton, Matthew, Jacob Hileman, and Orjan Bodin. 2020. "Evaluating heterogeneous brokerage:
New conceptual and methodological approaches and their application to multi-level environmental
governance networks" Social Networks 61: 1-10. doi:10.1016/j.socnet.2019.08.002

See Also

Other motifs: network_census, node_census

Examples

node_brokerage_census(manynet::ison_networkers, "Discipline")
network_brokerage_census(manynet::ison_networkers, "Discipline")
node_brokering_exclusivity(ison_networkers, "Discipline")

https://doi.org/10.1016/j.socnet.2014.11.005
https://doi.org/10.1016/j.socnet.2019.08.002
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cliques Clique partitioning algorithms

Description

These functions create a vector of nodes’ memberships in cliques:

• node_roulette() assigns nodes to maximally diverse groups.

Usage

node_roulette(.data, num_groups, group_size, times = NULL)

Arguments

.data An object of a {manynet}-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

num_groups An integer indicating the number of groups desired.

group_size An integer indicating the desired size of most of the groups. Note that if the
number of nodes is not divisible into groups of equal size, there may be some
larger or smaller groups.

times An integer of the number of search iterations the algorithm should complete.
By default this is the number of nodes in the network multiplied by the number
of groups. This heuristic may be insufficient for small networks and numbers
of groups, and burdensome for large networks and numbers of groups, but can
be overwritten. At every 10th iteration, a stronger perturbation of a number of
successive changes, approximately the number of nodes divided by the num-
ber of groups, will take place irrespective of whether it improves the objective
function.

Maximally diverse grouping problem

This well known computational problem is a NP-hard problem with a number of relevant applica-
tions, including the formation of groups of students that have encountered each other least or least
recently. Essentially, the aim is to return a membership of nodes in cliques that minimises the sum
of their previous (weighted) ties:

m∑
g=1

n−1∑
i=1

n∑
j=i+1

xijyigyjg

where yig = 1 if node i is in group g, and 0 otherwise.
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xij is the existing network data. If this is an empty network, the function will just return cliques.
To run this repeatedly, one can join a clique network of the membership result with the original
network, using this as the network data for the next round.

A form of the Lai and Hao (2016) iterated maxima search (IMS) is used here. This performs well
for small and moderately sized networks. It includes both weak and strong perturbations to an
initial solution to ensure that a robust solution from the broader state space is identified. The user is
referred to Lai and Hao (2016) and Lai et al (2021) for more details.

References

Lai, Xiangjing, and Jin-Kao Hao. 2016. “Iterated Maxima Search for the Maximally Diverse
Grouping Problem.” European Journal of Operational Research 254(3):780–800. doi:10.1016/
j.ejor.2016.05.018.

Lai, Xiangjing, Jin-Kao Hao, Zhang-Hua Fu, and Dong Yue. 2021. “Neighborhood Decomposition
Based Variable Neighborhood Search and Tabu Search for Maximally Diverse Grouping.” European
Journal of Operational Research 289(3):1067–86. doi:10.1016/j.ejor.2020.07.048.

See Also

Other memberships: community, components(), core, equivalence

close_centrality Measures of closeness-like centrality and centralisation

Description

These functions calculate common closeness-related centrality measures for one- and two-mode
networks:

• node_closeness() measures the closeness centrality of nodes in a network.

• node_reach() measures nodes’ reach centrality, or how many nodes they can reach within k
steps.

• node_harmonic() measures nodes’ harmonic centrality or valued centrality, which is thought
to behave better than reach centrality for disconnected networks.

• node_information() measures nodes’ information centrality or current-flow closeness cen-
trality.

• tie_closeness() measures the closeness of each tie to other ties in the network.

• network_closeness() measures a network’s closeness centralization.

• network_reach() measures a network’s reach centralization.

• network_harmonic() measures a network’s harmonic centralization.

All measures attempt to use as much information as they are offered, including whether the networks
are directed, weighted, or multimodal. If this would produce unintended results, first transform the
salient properties using e.g. to_undirected() functions. All centrality and centralization measures
return normalized measures by default, including for two-mode networks.

https://doi.org/10.1016/j.ejor.2016.05.018
https://doi.org/10.1016/j.ejor.2016.05.018
https://doi.org/10.1016/j.ejor.2020.07.048
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Usage

node_closeness(.data, normalized = TRUE, direction = "out", cutoff = NULL)

node_reach(.data, normalized = TRUE, k = 2)

node_harmonic(.data, normalized = TRUE, k = -1)

node_information(.data, normalized = TRUE)

tie_closeness(.data, normalized = TRUE)

network_closeness(.data, normalized = TRUE, direction = c("all", "out", "in"))

network_reach(.data, normalized = TRUE, k = 2)

network_harmonic(.data, normalized = TRUE, k = 2)

Arguments

.data An object of a {manynet}-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

normalized Logical scalar, whether the centrality scores are normalized. Different denomi-
nators are used depending on whether the object is one-mode or two-mode, the
type of centrality, and other arguments.

direction Character string, “out” bases the measure on outgoing ties, “in” on incoming
ties, and "all" on either/the sum of the two. For two-mode networks, "all" uses
as numerator the sum of differences between the maximum centrality score for
the mode against all other centrality scores in the network, whereas "in" uses as
numerator the sum of differences between the maximum centrality score for the
mode against only the centrality scores of the other nodes in that mode.

cutoff Maximum path length to use during calculations.

k Integer of steps out to calculate reach

References

Marchiori, M, and V Latora. 2000. "Harmony in the small-world". Physica A 285: 539-546.

Dekker, Anthony. 2005. "Conceptual distance in social network analysis". Journal of Social Struc-
ture 6(3).

See Also

Other centrality: between_centrality, degree_centrality, eigenv_centrality
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Other measures: between_centrality, closure, cohesion(), degree_centrality, eigenv_centrality,
features, heterogeneity, hierarchy, holes, net_diffusion, node_diffusion, periods

Examples

node_closeness(mpn_elite_mex)
node_closeness(ison_southern_women)
node_reach(ison_adolescents)
(ec <- tie_closeness(ison_adolescents))
plot(ec)
#ison_adolescents %>%
# activate(edges) %>% mutate(weight = ec) %>%
# autographr()
network_closeness(ison_southern_women, direction = "in")

closure Measures of network closure

Description

These functions offer methods for summarising the closure in configurations in one-, two-, and
three-mode networks:

• network_reciprocity() measures reciprocity in a (usually directed) network.

• node_reciprocity() measures nodes’ reciprocity.

• network_transitivity() measures transitivity in a network.

• node_transitivity() measures nodes’ transitivity.

• network_equivalency() measures equivalence or reinforcement in a (usually two-mode)
network.

• network_congruency() measures congruency across two two-mode networks.

Usage

network_reciprocity(.data, method = "default")

node_reciprocity(.data)

network_transitivity(.data)

node_transitivity(.data)

network_equivalency(.data)

network_congruency(.data, object2)
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Arguments

.data An object of a {manynet}-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

method For reciprocity, either default or ratio. See ?igraph::reciprocity

object2 Optionally, a second (two-mode) matrix, igraph, or tidygraph

Details

For one-mode networks, shallow wrappers of igraph versions exist via network_reciprocity and
network_transitivity.

For two-mode networks, network_equivalency calculates the proportion of three-paths in the
network that are closed by fourth tie to establish a "shared four-cycle" structure.

For three-mode networks, network_congruency calculates the proportion of three-paths spanning
two two-mode networks that are closed by a fourth tie to establish a "congruent four-cycle" struc-
ture.

Equivalency

The network_equivalency() function calculates the Robins and Alexander (2004) clustering co-
efficient for two-mode networks. Note that for weighted two-mode networks, the result is divided
by the average tie weight.

References

Robins, Garry L, and Malcolm Alexander. 2004. Small worlds among interlocking directors: Net-
work structure and distance in bipartite graphs. Computational & Mathematical Organization The-
ory 10(1): 69–94. doi:10.1023/B:CMOT.0000032580.12184.c0.

Knoke, David, Mario Diani, James Hollway, and Dimitris C Christopoulos. 2021. Multimodal Polit-
ical Networks. Cambridge University Press. Cambridge University Press. doi:10.1017/9781108985000

See Also

Other measures: between_centrality, close_centrality, cohesion(), degree_centrality,
eigenv_centrality, features, heterogeneity, hierarchy, holes, net_diffusion, node_diffusion,
periods

Examples

network_reciprocity(ison_southern_women)
node_reciprocity(to_unweighted(ison_networkers))
network_transitivity(ison_adolescents)
node_transitivity(ison_adolescents)
network_equivalency(ison_southern_women)

https://doi.org/10.1023/B%3ACMOT.0000032580.12184.c0
https://doi.org/10.1017/9781108985000
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cluster Methods for equivalence clustering

Description

These functions are used to cluster some census object:

• cluster_hierarchical() returns a hierarchical clustering object created by stats::hclust().

• cluster_concor() returns a hierarchical clustering object created from a convergence of
correlations procedure (CONCOR).

These functions are not intended to be called directly, but are called within node_equivalence()
and related functions. They are exported and listed here to provide more detailed documentation.

Usage

cluster_hierarchical(census, distance)

cluster_concor(.data, census)

Arguments

census A matrix returned by a node_*_census() function.

distance Character string indicating which distance metric to pass on to stats::dist.
By default "euclidean", but other options include "maximum", "manhattan",
"canberra", "binary", and "minkowski". Fewer, identifiable letters, e.g. "e"
for Euclidean, is sufficient.

.data An object of a {manynet}-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

CONCOR

First a matrix of Pearson correlation coefficients between each pair of nodes profiles in the given
census is created. Then, again, we find the correlations of this square, symmetric matrix, and
continue to do this iteratively until each entry is either 1 or -1. These values are used to split the
data into two partitions, with members either holding the values 1 or -1. This procedure from
census to convergence is then repeated within each block, allowing further partitions to be found.
Unlike UCINET, partitions are continued until there are single members in each partition. Then a
distance matrix is constructed from records of in which partition phase nodes were separated, and
this is given to stats::hclust() so that dendrograms etc can be returned.
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References

Breiger, Ronald L., Scott A. Boorman, and Phipps Arabie. 1975. "An Algorithm for Clustering Re-
lational Data with Applications to Social Network Analysis and Comparison with Multidimensional
Scaling". Journal of Mathematical Psychology, 12: 328-83. doi:10.1016/00222496(75)900280.

cohesion Measures of network cohesion or connectedness

Description

These functions return values or vectors relating to how connected a network is and the number of
nodes or edges to remove that would increase fragmentation.

• network_density() measures the ratio of ties to the number of possible ties.

• network_components() measures the number of (strong) components in the network.

• network_cohesion() measures the minimum number of nodes to remove from the network
needed to increase the number of components.

• network_adhesion() measures the minimum number of ties to remove from the network
needed to increase the number of components.

• network_diameter() measures the maximum path length in the network.

• network_length() measures the average path length in the network.

Usage

network_density(.data)

network_components(.data)

network_cohesion(.data)

network_adhesion(.data)

network_diameter(.data)

network_length(.data)

Arguments

.data An object of a {manynet}-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

https://doi.org/10.1016/0022-2496%2875%2990028-0
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Cohesion

To get the ’weak’ components of a directed graph, please use manynet::to_undirected() first.

References

White, Douglas R and Frank Harary. 2001. "The Cohesiveness of Blocks In Social Networks: Node
Connectivity and Conditional Density." Sociological Methodology 31(1): 305-59.

See Also

Other measures: between_centrality, close_centrality, closure, degree_centrality, eigenv_centrality,
features, heterogeneity, hierarchy, holes, net_diffusion, node_diffusion, periods

Examples

network_density(mpn_elite_mex)
network_density(mpn_elite_usa_advice)

network_components(mpn_ryanair)
network_components(manynet::to_undirected(mpn_ryanair))

network_cohesion(manynet::ison_marvel_relationships)
network_cohesion(manynet::to_giant(manynet::ison_marvel_relationships))
network_adhesion(manynet::ison_marvel_relationships)
network_adhesion(manynet::to_giant(manynet::ison_marvel_relationships))
network_diameter(manynet::ison_marvel_relationships)
network_diameter(manynet::to_giant(manynet::ison_marvel_relationships))
network_length(manynet::ison_marvel_relationships)
network_length(manynet::to_giant(manynet::ison_marvel_relationships))

community Community partitioning algorithms

Description

These functions offer different algorithms useful for partitioning networks into sets of communities:

• node_optimal() is a problem-solving algorithm that seeks to maximise modularity over all
possible partitions.

• node_kernaghinlin() is a greedy, iterative, deterministic partitioning algorithm that results
in two equally-sized communities.

• node_edge_betweenness() is a hierarchical, decomposition algorithm where edges are re-
moved in decreasing order of the number of shortest paths passing through the edge.

• node_fast_greedy() is a hierarchical, agglomerative algorithm, that tries to optimize mod-
ularity in a greedy manner.

• node_leading_eigen() is a top-down, hierarchical algorithm.

• node_walktrap() is a hierarchical, agglomerative algorithm based on random walks.

• node_infomap() is a hierarchical algorithm based on the information in random walks.
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• node_spinglass() is a greedy, iterative, probabilistic algorithm, based on analogy to model
from statistical physics.

• node_fluid() is a propogation-based partitioning algorithm, based on analogy to model from
fluid dynamics.

• node_louvain() is an agglomerative multilevel algorithm that seeks to maximise modularity
over all possible partitions.

• node_leiden() is an agglomerative multilevel algorithm that seeks to maximise the Constant
Potts Model over all possible partitions.

The different algorithms offer various advantages in terms of computation time, availability on
different types of networks, ability to maximise modularity, and their logic or domain of inspiration.

Usage

node_optimal(.data)

node_kernighanlin(.data)

node_edge_betweenness(.data)

node_fast_greedy(.data)

node_leading_eigen(.data)

node_walktrap(.data, times = 50)

node_infomap(.data, times = 50)

node_spinglass(.data, max_k = 200, resolution = 1)

node_fluid(.data)

node_louvain(.data, resolution = 1)

node_leiden(.data, resolution = 1)

Arguments

.data An object of a {manynet}-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

times Integer indicating number of simulations/walks used. By default, times=50.

max_k Integer constant, the number of spins to use as an upper limit of communities to
be found. Some sets can be empty at the end.
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resolution The Reichardt-Bornholdt “gamma” resolution parameter for modularity. By de-
fault 1, making existing and non-existing ties equally important. Smaller values
make existing ties more important, and larger values make missing ties more
important.

Optimal

The general idea is to calculate the modularity of all possible partitions, and choose the community
structure that maximises this modularity measure. Note that this is an NP-complete problem with
exponential time complexity. The guidance in the igraph package is networks of <50-200 nodes is
probably fine.

Edge-betweenness

This is motivated by the idea that edges connecting different groups are more likely to lie on multi-
ple shortest paths when they are the only option to go from one group to another. This method yields
good results but is very slow because of the computational complexity of edge-betweenness calcu-
lations and the betweenness scores have to be re-calculated after every edge removal. Networks of
~700 nodes and ~3500 ties are around the upper size limit that are feasible with this approach.

Fast-greedy

Initially, each node is assigned a separate community. Communities are then merged iteratively
such that each merge yields the largest increase in the current value of modularity, until no further
increases to the modularity are possible. The method is fast and recommended as a first approx-
imation because it has no parameters to tune. However, it is known to suffer from a resolution
limit.

Leading eigenvector

In each step, the network is bifurcated such that modularity increases most. The splits are deter-
mined according to the leading eigenvector of the modularity matrix. A stopping condition prevents
tightly connected groups from being split further. Note that due to the eigenvector calculations in-
volved, this algorithm will perform poorly on degenerate networks, but will likely obtain a higher
modularity than fast-greedy (at some cost of speed).

Walktrap

The general idea is that random walks on a network are more likely to stay within the same com-
munity because few edges lead outside a community. By repeating random walks of 4 steps many
times, information about the hierarchical merging of communities is collected.

Infomap

Motivated by information theoretic principles, this algorithm tries to build a grouping that provides
the shortest description length for a random walk, where the description length is measured by the
expected number of bits per node required to encode the path.
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Spin-glass

This is motivated by analogy to the Potts model in statistical physics. Each node can be in one of
k "spin states", and ties (particle interactions) provide information about which pairs of nodes want
similar or different spin states. The final community definitions are represented by the nodes’ spin
states after a number of updates. A different implementation than the default is used in the case of
signed networks, such that nodes connected by negative ties will be more likely found in separate
communities.

Fluid

The general idea is to observe how a discrete number of fluids interact, expand and contract, in a
non-homogenous environment, i.e. the network structure. Unlike the {igraph} implementation
that this function wraps, this function iterates over all possible numbers of communities and returns
the membership associated with the highest modularity.

Louvain

The general idea is to take a hierarchical approach to optimising the modularity criterion. Nodes be-
gin in their own communities and are re-assigned in a local, greedy way: each node is moved to the
community where it achieves the highest contribution to modularity. When no further modularity-
increasing reassignments are possible, the resulting communities are considered nodes (like a re-
duced graph), and the process continues.

Leiden

The general idea is to optimise the Constant Potts Model, which does not suffer from the resolution
limit, instead of modularity. As outlined in the {igraph} package, the Constant Potts Model object
function is:

1

2m

∑
ij

(Aij − γninj)δ(σi, σj)

where m is the total tie weight, Aij is the tie weight between i and j, γ is the so-called resolution
parameter, ni is the node weight of node i, and δ(σi, σj) = 1 if and only if i and j are in the same
communities and 0 otherwise.
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See Also

Other memberships: cliques, components(), core, equivalence

Examples

node_optimal(ison_adolescents)
node_kernighanlin(ison_adolescents)
node_kernighanlin(ison_southern_women)
node_edge_betweenness(ison_adolescents)
node_fast_greedy(ison_adolescents)
node_leading_eigen(ison_adolescents)
node_walktrap(ison_adolescents)
node_infomap(ison_adolescents)
node_spinglass(ison_adolescents)
node_fluid(ison_adolescents)
node_louvain(ison_adolescents)
node_leiden(ison_adolescents)

components Component partitioning algorithms

https://doi.org/10.1073/pnas.0706851105
https://doi.org/10.1140/epjst/e2010-01179-1
https://doi.org/10.1073/pnas.0605965104
https://doi.org/10.1007/978-3-319-72150-7_19
https://doi.org/10.1038/s41598-019-41695-z
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Description

These functions create a vector of nodes’ memberships in components or degrees of coreness:

• node_components() assigns nodes’ component membership using edge direction where avail-
able.

• node_weak_components() assigns nodes’ component membership ignoring edge direction.

• node_strong_components() assigns nodes’ component membership based on edge direc-
tion.

• node_roulette()

In graph theory, components, sometimes called connected components, are induced subgraphs from
partitioning the nodes into disjoint sets. All nodes that are members of the same partition as i are
reachable from i.

For directed networks, strongly connected components consist of subgraphs where there are paths in
each direction between member nodes. Weakly connected components consist of subgraphs where
there is a path in either direction between member nodes.

Coreness captures the maximal subgraphs in which each vertex has at least degree k, where k is also
the order of the subgraph. As described in igraph::coreness, a node’s coreness is k if it belongs
to the k-core but not to the (k+1)-core.

Usage

node_components(.data)

node_weak_components(.data)

node_strong_components(.data)

Arguments

.data An object of a {manynet}-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

See Also

Other memberships: cliques, community, core, equivalence

Examples

node_components(mpn_bristol)
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core Core-periphery clustering algorithms

Description

These functions identify nodes belonging to (some level of) the core of a network:

• node_core() assigns nodes to either the core or periphery.

• node_coreness() assigns nodes to their level of k-coreness.

Usage

node_core(.data, method = c("degree", "eigenvector"))

node_coreness(.data)

Arguments

.data An object of a {manynet}-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

method Which method to use to identify cores and periphery. By default this is "degree",
which relies on the heuristic that high degree nodes are more likely to be in the
core. An alternative is "eigenvector", which instead begins with high eigenvector
nodes. Other methods, such as a genetic algorithm, CONCOR, and Rombach-
Porter, can be added if there is interest.

Core-periphery

This function is used to identify which nodes should belong to the core, and which to the periphery.
It seeks to minimize the following quantity:

Z(S1) =
∑

(i<j)∈S1

I{Aij=0} +
∑

(i<j)/∈S1

I{Aij=1}

where nodes {i, j, ..., n} are ordered in descending degree, A is the adjacency matrix, and the
indicator function is 1 if the predicate is true or 0 otherwise. Note that minimising this quantity
maximises density in the core block and minimises density in the periphery block; it ignores ties
between these blocks.
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References

Borgatti, Stephen P., & Everett, Martin G. 1999. Models of core /periphery structures. Social
Networks, 21, 375–395. doi:10.1016/S03788733(99)000192
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See Also

Other memberships: cliques, community, components(), equivalence

Examples

#mpn_elite_usa_advice %>% as_tidygraph %>%
# mutate(corep = node_core(mpn_elite_usa_advice)) %>%
# autographr(node_color = "corep")
network_core(mpn_elite_usa_advice)
node_coreness(ison_adolescents)

degree_centrality Measures of degree-like centrality and centralisation

Description

These functions calculate common degree-related centrality measures for one- and two-mode net-
works:

• node_degree() measures the degree centrality of nodes in an unweighted network, or weighted
degree/strength of nodes in a weighted network; there are several related shortcut functions:

– node_deg() returns the unnormalised results.
– node_indegree() returns the direction = 'in' results.
– node_outdegree() returns the direction = 'out' results.

• node_multidegree() measures the ratio between types of ties in a multiplex network.

• node_posneg() measures the PN (positive-negative) centrality of a signed network.

• tie_degree() measures the degree centrality of ties in a network

• network_degree() measures a network’s degree centralization; there are several related short-
cut functions:

– network_indegree() returns the direction = 'out' results.
– network_outdegree() returns the direction = 'out' results.

All measures attempt to use as much information as they are offered, including whether the networks
are directed, weighted, or multimodal. If this would produce unintended results, first transform the
salient properties using e.g. to_undirected() functions. All centrality and centralization measures
return normalized measures by default, including for two-mode networks.

https://doi.org/10.1016/S0378-8733%2899%2900019-2
https://doi.org/10.48550/arXiv.1102.5511
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Usage

node_degree(
.data,
normalized = TRUE,
alpha = 1,
direction = c("all", "out", "in")

)

node_deg(.data, alpha = 0, direction = c("all", "out", "in"))

node_outdegree(.data, normalized = TRUE, alpha = 0)

node_indegree(.data, normalized = TRUE, alpha = 0)

node_multidegree(.data, tie1, tie2)

node_posneg(.data)

tie_degree(.data, normalized = TRUE)

network_degree(.data, normalized = TRUE, direction = c("all", "out", "in"))

network_outdegree(.data, normalized = TRUE)

network_indegree(.data, normalized = TRUE)

Arguments

.data An object of a {manynet}-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

normalized Logical scalar, whether the centrality scores are normalized. Different denomi-
nators are used depending on whether the object is one-mode or two-mode, the
type of centrality, and other arguments.

alpha Numeric scalar, the positive tuning parameter introduced in Opsahl et al (2010)
for trading off between degree and strength centrality measures. By default,
alpha = 0, which ignores tie weights and the measure is solely based upon de-
gree (the number of ties). alpha = 1 ignores the number of ties and provides the
sum of the tie weights as strength centrality. Values between 0 and 1 reflect dif-
ferent trade-offs in the relative contributions of degree and strength to the final
outcome, with 0.5 as the middle ground. Values above 1 penalise for the number
of ties. Of two nodes with the same sum of tie weights, the node with fewer ties
will obtain the higher score. This argument is ignored except in the case of a
weighted network.
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direction Character string, “out” bases the measure on outgoing ties, “in” on incoming
ties, and "all" on either/the sum of the two. For two-mode networks, "all" uses
as numerator the sum of differences between the maximum centrality score for
the mode against all other centrality scores in the network, whereas "in" uses as
numerator the sum of differences between the maximum centrality score for the
mode against only the centrality scores of the other nodes in that mode.

tie1 Character string indicating the first uniplex network.

tie2 Character string indicating the second uniplex network.

Value

A single centralization score if the object was one-mode, and two centralization scores if the object
was two-mode.

Depending on how and what kind of an object is passed to the function, the function will return a
tidygraph object where the nodes have been updated

References
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Handbook of Social Network Analysis, edited by John Scott and Peter J. Carrington, 417–33. Lon-
don, UK: Sage. doi:10.4135/9781446294413.n28.

Opsahl, Tore, Filip Agneessens, and John Skvoretz. 2010. "Node centrality in weighted networks:
Generalizing degree and shortest paths." Social Networks 32, 245-251. doi:10.1016/j.socnet.2010.03.006

Everett, Martin G., and Stephen P. Borgatti. 2014. “Networks Containing Negative Ties.” Social
Networks 38:111–20. doi:10.1016/j.socnet.2014.03.005.

See Also

to_undirected() for removing edge directions and to_unweighted() for removing weights from
a graph.

Other centrality: between_centrality, close_centrality, eigenv_centrality

Other measures: between_centrality, close_centrality, closure, cohesion(), eigenv_centrality,
features, heterogeneity, hierarchy, holes, net_diffusion, node_diffusion, periods

Examples

node_degree(mpn_elite_mex)
node_degree(ison_southern_women)
tie_degree(ison_adolescents)
network_degree(ison_southern_women, direction = "in")

https://doi.org/10.1016/S0378-8733%2896%2900300-0
https://doi.org/10.1016/S0378-8733%2896%2900301-2
https://doi.org/10.4135/9781446294413.n28
https://doi.org/10.1016/j.socnet.2010.03.006
https://doi.org/10.1016/j.socnet.2014.03.005
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eigenv_centrality Measures of eigenvector-like centrality and centralisation

Description

These functions calculate common eigenvector-related centrality measures for one- and two-mode
networks:

• node_eigenvector() measures the eigenvector centrality of nodes in a network.

• node_power() measures the Bonacich, beta, or power centrality of nodes in a network.

• node_alpha() measures the alpha or Katz centrality of nodes in a network.

• node_pagerank() measures the pagerank centrality of nodes in a network.

• tie_eigenvector() measures the eigenvector centrality of ties in a network.

• network_eigenvector() measures the eigenvector centralization for a network.

All measures attempt to use as much information as they are offered, including whether the networks
are directed, weighted, or multimodal. If this would produce unintended results, first transform the
salient properties using e.g. to_undirected() functions. All centrality and centralization measures
return normalized measures by default, including for two-mode networks.

Usage

node_eigenvector(.data, normalized = TRUE, scale = FALSE)

node_power(.data, normalized = TRUE, scale = FALSE, exponent = 1)

node_alpha(.data, alpha = 0.85)

node_pagerank(.data)

tie_eigenvector(.data, normalized = TRUE)

network_eigenvector(.data, normalized = TRUE)

Arguments

.data An object of a {manynet}-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

normalized Logical scalar, whether the centrality scores are normalized. Different denomi-
nators are used depending on whether the object is one-mode or two-mode, the
type of centrality, and other arguments.
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scale Logical scalar, whether to rescale the vector so the maximum score is 1.
exponent Decay rate for the Bonacich power centrality score.
alpha A constant that trades off the importance of external influence against the impor-

tance of connection. When α = 0, only the external influence matters. As α gets
larger, only the connectivity matters and we reduce to eigenvector centrality. By
default α = 0.85.

Details

We use {igraph} routines behind the scenes here for consistency and because they are often faster.
For example, igraph::eigencentrality() is approximately 25% faster than sna::evcent().

Value

A numeric vector giving the eigenvector centrality measure of each node.

A numeric vector giving each node’s power centrality measure.

Eigenvector centrality

Eigenvector centrality operates as a measure of a node’s influence in a network. The idea is that be-
ing connected to well-connected others results in a higher score. Each node’s eigenvector centrality
can be defined as:

xi =
1

λ

∑
j∈N

ai,jxj

where ai,j = 1 if i is linked to j and 0 otherwise, and λ is a constant representing the principal
eigenvalue. Rather than performing this iteration, most routines solve the eigenvector equation
Ax = λx.

Power centrality

Power or beta (or Bonacich) centrality

Alpha centrality

Alpha or Katz (or Katz-Bonacich) centrality operates better than eigenvector centrality for directed
networks. Eigenvector centrality will return 0s for all nodes not in the main strongly-connected
component. Each node’s alpha centrality can be defined as:

xi =
1

λ

∑
j∈N

ai,jxj + ei

where ai,j = 1 if i is linked to j and 0 otherwise, λ is a constant representing the principal eigen-
value, and ei is some external influence used to ensure that even nodes beyond the main strongly
connected component begin with some basic influence. Note that many equations replace 1

λ with
α, hence the name.

For example, if α = 0.5, then each direct connection (or alter) would be worth (0.5)1 = 0.5, each
secondary connection (or tertius) would be worth (0.5)2 = 0.25, each tertiary connection would be
worth (0.5)3 = 0.125, and so on.

Rather than performing this iteration though, most routines solve the equation x = (I − 1
λA

T )−1e.
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See Also

Other centrality: between_centrality, close_centrality, degree_centrality

Other measures: between_centrality, close_centrality, closure, cohesion(), degree_centrality,
features, heterogeneity, hierarchy, holes, net_diffusion, node_diffusion, periods

Examples

node_eigenvector(mpn_elite_mex)
node_eigenvector(ison_southern_women)
node_power(ison_southern_women, exponent = 0.5)
tie_eigenvector(ison_adolescents)
network_eigenvector(mpn_elite_mex)
network_eigenvector(ison_southern_women)

equivalence Equivalence clustering algorithms

Description

These functions combine an appropriate _census() function together with methods for calculating
the hierarchical clusters provided by a certain distance calculation.

• node_equivalence() assigns nodes membership based on their equivalence with respective
to some census/class. The following functions call this function, together with an appropriate
census.

– node_structural_equivalence() assigns nodes membership based on their having
equivalent ties to the same other nodes.

– node_regular_equivalence() assigns nodes membership based on their having equiv-
alent patterns of ties.

– node_automorphic_equivalence() assigns nodes membership based on their having
equivalent distances to other nodes.

A plot() method exists for investigating the dendrogram of the hierarchical cluster and showing
the returned cluster assignment.

https://doi.org/10.1016/0378-8733%2891%2990018-O
https://doi.org/10.1086/228631
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Usage

node_equivalence(
.data,
census,
k = c("silhouette", "elbow", "strict"),
cluster = c("hierarchical", "concor"),
distance = c("euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski"),
range = 8L

)

node_structural_equivalence(
.data,
k = c("silhouette", "elbow", "strict"),
cluster = c("hierarchical", "concor"),
distance = c("euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski"),
range = 8L

)

node_regular_equivalence(
.data,
k = c("silhouette", "elbow", "strict"),
cluster = c("hierarchical", "concor"),
distance = c("euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski"),
range = 8L

)

node_automorphic_equivalence(
.data,
k = c("silhouette", "elbow", "strict"),
cluster = c("hierarchical", "concor"),
distance = c("euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski"),
range = 8L

)

Arguments

.data An object of a {manynet}-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

census A matrix returned by a node_*_census() function.

k Typically a character string indicating which method should be used to select the
number of clusters to return. By default "silhouette", other options include
"elbow" and "strict". "strict" returns classes with members only when
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strictly equivalent. "silhouette" and "elbow" select classes based on the dis-
tance between clusters or between nodes within a cluster. Fewer, identifiable
letters, e.g. "e" for elbow, is sufficient. Alternatively, if k is passed an integer,
e.g. k = 3, then all selection routines are skipped in favour of this number of
clusters.

cluster Character string indicating whether clusters should be clustered hierarchically
("hierarchical") or through convergence of correlations ("concor"). Fewer,
identifiable letters, e.g. "c" for CONCOR, is sufficient.

distance Character string indicating which distance metric to pass on to stats::dist.
By default "euclidean", but other options include "maximum", "manhattan",
"canberra", "binary", and "minkowski". Fewer, identifiable letters, e.g. "e"
for Euclidean, is sufficient.

range Integer indicating the maximum number of (k) clusters to evaluate. Ignored
when k = "strict" or a discrete number is given for k.

Source

https://github.com/aslez/concoR

See Also

Other memberships: cliques, community, components(), core

Examples

(nse <- node_structural_equivalence(mpn_elite_usa_advice))
plot(nse)

(nre <- node_regular_equivalence(mpn_elite_usa_advice,
cluster = "concor"))

plot(nre)

(nae <- node_automorphic_equivalence(mpn_elite_usa_advice,
k = "elbow"))

plot(nae)

features Measures of network topological features

https://github.com/aslez/concoR
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Description

These functions measure certain topological features of networks:

• network_core() measures the correlation between a network and a core-periphery model
with the same dimensions.

• network_richclub() measures the rich-club coefficient of a network.

• network_factions() measures the correlation between a network and a component model
with the same dimensions. If no ’membership’ vector is given for the data, node_kernighanlin()
is used to partition nodes into two groups.

• network_modularity() measures the modularity of a network based on nodes’ membership
in defined clusters.

• network_smallworld() measures the small-world coefficient for one- or two-mode networks.
Small-world networks can be highly clustered and yet have short path lengths.

• network_scalefree() measures the exponent of a fitted power-law distribution. An expo-
nent between 2 and 3 usually indicates a power-law distribution.

• network_balance() measures the structural balance index on the proportion of balanced tri-
angles, ranging between 0 if all triangles are imbalanced and 1 if all triangles are balanced.

• network_change() measures the Hamming distance between two or more networks.

• network_stability() measures the Jaccard index of stability between two or more net-
works.

These network_*() functions return a single numeric scalar or value.

Usage

network_core(.data, membership = NULL)

network_richclub(.data)

network_factions(.data, membership = NULL)

network_modularity(.data, membership = NULL, resolution = 1)

network_smallworld(.data, method = c("omega", "sigma", "SWI"), times = 100)

network_scalefree(.data)

network_balance(.data)

Arguments

.data An object of a {manynet}-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
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• tbl_graph, from the {tidygraph} package

membership A vector of partition membership.

resolution A proportion indicating the resolution scale. By default 1.

method There are three small-world measures implemented:

• "sigma" is the original equation from Watts and Strogatz (1998),

C
Cr

L
Lr

, where C and L are the observed clustering coefficient and path length,
respectively, and Cr and Lr are the averages obtained from random net-
works of the same dimensions and density. A σ > 1 is considered to be
small-world, but this measure is highly sensitive to network size.

• "omega" (the default) is an update from Telesford et al. (2011),

Lr
L
− C

Cl

, where Cl is the clustering coefficient for a lattice graph with the same
dimensions. ω ranges between 0 and 1, where 1 is as close to a small-world
as possible.

• "SWI" is an alternative proposed by Neal (2017),

L− Ll
Lr − Ll

× C − Cr
Cl − Cr

, where Ll is the average path length for a lattice graph with the same di-
mensions. SWI also ranges between 0 and 1 with the same interpretation,
but where there may not be a network for which SWI = 1.

times Integer of number of simulations.

Modularity

Modularity measures the difference between the number of ties within each community from the
number of ties expected within each community in a random graph with the same degrees, and
ranges between -1 and +1. Modularity scores of +1 mean that ties only appear within communities,
while -1 would mean that ties only appear between communities. A score of 0 would mean that ties
are half within and half between communities, as one would expect in a random graph.

Modularity faces a difficult problem known as the resolution limit (Fortunato and Barthélemy 2007).
This problem appears when optimising modularity, particularly with large networks or depending
on the degree of interconnectedness, can miss small clusters that ’hide’ inside larger clusters. In the
extreme case, this can be where they are only connected to the rest of the network through a single
tie.

Source

{signnet} by David Schoch
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See Also

network_transitivity() and network_equivalency() for how clustering is calculated

Other measures: between_centrality, close_centrality, closure, cohesion(), degree_centrality,
eigenv_centrality, heterogeneity, hierarchy, holes, net_diffusion, node_diffusion, periods

Examples

network_core(ison_adolescents)
network_core(ison_southern_women)
network_richclub(ison_adolescents)

network_factions(mpn_elite_mex)
network_factions(ison_southern_women)

network_modularity(ison_adolescents,
node_kernighanlin(ison_adolescents))

network_modularity(ison_southern_women,
node_kernighanlin(ison_southern_women))

network_smallworld(ison_brandes)
network_smallworld(ison_southern_women)
network_scalefree(ison_adolescents)
network_scalefree(generate_scalefree(50, 1.5))
network_scalefree(create_lattice(100))
network_balance(ison_marvel_relationships)

heterogeneity Measures of network diversity

Description

These functions offer ways to summarise the heterogeneity of an attribute across a network, within
groups of a network, or the distribution of ties across this attribute:

• network_richness() measures the number of unique categories in a network attribute.

https://doi.org/10.1016/S0378-8733%2899%2900019-2
https://doi.org/10.1007/978-1-4419-6287-4_7
https://doi.org/10.1038/30918
https://doi.org/10.1089/brain.2011.0038
https://doi.org/10.1017/nws.2017.5
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• node_richness() measures the number of unique categories of an attribute to which each
node is connected.

• network_diversity() measures the heterogeneity of ties across a network or within clusters
by node attributes.

• node_diversity() measures the heterogeneity of each node’s local neighbourhood.

• network_heterophily() measures how embedded nodes in the network are within groups
of nodes with the same attribute.

• node_heterophily() measures each node’s embeddedness within groups of nodes with the
same attribute.

• network_assortativity() measures the degree assortativity in a network.

• network_spatial() measures the spatial association/autocorrelation ( global Moran’s I) in a
network.

Usage

network_richness(.data, attribute)

node_richness(.data, attribute)

network_diversity(.data, attribute, clusters = NULL)

node_diversity(.data, attribute)

network_heterophily(.data, attribute)

node_heterophily(.data, attribute)

network_assortativity(.data)

network_spatial(.data, attribute)

Arguments

.data An object of a {manynet}-consistent class:

• matrix (adjacency or incidence) from {base} R

• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package

• network, from the {network} package

• tbl_graph, from the {tidygraph} package

attribute Name of a nodal attribute or membership vector to use as categories for the
diversity measure.

clusters A nodal cluster membership vector or name of a vertex attribute.
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network_diversity

Blau’s index (1977) uses a formula known also in other disciplines by other names (Gini-Simpson
Index, Gini impurity, Gini’s diversity index, Gibbs-Martin index, and probability of interspecific
encounter (PIE)):

1−
k∑
i=1

p2i

, where pi is the proportion of group members in ith category and k is the number of categories for
an attribute of interest. This index can be interpreted as the probability that two members randomly
selected from a group would be from different categories. This index finds its minimum value (0)
when there is no variety, i.e. when all individuals are classified in the same category. The maximum
value depends on the number of categories and whether nodes can be evenly distributed across
categories.

network_homophily

Given a partition of a network into a number of mutually exclusive groups then The E-I index is the
number of ties between (or external) nodes grouped in some mutually exclusive categories minus
the number of ties within (or internal) these groups divided by the total number of ties. This value
can range from 1 to -1, where 1 indicates ties only between categories/groups and -1 ties only within
categories/groups.

References

Blau, Peter M. (1977). Inequality and heterogeneity. New York: Free Press.

Krackhardt, David and Robert N. Stern (1988). Informal networks and organizational crises: an
experimental simulation. Social Psychology Quarterly 51(2), 123-140.

Moran, Patrick Alfred Pierce. 1950. "Notes on Continuous Stochastic Phenomena". Biometrika
37(1): 17-23. doi:10.2307/2332142

See Also

Other measures: between_centrality, close_centrality, closure, cohesion(), degree_centrality,
eigenv_centrality, features, hierarchy, holes, net_diffusion, node_diffusion, periods

Examples

network_richness(mpn_bristol)
node_richness(mpn_bristol, "type")
marvel_friends <- manynet::to_unsigned(manynet::ison_marvel_relationships, "positive")
network_diversity(marvel_friends, "Gender")
network_diversity(marvel_friends, "Attractive")
network_diversity(marvel_friends, "Gender", "Rich")
node_diversity(marvel_friends, "Gender")
node_diversity(marvel_friends, "Attractive")
network_heterophily(marvel_friends, "Gender")
network_heterophily(marvel_friends, "Attractive")
node_heterophily(marvel_friends, "Gender")
node_heterophily(marvel_friends, "Attractive")

https://doi.org/10.2307/2332142
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network_assortativity(mpn_elite_mex)
network_spatial(ison_lawfirm, "age")

hierarchy Graph theoretic dimensions of hierarchy

Description

These functions, together with network_reciprocity(), are used jointly to measure how hierar-
chical a network is:

• network_connectedness() measures the proportion of dyads in the network that are reach-
able to one another, or the degree to which network is a single component.

• network_efficiency() measures the Krackhardt efficiency score.

• network_upperbound() measures the Krackhardt (least) upper bound score.

Usage

network_connectedness(.data)

network_efficiency(.data)

network_upperbound(.data)

Arguments

.data An object of a {manynet}-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

References

Krackhardt, David. 1994. Graph theoretical dimensions of informal organizations. In Carley and
Prietula (eds) Computational Organizational Theory, Hillsdale, NJ: Lawrence Erlbaum Associates.
Pp. 89-111.

Everett, Martin, and David Krackhardt. 2012. “A second look at Krackhardt’s graph theoretical di-
mensions of informal organizations.” Social Networks, 34: 159-163. doi:10.1016/j.socnet.2011.10.006

See Also

Other measures: between_centrality, close_centrality, closure, cohesion(), degree_centrality,
eigenv_centrality, features, heterogeneity, holes, net_diffusion, node_diffusion, periods

https://doi.org/10.1016/j.socnet.2011.10.006
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Examples

network_connectedness(ison_networkers)
1 - network_reciprocity(ison_networkers)
network_efficiency(ison_networkers)
network_upperbound(ison_networkers)

holes Measures of structural holes

Description

These function provide different measures of the degree to which nodes fill structural holes, as
outlined in Burt (1992):

• node_bridges() measures the sum of bridges to which each node is adjacent.

• node_redundancy() measures the redundancy of each nodes’ contacts.

• node_effsize() measures nodes’ effective size.

• node_efficiency() measures nodes’ efficiency.

• node_constraint() measures nodes’ constraint scores for one-mode networks according to
Burt (1992) and for two-mode networks according to Hollway et al (2020).

• node_hierarchy() measures nodes’ exposure to hierarchy, where only one or two contacts
are the source of closure.

• node_eccentricity() measures nodes’ eccentricity or Koenig number, a measure of farness
based on number of links needed to reach most distant node in the network.

• node_neighbours_degree() measures nodes’ average nearest neighbors degree, or knn, a
measure of the type of local environment a node finds itself in

• tie_cohesion() measures the ratio between common neighbors to ties’ adjacent nodes and
the total number of adjacent nodes, where high values indicate ties’ embeddedness in dense
local environments

Burt’s theory holds that while those nodes embedded in dense clusters of close connections are
likely exposed to the same or similar ideas and information, those who fill structural holes between
two otherwise disconnected groups can gain some comparative advantage from that position.

Usage

node_bridges(.data)

node_redundancy(.data)

node_effsize(.data)

node_efficiency(.data)

node_constraint(.data)
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node_hierarchy(.data)

node_eccentricity(.data)

node_neighbours_degree(.data)

tie_cohesion(.data)

Arguments

.data An object of a {manynet}-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

Details

A number of different ways of measuring these structural holes are available. Note that we use
Borgatti’s reformulation for unweighted networks in node_redundancy() and node_effsize().
Redundancy is thus 2t

n , where t is the sum of ties and n the sum of nodes in each node’s neighbour-
hood, and effective size is calculated as n− 2t

n . Node efficiency is the node’s effective size divided
by its degree.

References

Burt, Ronald S. 1992. Structural Holes: The Social Structure of Competition. Cambridge, MA:
Harvard University Press.
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20(1):35-38.
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Networks.” Social Networks 55:11–20. doi:10.1016/j.socnet.2018.04.001

Hollway, James, Jean-Frédéric Morin, and Joost Pauwelyn. 2020. "Structural conditions for nov-
elty: the introduction of new environmental clauses to the trade regime complex." International
Environmental Agreements: Politics, Law and Economics 20 (1): 61–83. doi:10.1007/s10784019-
094645.

Barrat, Alain, Marc Barthelemy, Romualdo Pastor-Satorras, and Alessandro Vespignani. 2004.
"The architecture of complex weighted networks", Proc. Natl. Acad. Sci. 101: 3747.

See Also

Other measures: between_centrality, close_centrality, closure, cohesion(), degree_centrality,
eigenv_centrality, features, heterogeneity, hierarchy, net_diffusion, node_diffusion,
periods

http://www.analytictech.com/connections/v20(1)/holes.htm
https://doi.org/10.1016/j.socnet.2018.04.001
https://doi.org/10.1007/s10784-019-09464-5
https://doi.org/10.1007/s10784-019-09464-5
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Examples

node_bridges(ison_adolescents)
node_bridges(ison_southern_women)
node_redundancy(ison_adolescents)
node_redundancy(ison_southern_women)
node_effsize(ison_adolescents)
node_effsize(ison_southern_women)
node_efficiency(ison_adolescents)
node_efficiency(ison_southern_women)
node_constraint(ison_southern_women)
node_hierarchy(ison_adolescents)
node_hierarchy(ison_southern_women)

kselect Methods for selecting clusters

Description

These functions help select the number of clusters to return from hc, some hierarchical clustering
object:

• k_strict() selects a number of clusters in which there is no distance between cluster mem-
bers.

• k_elbow() selects a number of clusters in which there is a fair trade-off between parsimony
and fit according to the elbow method.

• k_silhouette() selects a number of clusters that optimises the silhouette score.

These functions are generally not user-facing but used internally in e.g. the *_equivalence()
functions.

Usage

k_strict(hc, .data)

k_elbow(hc, .data, census, range)

k_silhouette(hc, .data, range)

Arguments

hc A hierarchical clustering object.

.data An object of a {manynet}-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
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• tbl_graph, from the {tidygraph} package

census A motif census object.

range An integer indicating the maximum number of options to consider. The mini-
mum of this and the number of nodes in the network is used.

References

Thorndike, Robert L. 1953. "Who Belongs in the Family?". Psychometrika, 18(4): 267–76.
doi:10.1007/BF02289263.

Rousseeuw, Peter J. 1987. “Silhouettes: A Graphical Aid to the Interpretation and Validation of
Cluster Analysis.” Journal of Computational and Applied Mathematics, 20: 53–65. doi:10.1016/
03770427(87)901257.

mpn_bristol Multimodal (3) Bristol protest events, 1990-2002 (Diani and Bison
2004)

Description

A multimodal network with three levels representing ties between individuals, civic organisations in
Bristol, and major protest and civic events that occurred between 1990 and 2000. The data contains
individuals’ affiliations to civic organizations in Bristol, the participation of these individuals in
major protest and civic events between 1990-2002, and the involvement of the civic organizations
in these events.

Usage

data(mpn_bristol)

Format

#> # A labelled, two-mode network with 264 nodes and 1496 ties
#> # A tibble: 264 x 3
#> name type lvl
#> <chr> <lgl> <dbl>
#> 1 101 FALSE 1
#> 2 102 FALSE 1
#> 3 103 FALSE 1
#> 4 104 FALSE 1
#> 5 105 FALSE 1
#> 6 106 FALSE 1
#> # i 258 more rows
#> # A tibble: 1,496 x 2
#> from to
#> <int> <int>
#> 1 36 151

https://doi.org/10.1007/BF02289263
https://doi.org/10.1016/0377-0427%2887%2990125-7
https://doi.org/10.1016/0377-0427%2887%2990125-7
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#> 2 40 151
#> 3 73 151
#> 4 94 151
#> 5 138 151
#> 6 145 151
#> # i 1,490 more rows

Details

Although represented as a two-mode network, it contains three levels:

1. 150 Individuals, anonymised with numeric ID

2. 97 Bristol civic organizations

3. 17 Major protest and civic events in Bristol, 1990-2002

The network represents ties between level 1 (individuals) and level 2 (organisations), level 1 (indi-
viduals) and level 3 (events), as well as level 2 (organisations) and level 3 (events). The network is
simple, undirected, and named. For a complete list of civic organisations and protest/civic events
included in the data, please see Appendix 6.1 in Multimodal Political Networks (Knoke et al., 2021).

Source

Knoke, David, Mario Diani, James Hollway, and Dimitris C Christopoulos. 2021. Multimodal
Political Networks. Cambridge University Press. Cambridge University Press.

References

Diani, Mario, and Ivano Bison. 2004. “Organizations, Coalitions, and Movements.” Theory and
Society 33(3–4):281–309. doi:10.1023/B:RYSO.0000038610.00045.07.

mpn_cow One-mode interstate trade relations and two-mode state membership
in IGOs (COW)

Description

One-mode interstate trade relations and two-mode state membership in IGOs (COW)

Usage

data(mpn_cow_trade)

data(mpn_cow_igo)

https://www.cambridge.org/core/books/multimodal-political-networks/43EE8C192A1B0DCD65B4D9B9A7842128
https://www.cambridge.org/core/books/multimodal-political-networks/43EE8C192A1B0DCD65B4D9B9A7842128
https://www.cambridge.org/core/books/multimodal-political-networks/43EE8C192A1B0DCD65B4D9B9A7842128
https://doi.org/10.1023/B%3ARYSO.0000038610.00045.07
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Format

#> # A labelled, weighted, directed network with 116 nodes and 11489 arcs
#> # A tibble: 116 x 1
#> name
#> <chr>
#> 1 United States of America
#> 2 Canada
#> 3 Cuba
#> 4 Dominican Republic
#> 5 Jamaica
#> 6 Trinidad and Tobago
#> # i 110 more rows
#> # A tibble: 11,489 x 3
#> from to weight
#> <int> <int> <dbl>
#> 1 1 2 180387
#> 2 1 3 587.
#> 3 1 4 5511.
#> 4 1 5 1896.
#> 5 1 6 2188.
#> 6 1 7 123677
#> # i 11,483 more rows

#> # A labelled, weighted, two-mode network with 152 nodes and 839 ties
#> # A tibble: 152 x 3
#> name type polity2
#> <chr> <lgl> <dbl>
#> 1 Afghanistan FALSE -7
#> 2 Albania FALSE 5
#> 3 Algeria FALSE -3
#> 4 Angola FALSE -6
#> 5 Argentina FALSE 8
#> 6 Australia FALSE 10
#> # i 146 more rows
#> # A tibble: 839 x 3
#> from to weight
#> <int> <int> <dbl>
#> 1 1 113 1
#> 2 1 114 1
#> 3 1 115 0
#> 4 1 116 0
#> 5 1 117 1
#> 6 1 118 0
#> # i 833 more rows

Details

mpn_cow_trade is a one-mode matrix representing the trade relations between 116 states. The
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data is derived from the Correlates of War Project (COW) Trade Dataset (v3.0), which contains
the annual dyadic and national trade figures for states (listed in COW) between 1870 to 2009. This
network is based only on the dyadic trade figures in 2009 for the 116 states listed in Appendix 7.1 in
Multimodal Political Networks (Knoke et al., 2021). The value in each cell of the matrix represents
the value of exports from the 116 row states to the 116 column states.

mpn_cow_igo is a two-mode graph representing the membership of 116 states in 40 intergovern-
mental organizations (IGOs). The data is derived from the Correlates of War Project (COW) Inter-
governmental Organizations Dataset (v3.0), which contains information about intergovernmental
organizations from 1815-2014, such as founding year and membership. This network contains only
a subset of the states and IGOs listed in COW, with 116 states listed in Appendix 7.1 in Multimodal
Political Networks and 40 IGOs from Table 7.1 in Multimodal Political Networks that also overlap
with the COW dataset (Knoke et al., 2021).

Source

The Correlates of War Project. 2012. Trade.

Barbieri, Katherine and Omar Keshk. 2012. Correlates of War Project Trade Data Set Codebook,
Version 3.0.

The Correlates of War Project. 2019. Intergovernmental Organization v3.

References

Barbieri, Katherine, Omar M. G. Keshk, and Brian Pollins. 2009. “TRADING DATA: Evaluating
our Assumptions and Coding Rules.” Conflict Management and Peace Science 26(5): 471-491.
doi:10.1177/0738894209343887.

Knoke, David, Mario Diani, James Hollway, and Dimitris C Christopoulos. 2021. Multimodal
Political Networks. Cambridge University Press. Cambridge University Press.

Pevehouse, Jon C.W., Timothy Nordstron, Roseanne W McManus, Anne Spencer Jamison. 2020.
“Tracking Organizations in the World: The Correlates of War IGO Version 3.0 datasets”. Journal
of Peace Research 57(3): 492-503. doi:10.1177/0022343319881175.

mpn_elite_mex One-mode Mexican power elite database (Knoke 1990)

Description

This data contains the full network of 35 members of the Mexican power elite. The undirected lines
connecting pairs of men represent any formal, informal, or organizational relation between a dyad;
for example, “common belonging (school, sports, business, political participation), or a common
interest (political power)” (Mendieta et al. 1997: 37). Additional nodal attributes include their full
name, place of birth, state, and region (1=North, 2=Centre, 3=South, original coding added by Frank
Heber), as well as their year of entry into politics and whether they are civilian (0) or affiliated with
the military (1). An additional variable "in_mpn" can be used to subset this network to a network of
11 core members of the 1990s Mexican power elite (Knoke 2017), three of which were successively
elected presidents of Mexico: José López Portillo (1976-82), Miguel de la Madrid (1982-88), and
Carlos Salinas de Gortari (1988-94, who was also the son of another core member, Raúl Salinas
Lozano).

https://www.cambridge.org/core/books/multimodal-political-networks/43EE8C192A1B0DCD65B4D9B9A7842128
https://www.cambridge.org/core/books/multimodal-political-networks/43EE8C192A1B0DCD65B4D9B9A7842128
https://www.cambridge.org/core/books/multimodal-political-networks/43EE8C192A1B0DCD65B4D9B9A7842128
https://www.cambridge.org/core/books/multimodal-political-networks/43EE8C192A1B0DCD65B4D9B9A7842128
https://doi.org/10.1177/0738894209343887
https://www.cambridge.org/core/books/multimodal-political-networks/43EE8C192A1B0DCD65B4D9B9A7842128
https://www.cambridge.org/core/books/multimodal-political-networks/43EE8C192A1B0DCD65B4D9B9A7842128
https://doi.org/10.1177/0022343319881175
https://jameshollway.com/courses/ison/heber_post
https://jameshollway.com/courses/ison/heber_post
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Usage

data(mpn_elite_mex)

Format

#> # A labelled, undirected network with 35 nodes and 117 ties
#> # A tibble: 35 x 8
#> name full_name entry_year military in_mpn PlaceOfBirth state region
#> <chr> <chr> <dbl> <dbl> <dbl> <chr> <chr> <dbl>
#> 1 Trevino Trevino, Jacint~ 1910 1 0 Guerrero Coah~ 1
#> 2 Madero Madero, Francis~ 1911 0 0 Parras de l~ Coah~ 1
#> 3 Carranza Carranza, Venus~ 1913 1 0 Cuatro Cien~ Coah~ 1
#> 4 Aguilar Aguilar, Candido 1918 1 0 Cordoba Vera~ 3
#> 5 Obregon Obregon, Alvaro 1920 1 0 Siquisiva, ~ Sono~ 1
#> 6 Calles Calles, Plutarc~ 1924 1 0 Guaymas Sono~ 1
#> # i 29 more rows
#> # A tibble: 117 x 2
#> from to
#> <int> <int>
#> 1 2 3
#> 2 2 5
#> 3 2 6
#> 4 2 4
#> 5 1 2
#> 6 2 8
#> # i 111 more rows

Details

mpn_elite_mex
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Source

Knoke, David. 1990. Political Networks.

Knoke, David, Mario Diani, James Hollway, and Dimitris C Christopoulos. 2021. Multimodal
Political Networks. Cambridge University Press. Cambridge University Press.

mpn_elite_usa Two-mode and three-mode American power elite database (Domhoff
2016)

Description

mpn_elite_usa_advice is a 2-mode network of persons serving as directors or trustees of think
tanks. Think tanks are “public-policy research analysis and engagement organizations that generate
policy-oriented research, analysis, and advice on domestic and international issues, thereby enabling
policymakers and the public to make informed decisions about public policy” (McGann 2016: 6).
The Power Elite Database (Domhoff 2016) includes information on the directors of 33 prominent
think tanks in 2012. Here we include only 14 directors who held three or more seats among 20 think
tanks.

mpn_elite_usa_money is based on 26 elites who sat on the boards of directors for at least two of
six economic policy making organizations (Domhoff 2016), and also made campaign contributions
to one or more of six candidates running in the primary election contests for the 2008 Presidential
nominations of the Republican Party (Rudy Giuliani, John McCain, Mitt Romney) or the Demo-
cratic Party (Hillary Clinton, Christopher Dodd, Barack Obama).

Usage

data(mpn_elite_usa_advice)

data(mpn_elite_usa_money)

Format

#> # A labelled, two-mode network with 34 nodes and 46 ties
#> # A tibble: 34 x 2
#> type name
#> <lgl> <chr>
#> 1 FALSE Albright
#> 2 FALSE Argyros
#> 3 FALSE Armitage
#> 4 FALSE Curry
#> 5 FALSE Fukuyama
#> 6 FALSE Gray
#> # i 28 more rows
#> # A tibble: 46 x 2
#> from to
#> <int> <int>

https://www.cambridge.org/core/books/multimodal-political-networks/43EE8C192A1B0DCD65B4D9B9A7842128
https://www.cambridge.org/core/books/multimodal-political-networks/43EE8C192A1B0DCD65B4D9B9A7842128
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#> 1 1 17
#> 2 1 19
#> 3 1 21
#> 4 2 22
#> 5 2 23
#> 6 2 27
#> # i 40 more rows

#> # A labelled, two-mode network with 38 nodes and 103 ties
#> # A tibble: 38 x 2
#> type name
#> <lgl> <chr>
#> 1 FALSE Adkerson
#> 2 FALSE Akins
#> 3 FALSE Banga
#> 4 FALSE Boyce
#> 5 FALSE Britt
#> 6 FALSE Cannon
#> # i 32 more rows
#> # A tibble: 103 x 2
#> from to
#> <int> <int>
#> 1 1 27
#> 2 1 28
#> 3 1 34
#> 4 1 36
#> 5 2 28
#> 6 2 32
#> # i 97 more rows

Details
mpn_elite_usa_advice mpn_elite_usa_money

References

Domhoff, G William. 2016. “Who Rules America? Power Elite Database.”

The Center for Responsive Politics. 2019. “OpenSecrets.”

Knoke, David, Mario Diani, James Hollway, and Dimitris C Christopoulos. 2021. Multimodal
Political Networks. Cambridge University Press. Cambridge University Press.

https://whorulesamerica.ucsc.edu/power_elite/
https://www.opensecrets.org
https://www.cambridge.org/core/books/multimodal-political-networks/43EE8C192A1B0DCD65B4D9B9A7842128
https://www.cambridge.org/core/books/multimodal-political-networks/43EE8C192A1B0DCD65B4D9B9A7842128
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mpn_evs Two-mode European Values Survey, 1990 and 2008 (EVS 2020)

Description

6 two-mode matrices containing individuals’ memberships to 14 different types of associations in
three countries (Italy, Germany, and the UK) in 1990 and 2008. The Italy data has 658 respondents
in 1990 and 540 in 2008. The Germany data has 1369 respondents in 1990 and 503 in 2008. The
UK data has 738 respondents in 1990 and 664 in 2008.

Usage

data(mpn_IT_1990)

data(mpn_IT_1990)

data(mpn_IT_2008)

data(mpn_DE_1990)

data(mpn_DE_2008)

data(mpn_UK_1990)

data(mpn_UK_2008)

Format

tbl_graph object based on an association matrix with 14 columns:

Welfare 1 if individual associated

Religious 1 if individual associated

Education.culture 1 if individual associated

Unions 1 if individual associated

Parties 1 if individual associated

Local.political.groups 1 if individual associated

Human.rights 1 if individual associated

Environmental.animal 1 if individual associated

Professional 1 if individual associated

Youth 1 if individual associated

Sports 1 if individual associated

Women 1 if individual associated

Peace 1 if individual associated
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Health 1 if individual associated

An object of class tbl_graph (inherits from igraph) of length 672.

An object of class tbl_graph (inherits from igraph) of length 554.

An object of class tbl_graph (inherits from igraph) of length 1383.

An object of class tbl_graph (inherits from igraph) of length 517.

An object of class tbl_graph (inherits from igraph) of length 752.

An object of class tbl_graph (inherits from igraph) of length 678.

Source

Knoke, David, Mario Diani, James Hollway, and Dimitris C Christopoulos. 2021. Multimodal
Political Networks. Cambridge University Press. Cambridge University Press.

References

EVS (2020). European Values Study Longitudinal Data File 1981-2008 (EVS 1981-2008). GESIS
Data Archive, Cologne. ZA4804 Data file Version 3.1.0, doi:10.4232/1.13486.

mpn_ryanair One-mode EU policy influence network, June 2004 (Christopoulos
2006)

Description

Network of anonymised actors reacting to the Ryanair/Charleroi decision of the EU Commission
in February 2004. The relationships mapped comprise an account of public records of interaction
supplemented with the cognitive network of key informants. Examination of relevant communiques,
public statements and a number of off-the-record interviews provides confidence that the network
mapped closely approximated interactions between 29 January and 12 February 2004. The time
point mapped is at the height of influence and interest intermediation played by actors in the AER,
a comparatively obscure body representing the interests of a number of European regional bodies
at the EU institutions.

Usage

data(mpn_ryanair)

Format

#> # A labelled, weighted, directed network with 20 nodes and 177 arcs
#> # A tibble: 20 x 1
#> name
#> <chr>
#> 1 1 AER
#> 2 2 AER

https://www.cambridge.org/core/books/multimodal-political-networks/43EE8C192A1B0DCD65B4D9B9A7842128
https://www.cambridge.org/core/books/multimodal-political-networks/43EE8C192A1B0DCD65B4D9B9A7842128
https://doi.org/10.4232/1.13486
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#> 3 5 AER/COR
#> 4 7 RYANAIR
#> 5 8 DG TRANSPORT
#> 6 9 COR
#> # i 14 more rows
#> # A tibble: 177 x 3
#> from to weight
#> <int> <int> <dbl>
#> 1 1 2 1
#> 2 1 3 1
#> 3 1 4 1
#> 4 1 5 1
#> 5 1 6 1
#> 6 1 7 1
#> # i 171 more rows

Source

Christopoulos, Dimitrios C. 2006. “Relational Attributes of Political Entrepreneurs: a Network
Perspective.” Journal of European Public Policy 13(5): 757–78. doi:10.1080/13501760600808964.

Knoke, David, Mario Diani, James Hollway, and Dimitris C Christopoulos. 2021. Multimodal
Political Networks. Cambridge University Press. Cambridge University Press.

mpn_senate112 Two-mode 112th Congress Senate Voting (Knoke et al. 2021)

Description

These datasets list the U.S. Senators who served in the 112th Congress, which met from January 3,
2011 to January 3, 2013. Although the Senate has 100 seats, 103 persons served during this period
due to two resignations and a death. However, the third replacement occurred only two days before
the end and cast no votes on the bills investigated here. Hence, the number of Senators analyzed is
102.

CQ Almanac identified 25 key bills on which the Senate voted during the 112th Congress, and
which Democratic and Republican Senators voting “yea” and “nay” on each proposal.

Lastly, we obtained data on campaign contributions made by 92 PACs from the Open Secrets Web-
site. We recorded all contributions made during the 2008, 2010, and 2012 election campaigns to
the 102 persons who were Senators in the 112th Congress. The vast majority of PAC contributions
to a candidate during a campaign was for $10,000 (the legal maximum is $5,000 each for a primary
and the general election). We aggregated the contributions across all three electoral cycles, then
dichotomized the sums into no contribution (0) and any contribution (1).

Usage

data(mpn_DemSxP)

https://doi.org/10.1080/13501760600808964
https://www.cambridge.org/core/books/multimodal-political-networks/43EE8C192A1B0DCD65B4D9B9A7842128
https://www.cambridge.org/core/books/multimodal-political-networks/43EE8C192A1B0DCD65B4D9B9A7842128
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data(mpn_RepSxP)

data(mpn_OverSxP)

Format

#> # A labelled, weighted, two-mode network with 114 nodes and 2791 ties
#> # A tibble: 114 x 2
#> type name
#> <lgl> <chr>
#> 1 FALSE Baucus
#> 2 FALSE Begich
#> 3 FALSE Bennet
#> 4 FALSE Blumenthal
#> 5 FALSE Boxer
#> 6 FALSE BrownSh
#> # i 108 more rows
#> # A tibble: 2,791 x 3
#> from to weight
#> <int> <int> <dbl>
#> 1 1 52 1
#> 2 1 53 1
#> 3 1 54 1
#> 4 1 55 1
#> 5 1 56 1
#> 6 1 57 1
#> # i 2,785 more rows

#> # A labelled, weighted, two-mode network with 134 nodes and 3675 ties
#> # A tibble: 134 x 2
#> type name
#> <lgl> <chr>
#> 1 FALSE Alexander
#> 2 FALSE Ayotte
#> 3 FALSE Barrasso
#> 4 FALSE Baucus
#> 5 FALSE Blunt
#> 6 FALSE Boozman
#> # i 128 more rows
#> # A tibble: 3,675 x 3
#> from to weight
#> <int> <int> <dbl>
#> 1 1 64 1
#> 2 1 66 1
#> 3 1 67 1
#> 4 1 70 1
#> 5 1 71 1
#> 6 1 72 1
#> # i 3,669 more rows
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#> # A labelled, weighted, two-mode network with 52 nodes and 614 ties
#> # A tibble: 52 x 2
#> type name
#> <lgl> <chr>
#> 1 FALSE Baucus
#> 2 FALSE Cardin
#> 3 FALSE Carper
#> 4 FALSE Casey
#> 5 FALSE Collins
#> 6 FALSE Feinstein
#> # i 46 more rows
#> # A tibble: 614 x 3
#> from to weight
#> <int> <int> <dbl>
#> 1 1 21 1
#> 2 1 22 1
#> 3 1 23 1
#> 4 1 24 1
#> 5 1 25 1
#> 6 1 26 1
#> # i 608 more rows

References

Knoke, David, Mario Diani, James Hollway, and Dimitris C Christopoulos. 2021. Multimodal
Political Networks. Cambridge University Press. Cambridge University Press.

network_census Censuses of motifs at the network level

Description

These functions include ways to take a census of the positions of nodes in a network:

• network_dyad_census() returns a census of dyad motifs in a network.

• network_triad_census() returns a census of triad motifs in a network.

• network_mixed_census() returns a census of triad motifs that span a one-mode and a two-
mode network.

Usage

network_dyad_census(.data)

network_triad_census(.data)

network_mixed_census(.data, object2)

https://www.cambridge.org/core/books/multimodal-political-networks/43EE8C192A1B0DCD65B4D9B9A7842128
https://www.cambridge.org/core/books/multimodal-political-networks/43EE8C192A1B0DCD65B4D9B9A7842128
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Arguments

.data An object of a {manynet}-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

object2 A second, two-mode migraph-consistent object.

Source

Alejandro Espinosa ’netmem’

References

Davis, James A., and Samuel Leinhardt. 1967. “The Structure of Positive Interpersonal Relations
in Small Groups.” 55.

Hollway, James, Alessandro Lomi, Francesca Pallotti, and Christoph Stadtfeld. 2017. “Multilevel
Social Spaces: The Network Dynamics of Organizational Fields.” Network Science 5(2): 187–212.
doi:10.1017/nws.2017.8

See Also

Other motifs: brokerage_census, node_census

Examples

network_dyad_census(manynet::ison_algebra)
network_triad_census(manynet::ison_adolescents)
marvel_friends <- manynet::to_unsigned(manynet::ison_marvel_relationships, "positive")
(mixed_cen <- network_mixed_census(marvel_friends, manynet::ison_marvel_teams))

net_diffusion Measures of network diffusion

Description

These functions allow measurement of various features of a diffusion process:

• network_transmissibility() measures the average transmissibility observed in a diffusion
simulation, or the number of new infections over the number of susceptible nodes.

• network_infection_length() measures the average number of time steps nodes remain
infected once they become infected.

• network_reproduction() measures the observed reproductive number in a diffusion simu-
lation as the network’s transmissibility over the network’s average infection length.

https://files.eric.ed.gov/fulltext/ED024086.pdf
https://files.eric.ed.gov/fulltext/ED024086.pdf
https://doi.org/10.1017/nws.2017.8
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• network_immunity() measures the proportion of nodes that would need to be protected
through vaccination, isolation, or recovery for herd immunity to be reached.

• network_hazard() measures the hazard rate or instantaneous probability that nodes will
adopt/become infected at that time

Usage

network_transmissibility(diff_model)

network_infection_length(diff_model)

network_reproduction(diff_model)

network_immunity(diff_model)

network_hazard(diff_model)

Arguments

diff_model A valid network diffusion model, as created by as_diffusion() or play_diffusion().

Transmissibility

network_transmissibility() measures how many directly susceptible nodes each infected node
will infect in each time period, on average. That is:

T =
1

n

n∑
j=1

ij
sj

where i is the number of new infections in each time period, j ∈ n, and s is the number of nodes
that could have been infected in that time period (note that s 6= S, or the number of nodes that are
susceptible in the population). T can be interpreted as the proportion of susceptible nodes that are
infected at each time period.

Infection length

network_infection_length() measures the average number of time steps that nodes in a network
remain infected. Note that in a diffusion model without recovery, average infection length will be
infinite. This will also be the case where there is right censoring. The longer nodes remain infected,
the longer they can infect others.

Reproduction number

network_reproduction() measures a given diffusion’s reproductive number. Here it is calculated
as:

R = min

(
T

1/IL
, k̄

)
where T is the observed transmissibility in a diffusion and IL is the observed infection length in a
diffusion. Since IL can be infinite where there is no recovery or there is right censoring, and since
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network structure places an upper limit on how many nodes each node may further infect (their
degree), this function returns the minimum of R0 and the network’s average degree.

Interpretation of the reproduction number is oriented around R = 1. Where R > 1, the ’disease’
will ’infect’ more and more nodes in the network. Where R < 1, the ’disease’ will not sustain itself
and eventually die out. Where R = 1, the ’disease’ will continue as endemic, if conditions allow.

Herd immunity

network_immunity() estimates the proportion of a network that need to be protected from infection
for herd immunity to be achieved. This is known as the Herd Immunity Threshold or HIT:

1− 1

R

where R is the reproduction number from network_reproduction(). The HIT indicates the
threshold at which the reduction of susceptible members of the network means that infections will
no longer keep increasing. Note that there may still be more infections after this threshold has been
reached, but there should be fewer and fewer. These excess infections are called the overshoot. This
function does not take into account the structure of the network, instead using the average degree.

Interpretation is quite straightforward. A HIT or immunity score of 0.75 would mean that 75%
of the nodes in the network would need to be vaccinated or otherwise protected to achieve herd
immunity. To identify how many nodes this would be, multiply this proportion with the number of
nodes in the network.

Hazard rate

The hazard rate is the instantaneous probability of adoption/infection at each time point (Allison
1984). In survival analysis, hazard rate is formally defined as:

λ(t) = lim
h→+0

F (t+ h)− F (t)

h

1

1− F (t)

By approximating h = 1, we can rewrite the equation as

λ(t) =
F (t+ 1)− F (t)

1− F (t)

If we estimate F (t), the probability of not having adopted the innovation in time t, from the pro-
portion of adopters in that time, such that F (t) ∼ qt/n, we now have (ultimately for t > 1):

λ(t) =
qt+1/n− qt/n

1− qt/n
=
qt+1 − qt
n− qt

=
qt − qt−1
n− qt−1

where qi is the number of adopters in time t, and n is the number of vertices in the graph.

The shape of the hazard rate indicates the pattern of new adopters over time. Rapid diffusion with
convex cumulative adoption curves will have hazard functions that peak early and decay over time.
Slow concave cumulative adoption curves will have hazard functions that are low early and rise
over time. Smooth hazard curves indicate constant adoption whereas those that oscillate indicate
variability in adoption behavior over time.
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Source

{netdiffuseR}

References

Kermack, W. and McKendrick, A., 1927. "A contribution to the mathematical theory of epidemics".
Proc. R. Soc. London A 115: 700-721.

Allison, P. 1984. Event history analysis regression for longitudinal event data. London: Sage
Publications.

Wooldridge, J. M. 2010. Econometric Analysis of Cross Section and Panel Data (2nd ed.). Cam-
bridge: MIT Press.

See Also

Other measures: between_centrality, close_centrality, closure, cohesion(), degree_centrality,
eigenv_centrality, features, heterogeneity, hierarchy, holes, node_diffusion, periods

Other diffusion: node_diffusion

Examples

smeg <- manynet::generate_smallworld(15, 0.025)
smeg_diff <- play_diffusion(smeg, recovery = 0.2)
plot(smeg_diff)
# To calculate the average transmissibility for a given diffusion model
network_transmissibility(smeg_diff)
# To calculate the average infection length for a given diffusion model
network_infection_length(smeg_diff)
# To calculate the reproduction number for a given diffusion model
network_reproduction(smeg_diff)
# Calculating the proportion required to achieve herd immunity
network_immunity(smeg_diff)
# To find the number of nodes to be vaccinated
ceiling(network_immunity(smeg_diff) * manynet::network_nodes(smeg))

# To calculate the hazard rates at each time point
network_hazard(play_diffusion(smeg, transmissibility = 0.3))

node_census Censuses of nodes’ motifs

Description

These functions include ways to take a census of the positions of nodes in a network:

• node_tie_census() returns a census of the ties in a network. For directed networks, out-ties
and in-ties are bound together. for multiplex networks, the various types of ties are bound
together.

• node_triad_census() returns a census of the triad configurations nodes are embedded in.
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• node_quad_census() returns a census of nodes’ positions in motifs of four nodes.

• node_path_census() returns the shortest path lengths of each node to every other node in
the network.

Usage

node_tie_census(.data)

node_triad_census(.data)

node_quad_census(.data)

node_path_census(.data)

Arguments

.data An object of a {manynet}-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

Quad census

The quad census uses the {oaqc} package to do the heavy lifting of counting the number of each or-
bits. See vignette('oaqc'). However, our function relabels some of the motifs to avoid conflicts
and improve some consistency with other census-labelling practices. The letter-number pairing of
these labels indicate the number and configuration of ties. For now, we offer a rough translation:

migraph Ortmann and Brandes
E4 co-K4
I40, I41 co-diamond
H4 co-C4
L42, L41, L40 co-paw
D42, D40 co-claw
U42, U41 P4
Y43, Y41 claw
P43, P42, P41 paw
04 C4
Z42, Z43 diamond
X4 K4

See also this list of graph classes.

https://www.graphclasses.org/smallgraphs.html#nodes4


54 node_diffusion

References

Davis, James A., and Samuel Leinhardt. 1967. “The Structure of Positive Interpersonal Relations
in Small Groups.” 55.

Ortmann, Mark, and Ulrik Brandes. 2017. “Efficient Orbit-Aware Triad and Quad Census in Di-
rected and Undirected Graphs.” Applied Network Science 2(1):13. doi:10.1007/s4110901700272.

Dijkstra, Edsger W. 1959. "A note on two problems in connexion with graphs". Numerische Math-
ematik 1, 269-71. doi:10.1007/BF01386390.

Opsahl, Tore, Filip Agneessens, and John Skvoretz. 2010. "Node centrality in weighted net-
works: Generalizing degree and shortest paths". Social Networks 32(3): 245-51. doi:10.1016/
j.socnet.2010.03.006.

See Also

Other motifs: brokerage_census, network_census

Examples

task_eg <- manynet::to_named(manynet::to_uniplex(manynet::ison_algebra, "tasks"))
(tie_cen <- node_tie_census(task_eg))
(triad_cen <- node_triad_census(task_eg))
node_quad_census(manynet::ison_southern_women)
node_path_census(manynet::ison_adolescents)
node_path_census(manynet::ison_southern_women)

node_diffusion Measures of nodes in a diffusion

Description

These functions allow measurement of various features of a diffusion process:

• node_adoption_time(): Measures the number of time steps until nodes adopt/become in-
fected

• node_adopter(): Classifies membership of nodes into diffusion categories

• node_thresholds(): Measures nodes’ thresholds from the amount of exposure they had
when they became infected

• node_infection_length(): Measures the average length nodes that become infected remain
infected in a compartmental model with recovery

• node_exposure(): Measures how many exposures nodes have to a given mark

• node_is_exposed(): Marks the nodes that are susceptible, i.e. are in the immediate neigh-
bourhood of given mark vector

https://files.eric.ed.gov/fulltext/ED024086.pdf
https://files.eric.ed.gov/fulltext/ED024086.pdf
https://doi.org/10.1007/s41109-017-0027-2
https://doi.org/10.1007/BF01386390
https://doi.org/10.1016/j.socnet.2010.03.006
https://doi.org/10.1016/j.socnet.2010.03.006
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Usage

node_adoption_time(diff_model)

node_adopter(diff_model)

node_thresholds(diff_model)

node_infection_length(diff_model)

node_exposure(.data, mark, time = 0)

Arguments

diff_model A valid network diffusion model, as created by as_diffusion() or play_diffusion().

.data An object of a {manynet}-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

mark A valid ’node_mark’ object or logical vector (TRUE/FALSE) of length equal to
the number of nodes in the network.

time A time point until which infections/adoptions should be identified. By default
time = 0.

Adoption time

node_adoption_time() measures the time units it took until each node became infected. Note that
an adoption time of 0 indicates that this was a seed node.

Adopter class

node_adopter() classifies the nodes involved in a diffusion by where on the distribution of adopters
they fell. Valente (1995) defines five memberships:

• Early adopter: those with an adoption time less than the average adoption time minus one
standard deviation of adoptions times

• Early majority: those with an adoption time between the average adoption time and the aver-
age adoption time minus one standard deviation of adoptions times

• Late majority: those with an adoption time between the average adoption time and the average
adoption time plus one standard deviation of adoptions times

• Laggard: those with an adoption time greater than the average adoption time plus one standard
deviation of adoptions times

• Non-adopter: those without an adoption time, i.e. never adopted
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Thresholds

node_thresholds() infers nodes’ thresholds based on how much exposure they had when they
were infected. This inference is of course imperfect, especially where there is a sudden increase in
exposure, but it can be used heuristically.

Infection length

node_infection_length() measures the average length of time that nodes that become infected
remain infected in a compartmental model with recovery. Infections that are not concluded by the
end of the study period are calculated as infinite.

Exposure

node_exposure() calculates the number of infected/adopting nodes to which each susceptible node
is exposed. It usually expects network data and an index or mark (TRUE/FALSE) vector of those
nodes which are currently infected, but if a diff_model is supplied instead it will return nodes
exposure at t = 0.

References

Valente, Tom W. 1995. Network models of the diffusion of innovations (2nd ed.). Cresskill N.J.:
Hampton Press.

See Also

Other measures: between_centrality, close_centrality, closure, cohesion(), degree_centrality,
eigenv_centrality, features, heterogeneity, hierarchy, holes, net_diffusion, periods

Other diffusion: net_diffusion

Examples

smeg <- manynet::generate_smallworld(15, 0.025)
smeg_diff <- play_diffusion(smeg, recovery = 0.2)
plot(smeg_diff)
# To measure when nodes adopted a diffusion/were infected
(times <- node_adoption_time(smeg_diff))
# To classify nodes by their position in the adoption curve
(adopts <- node_adopter(smeg_diff))
summary(adopts)
summary(times, membership = adopts)
# To infer nodes' thresholds
node_thresholds(smeg_diff)
# To measure how long each node remains infected for
node_infection_length(smeg_diff)
# To measure how much exposure nodes have to a given mark
node_exposure(smeg, mark = c(1,3))
node_exposure(smeg_diff)
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over Helper functions for measuring over splits of networks

Description

Helper functions for measuring over splits of networks

Usage

over_waves(
.data,
FUN,
...,
attribute = "wave",
strategy = "sequential",
verbose = FALSE

)

over_time(
.data,
FUN,
...,
attribute = "time",
slice = NULL,
strategy = "sequential",
verbose = FALSE

)

Arguments

.data An object of a {manynet}-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

FUN A function to run over all splits.

... Further arguments to be passed on to FUN.

attribute A string naming the attribute to be split upon.

strategy If {furrr} is installed, then multiple cores can be used to accelerate the func-
tion. By default "sequential", but if multiple cores available, then "multisession"
or "multicore" may be useful. Generally this is useful only when times >
1000. See {furrr} for more.

verbose Whether the function should report on its progress. By default FALSE. See
{progressr} for more.

https://furrr.futureverse.org
https://progressr.futureverse.org
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slice Optionally, a vector of specific slices. Otherwise all observed slices will be
returned.

Functions

• over_waves(): Runs a function, e.g. a measure, over waves of a panel network

• over_time(): Runs a function, e.g. a measure, over time slices of a dynamic network

periods Measures of network change

Description

These functions measure certain topological features of networks:

• network_change() measures the Hamming distance between two or more networks.

• network_stability() measures the Jaccard index of stability between two or more net-
works.

These network_*() functions return a numeric vector the length of the number of networks minus
one. E.g., the periods between waves.

Usage

network_change(.data, object2)

network_stability(.data, object2)

Arguments

.data An object of a {manynet}-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

object2 A network object.

See Also

Other measures: between_centrality, close_centrality, closure, cohesion(), degree_centrality,
eigenv_centrality, features, heterogeneity, hierarchy, holes, net_diffusion, node_diffusion
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regression Linear and logistic regression for network data

Description

This function provides an implementation of the multiple regression quadratic assignment proce-
dure (MRQAP) for both one-mode and two-mode network linear models. It offers several advan-
tages:

• it works with combined graph/network objects such as igraph and network objects by con-
structing the various dependent and independent matrices for the user.

• it uses a more intuitive formula-based system for specifying the model, with several ways to
specify how nodal attributes should be handled.

• it can handle categorical variables (factors/characters) and interactions intuitively, naming the
reference variable where appropriate.

• it relies on {furrr} for parallelising and {progressr} for reporting progress to the user,
which can be useful when many simulations are required.

• results are {broom}-compatible, with tidy() and glance() reports to facilitate comparison
with results from different models. Note that a t- or z-value is always used as the test statistic,
and properties of the dependent network – modes, directedness, loops, etc – will always be
respected in permutations and analysis.

Usage

network_reg(
formula,
.data,
method = c("qap", "qapy"),
times = 1000,
strategy = "sequential",
verbose = FALSE

)

Arguments

formula A formula describing the relationship being tested. Several additional terms
are available to assist users investigate the effects they are interested in. These
include:

• ego() constructs a matrix where the cells reflect the value of a named nodal
attribute for an edge’s sending node

• alter() constructs a matrix where the cells reflect the value of a named
nodal attribute for an edge’s receiving node

• same() constructs a matrix where a 1 reflects if two nodes’ attribute values
are the same

• dist() constructs a matrix where the cells reflect the absolute difference
between the attribute’s values for the sending and receiving nodes

https://furrr.futureverse.org
https://progressr.futureverse.org
https://broom.tidymodels.org
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• sim() constructs a matrix where the cells reflect the proportional similarity
between the attribute’s values for the sending and receiving nodes

• tertius() constructs a matrix where the cells reflect some aggregate of an
attribute associated with a node’s other ties. Currently "mean" and "sum"
are available aggregating functions. ’ego’ is excluded from these calcula-
tions. See Haunss and Hollway (2023) for more on this effect.

• dyadic covariates (other networks) can just be named

.data An object of a {manynet}-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

method A method for establishing the null hypothesis. Note that "qap" uses Dekker et
al’s (2007) double semi-partialling technique, whereas "qapy" permutes only the
$y$ variable. "qap" is the default.

times Integer indicating number of simulations used for quantile estimation. (Relevant
to the null hypothesis test only - the analysis itself is unaffected by this param-
eter.) Note that, as for all Monte Carlo procedures, convergence is slower for
more extreme quantiles. By default, times=1000. 1,000 - 10,000 repetitions
recommended for publication-ready results.

strategy If {furrr} is installed, then multiple cores can be used to accelerate the func-
tion. By default "sequential", but if multiple cores available, then "multisession"
or "multicore" may be useful. Generally this is useful only when times >
1000. See {furrr} for more.

verbose Whether the function should report on its progress. By default FALSE. See
{progressr} for more.

References

Krackhardt, David. 1988. “Predicting with Networks: Nonparametric Multiple Regression Analy-
sis of Dyadic Data.” Social Networks 10(4):359–81. doi:10.1016/03788733(88)900044.

Dekker, David, David Krackhard, and Tom A. B. Snijders. 2007. “Sensitivity of MRQAP tests to
collinearity and autocorrelation conditions.” Psychometrika 72(4): 563-581. doi:10.1007/s11336-
00790161.

See Also

vignette("p7linearmodel")

Other models: tests

Examples

networkers <- ison_networkers %>% to_subgraph(Discipline == "Sociology")
model1 <- network_reg(weight ~ alter(Citations) + sim(Citations),

networkers, times = 20)

https://furrr.futureverse.org
https://progressr.futureverse.org
https://doi.org/10.1016/0378-8733%2888%2990004-4
https://doi.org/10.1007/s11336-007-9016-1
https://doi.org/10.1007/s11336-007-9016-1
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# Should be run many more `times` for publication-ready results
tidy(model1)
glance(model1)
plot(model1)

tests Conditional uniform graph and permutation tests

Description

These functions conduct tests of any network-level statistic:

• test_random() performs a conditional uniform graph (CUG) test of a measure against a
distribution of measures on random networks of the same dimensions.

• test_permutation() performs a quadratic assignment procedure (QAP) test of a measure
against a distribution of measures on permutations of the original network.

• test_gof() performs a chi-squared test on the squared Mahalanobis distance between a
diff_model and diff_models objects.

Usage

test_random(
.data,
FUN,
...,
times = 1000,
strategy = "sequential",
verbose = FALSE

)

test_permutation(
.data,
FUN,
...,
times = 1000,
strategy = "sequential",
verbose = FALSE

)

test_gof(diff_model, diff_models)

Arguments

.data An object of a {manynet}-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}
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• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

FUN A graph-level statistic function to test.

... Additional arguments to be passed on to FUN, e.g. the name of the attribute.

times Integer indicating number of simulations used for quantile estimation. (Relevant
to the null hypothesis test only - the analysis itself is unaffected by this param-
eter.) Note that, as for all Monte Carlo procedures, convergence is slower for
more extreme quantiles. By default, times=1000. 1,000 - 10,000 repetitions
recommended for publication-ready results.

strategy If {furrr} is installed, then multiple cores can be used to accelerate the func-
tion. By default "sequential", but if multiple cores available, then "multisession"
or "multicore" may be useful. Generally this is useful only when times >
1000. See {furrr} for more.

verbose Whether the function should report on its progress. By default FALSE. See
{progressr} for more.

diff_model A diff_model object is returned by play_diffusion() or as_diffusion() and
contains a single empirical or simulated diffusion.

diff_models A diff_models object is returned by play_diffusions() and contains a series
of diffusion simulations.

Mahalanobis distance

test_gof() takes a single diff_model object, which may be a single empirical or simulated diffu-
sion, and a diff_models object containing many simulations. Note that currently only the goodness
of fit of the

It returns a tibble (compatible with broom::glance()) that includes the Mahalanobis distance
statistic between the observed and simulated distributions. It also includes a p-value summarising
a chi-squared test on this statistic, listing also the degrees of freedom and number of observations.
If the p-value is less than the convention 0.05, then one can argue that the first diffusion is not well
captured by

See Also

Other models: regression

Examples

marvel_friends <- to_unsigned(ison_marvel_relationships)
marvel_friends <- to_giant(marvel_friends) %>%

to_subgraph(PowerOrigin == "Human")
(cugtest <- test_random(marvel_friends, network_heterophily, attribute = "Attractive",

times = 200))
plot(cugtest)
(qaptest <- test_permutation(marvel_friends,

network_heterophily, attribute = "Attractive",
times = 200))

https://furrr.futureverse.org
https://progressr.futureverse.org
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plot(qaptest)
# Playing a reasonably quick diffusion
x <- play_diffusion(generate_random(15), transmissibility = 0.7)
# Playing a slower diffusion
y <- play_diffusions(generate_random(15), transmissibility = 0.1, times = 40)
plot(x)
plot(y)
test_gof(x, y)
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