
Package ‘lme4’
March 28, 2024

Version 1.1-35.2

Title Linear Mixed-Effects Models using 'Eigen' and S4

Description Fit linear and generalized linear mixed-effects models.
The models and their components are represented using S4 classes and
methods. The core computational algorithms are implemented using the
'Eigen' C++ library for numerical linear algebra and 'RcppEigen' ``glue''.

Depends R (>= 3.5.0), Matrix (>= 1.2-1), methods, stats

LinkingTo Rcpp (>= 0.10.5), RcppEigen (>= 0.3.3.9.4), Matrix

Imports graphics, grid, splines, utils, parallel, MASS, lattice, boot,
nlme (>= 3.1-123), minqa (>= 1.1.15), nloptr (>= 1.0.4)

Suggests knitr, rmarkdown, MEMSS, testthat (>= 0.8.1), ggplot2,
mlmRev, optimx (>= 2013.8.6), gamm4, pbkrtest, HSAUR3,
numDeriv, car, dfoptim, mgcv, statmod, rr2, semEff, tibble,
merDeriv

VignetteBuilder knitr

LazyData yes

License GPL (>= 2)

URL https://github.com/lme4/lme4/

BugReports https://github.com/lme4/lme4/issues

Encoding UTF-8

NeedsCompilation yes

Author Douglas Bates [aut] (<https://orcid.org/0000-0001-8316-9503>),
Martin Maechler [aut] (<https://orcid.org/0000-0002-8685-9910>),
Ben Bolker [aut, cre] (<https://orcid.org/0000-0002-2127-0443>),
Steven Walker [aut] (<https://orcid.org/0000-0002-4394-9078>),
Rune Haubo Bojesen Christensen [ctb]

(<https://orcid.org/0000-0002-4494-3399>),
Henrik Singmann [ctb] (<https://orcid.org/0000-0002-4842-3657>),
Bin Dai [ctb],
Fabian Scheipl [ctb] (<https://orcid.org/0000-0001-8172-3603>),
Gabor Grothendieck [ctb],

1

https://github.com/lme4/lme4/
https://github.com/lme4/lme4/issues
https://orcid.org/0000-0001-8316-9503
https://orcid.org/0000-0002-8685-9910
https://orcid.org/0000-0002-2127-0443
https://orcid.org/0000-0002-4394-9078
https://orcid.org/0000-0002-4494-3399
https://orcid.org/0000-0002-4842-3657
https://orcid.org/0000-0001-8172-3603

2 R topics documented:

Peter Green [ctb] (<https://orcid.org/0000-0002-0238-9852>),
John Fox [ctb],
Alexander Bauer [ctb],
Pavel N. Krivitsky [ctb, cph] (<https://orcid.org/0000-0002-9101-3362>,

shared copyright on simulate.formula),
Emi Tanaka [ctb] (<https://orcid.org/0000-0002-1455-259X>)

Maintainer Ben Bolker <bbolker+lme4@gmail.com>

Repository CRAN

Date/Publication 2024-03-28 18:50:05 UTC

R topics documented:
lme4-package . 4
allFit . 5
Arabidopsis . 7
bootMer . 8
cake . 11
cbpp . 12
checkConv . 13
confint.merMod . 14
convergence . 16
devcomp . 19
devfun2 . 20
drop1.merMod . 21
dummy . 23
Dyestuff . 24
expandDoubleVerts . 25
factorize . 26
findbars . 26
fixef . 27
fortify . 28
getME . 29
GHrule . 32
glmer . 34
glmer.nb . 37
glmerLaplaceHandle . 38
glmFamily . 39
glmFamily-class . 40
golden-class . 40
GQdk . 41
grouseticks . 42
hatvalues.merMod . 43
influence.merMod . 44
InstEval . 46
isNested . 47
isREML . 48
isSingular . 49

https://orcid.org/0000-0002-0238-9852
https://orcid.org/0000-0002-9101-3362
https://orcid.org/0000-0002-1455-259X

R topics documented: 3

lme4_testlevel . 51
lmer . 51
lmerControl . 54
lmList . 60
lmList4-class . 61
lmResp . 62
lmResp-class . 63
merMod-class . 64
merPredD . 69
merPredD-class . 69
mkMerMod . 70
mkRespMod . 71
mkReTrms . 71
mkSimulateTemplate . 73
mkVarCorr . 74
modular . 74
namedList . 78
NelderMead . 79
NelderMead-class . 81
ngrps . 82
nlformula . 83
nlmer . 84
nloptwrap . 86
nobars . 88
Pastes . 89
Penicillin . 90
plot.merMod . 91
plots.thpr . 93
predict.merMod . 95
profile-methods . 96
prt-utilities . 100
pvalues . 103
ranef . 104
refit . 106
refitML . 108
rePCA . 109
rePos . 110
rePos-class . 110
residuals.merMod . 111
sigma . 112
simulate.formula . 112
simulate.merMod . 113
sleepstudy . 116
subbars . 117
troubleshooting . 118
VarCorr . 119
vcconv . 120
VerbAgg . 122

4 lme4-package

Index 124

lme4-package Linear, generalized linear, and nonlinear mixed models

Description

lme4 provides functions for fitting and analyzing mixed models: linear (lmer), generalized linear
(glmer) and nonlinear (nlmer.)

Differences between nlme and lme4

lme4 covers approximately the same ground as the earlier nlme package. The most important
differences are:

• lme4 uses modern, efficient linear algebra methods as implemented in the Eigen package, and
uses reference classes to avoid undue copying of large objects; it is therefore likely to be faster
and more memory-efficient than nlme.

• lme4 includes generalized linear mixed model (GLMM) capabilities, via the glmer function.

• lme4 does not currently implement nlme’s features for modeling heteroscedasticity and cor-
relation of residuals.

• lme4 does not currently offer the same flexibility as nlme for composing complex variance-
covariance structures, but it does implement crossed random effects in a way that is both easier
for the user and much faster.

• lme4 offers built-in facilities for likelihood profiling and parametric bootstrapping.

• lme4 is designed to be more modular than nlme, making it easier for downstream package
developers and end-users to re-use its components for extensions of the basic mixed model
framework. It also allows more flexibility for specifying different functions for optimizing
over the random-effects variance-covariance parameters.

• lme4 is not (yet) as well-documented as nlme.

Differences between current (1.0.+) and previous versions of lme4

• [gn]lmer now produces objects of class merMod rather than class mer as before

• the new version uses a combination of S3 and reference classes (see ReferenceClasses,
merPredD-class, and lmResp-class) as well as S4 classes; partly for this reason it is more
interoperable with nlme

• The internal structure of [gn]lmer is now more modular, allowing finer control of the different
steps of argument checking; construction of design matrices and data structures; parameter
estimation; and construction of the final merMod object (see modular)

• profiling and parametric bootstrapping are new in the current version

• the new version of lme4 does not provide an mcmcsamp (post-hoc MCMC sampling) method,
because this was deemed to be unreliable. Alternatives for computing p-values include para-
metric bootstrapping (bootMer) or methods implemented in the pbkrtest package and lever-
aged by the lmerTest package and the Anova function in the car package (see pvalues for
more details).

allFit 5

Caveats and trouble-shooting

• Some users who have previously installed versions of the RcppEigen and minqa packages may
encounter segmentation faults (!!); the solution is to make sure to re-install these packages
before installing lme4. (Because the problem is not with the explicit version of the packages,
but with running packages that were built with different versions of Rcpp in conjunction with
each other, simply making sure you have the latest version, or using update.packages, will
not necessarily solve the problem; you must actually re-install the packages. The problem is
most likely with minqa.)

allFit Refit a fitted model with all available optimizers

Description

Attempt to re-fit a [g]lmer model with a range of optimizers. The default is to use all known
optimizers for R that satisfy the requirements (i.e. they do not require functions and allow box
constraints: see ‘optimizer’ in lmerControl). These optimizers fall in four categories; (i) built-
in (minqa::bobyqa, lme4::Nelder_Mead, nlminbwrap), (ii) wrapped via optimx (most of optimx’s
optimizers that allow box constraints require an explicit gradient function to be specified; the two
provided here are the base R functions that can be accessed via optimx), (iii) wrapped via nloptr
(see examples for the list of options), (iv) ‘dfoptim::nmkb’ (via the (unexported) nmkbw wrapper:
this appears as ‘nmkbw’ in meth.tab)

Usage

allFit(object, meth.tab = NULL, data=NULL,
verbose = TRUE,
show.meth.tab = FALSE,
maxfun = 1e5,
parallel = c("no", "multicore", "snow"),
ncpus = getOption("allFit.ncpus", 1L), cl = NULL,
catch.errs = TRUE)

Arguments

object a fitted model

meth.tab a matrix (or data.frame) with columns

method the name of a specific optimization method to pass to the optimizer
(leave blank for built-in optimizers)

optimizer the optimizer function to use

data data to be included with result (for later debugging etc.)

verbose logical: report progress in detail?

show.meth.tab logical: return table of methods?

6 allFit

maxfun passed as part of optCtrl to set the maximum number of function evalua-
tions: this is automatically converted to the correct specification (e.g. maxfun,
maxfeval, maxit, etc.) for each optimizer

parallel The type of parallel operation to be used (if any). If missing, the default is taken
from the option "boot.parallel" (and if that is not set, "no").

ncpus integer: number of processes to be used in parallel operation: typically one
would choose this to be the number of available CPUs. Use options(allFit.ncpus=X)
to set the default value to X for the duration of an R session.

cl An optional parallel or snow cluster for use if parallel = "snow". If not sup-
plied, a cluster on the local machine is created for the duration of the boot call.

catch.errs (logical) Wrap model fits in tryCatch clause to skip over errors? (catch.errs=FALSE
is probably only useful for debugging)

Details

• Needs packages optimx, and dfoptim to use all optimizers

• If you are using parallel="snow" (e.g. when running in parallel on Windows), you will need
to set up a cluster yourself and run clusterEvalQ(cl,library("lme4")) before calling
allFit to make sure that the lme4 package is loaded on all of the workers

• Control arguments in control$optCtrl that are unused by a particular optimizer will be
silently ignored (in particular, the maxfun specification is only respected by bobyqa, Nelder_Mead,
and nmkbw)

• Because allFit works by calling update, it may be fragile if the original model call contains
references to variables, especially if they were originally defined in other environments or no
longer exist when allFit is called.

Value

an object of type allFit, which is a list of fitted merMod objects (unless show.meth.tab is speci-
fied, in which case a data frame of methods is returned). The summary method for this class extracts
tables with a variety of useful information about the different fits (see examples).

See Also

slice,slice2D from the bbmle package

Examples

if (interactive()) {
library(lme4)

gm1 <- glmer(cbind(incidence, size - incidence) ~ period + (1 | herd),
data = cbpp, family = binomial)

show available methods
allFit(show.meth.tab=TRUE)
gm_all <- allFit(gm1)
ss <- summary(gm_all)
ss$which.OK ## logical vector: which optimizers worked?
the other components only contain values for the optimizers that worked

https://CRAN.R-project.org/package=bbmle

Arabidopsis 7

ss$llik ## vector of log-likelihoods
ss$fixef ## table of fixed effects
ss$sdcor ## table of random effect SDs and correlations
ss$theta ## table of random effects parameters, Cholesky scale

}
Not run:

Parallel examples for Windows
nc <- detectCores()-1
optCls <- makeCluster(nc, type = "SOCK")
clusterEvalQ(optCls,library("lme4"))
not necessary here because using a built-in
data set, but in general you should clusterExport() your data
clusterExport(optCls, "cbpp")
system.time(af1 <- allFit(m0, parallel = 'snow',

ncpus = nc, cl=optCls))
stopCluster(optCls)

End(Not run)

Arabidopsis Arabidopsis clipping/fertilization data

Description

Data on genetic variation in responses to fertilization and simulated herbivory in Arabidopsis

Usage

data("Arabidopsis")

Format

A data frame with 625 observations on the following 8 variables.

reg region: a factor with 3 levels NL (Netherlands), SP (Spain), SW (Sweden)

popu population: a factor with the form n.R representing a population in region R

gen genotype: a factor with 24 (numeric-valued) levels

rack a nuisance factor with 2 levels, one for each of two greenhouse racks

nutrient fertilization treatment/nutrient level (1, minimal nutrients or 8, added nutrients)

amd simulated herbivory or "clipping" (apical meristem damage): unclipped (baseline) or clipped

status a nuisance factor for germination method (Normal, Petri.Plate, or Transplant)

total.fruits total fruit set per plant (integer)

Source

From Josh Banta

8 bootMer

References

Joshua A. Banta, Martin H. H Stevens, and Massimo Pigliucci (2010) A comprehensive test of the
’limiting resources’ framework applied to plant tolerance to apical meristem damage. Oikos 119(2),
359–369; doi:10.1111/j.16000706.2009.17726.x

Examples

data(Arabidopsis)
summary(Arabidopsis[,"total.fruits"])
table(gsub("[0-9].","",levels(Arabidopsis[,"popu"])))
library(lattice)
stripplot(log(total.fruits+1) ~ amd|nutrient, data = Arabidopsis,

groups = gen,
strip=strip.custom(strip.names=c(TRUE,TRUE)),
type=c('p','a'), ## points and panel-average value --
see ?panel.xyplot
scales=list(x=list(rot=90)),
main="Panel: nutrient, Color: genotype")

bootMer Model-based (Semi-)Parametric Bootstrap for Mixed Models

Description

Perform model-based (Semi-)parametric bootstrap for mixed models.

Usage

bootMer(x, FUN, nsim = 1, seed = NULL, use.u = FALSE, re.form=NA,
type = c("parametric", "semiparametric"),
verbose = FALSE, .progress = "none", PBargs = list(),
parallel = c("no", "multicore", "snow"),
ncpus = getOption("boot.ncpus", 1L), cl = NULL)

Arguments

x a fitted merMod object: see lmer, glmer, etc.

FUN a function taking a fitted merMod object as input and returning the statistic of
interest, which must be a (possibly named) numeric vector.

nsim number of simulations, positive integer; the bootstrap B (or R).

seed optional argument to set.seed.

use.u logical, indicating whether the spherical random effects should be simulated /
bootstrapped as well. If TRUE, they are not changed, and all inference is condi-
tional on these values. If FALSE, new normal deviates are drawn (see Details).

re.form formula, NA (equivalent to use.u=FALSE), or NULL (equivalent to use.u=TRUE):
alternative to use.u for specifying which random effects to incorporate. See
simulate.merMod for details.

https://doi.org/10.1111/j.1600-0706.2009.17726.x

bootMer 9

type character string specifying the type of bootstrap, "parametric" or "semiparametric";
partial matching is allowed.

verbose logical indicating if progress should print output

.progress character string - type of progress bar to display. Default is "none"; the function
will look for a relevant *ProgressBar function, so "txt" will work in general;
"tk" is available if the tcltk package is loaded; or "win" on Windows systems.
Progress bars are disabled (with a message) for parallel operation.

PBargs a list of additional arguments to the progress bar function (the package authors
like list(style=3)).

parallel The type of parallel operation to be used (if any). If missing, the default is taken
from the option "boot.parallel" (and if that is not set, "no").

ncpus integer: number of processes to be used in parallel operation: typically one
would choose this to be the number of available CPUs.

cl An optional parallel or snow cluster for use if parallel = "snow". If not sup-
plied, a cluster on the local machine is created for the duration of the boot call.

Details

The semi-parametric variant is only partially implemented, and we only provide a method for lmer
and glmer results.

Information about warning and error messages incurred during the bootstrap returns can be retrieved
via the attributes

bootFail number of failures (errors)

boot.fail.msgs error messages

boot.all.msgs messages, warnings, and error messages

e.g. attr("boot.fail.msgs") to retrieve error messages

The working name for bootMer() was “simulestimate()”, as it is an extension of simulate (see
simulate.merMod), but we want to emphasize its potential for valid inference.

• If use.u is FALSE and type is "parametric", each simulation generates new values of both
the “spherical” random effects u and the i.i.d. errors ε, using rnorm() with parameters corre-
sponding to the fitted model x.

• If use.u is TRUE and type=="parametric", only the i.i.d. errors (or, for GLMMs, response
values drawn from the appropriate distributions) are resampled, with the values of u staying
fixed at their estimated values.

• If use.u is TRUE and type=="semiparametric", the i.i.d. errors are sampled from the dis-
tribution of (response) residuals. (For GLMMs, the resulting sample will no longer have the
same properties as the original sample, and the method may not make sense; a warning is
generated.) The semiparametric bootstrap is currently an experimental feature, and therefore
may not be stable.

• The case where use.u is FALSE and type=="semiparametric" is not implemented; Morris
(2002) suggests that resampling from the estimated values of u is not good practice.

10 bootMer

Value

an object of S3 class "boot", compatible with boot package’s boot() result. (See Details for
information on how to retrieve information about errors during bootstrapping.)

Note

If you are using parallel="snow", you will need to run clusterEvalQ(cl,library("lme4"))
before calling bootMer to make sure that the lme4 package is loaded on all of the workers; you may
additionally need to use clusterExport if you are using a summary function that calls any objects
from the environment.

References

Davison, A.C. and Hinkley, D.V. (1997) Bootstrap Methods and Their Application. Cambridge
University Press.

Morris, J. S. (2002). The BLUPs Are Not ‘best’ When It Comes to Bootstrapping. Statistics &
Probability Letters 56(4): 425–430. doi:10.1016/S0167-7152(02)00041-X.

See Also

• confint.merMod, for a more specific approach to bootstrap confidence intervals on parame-
ters.

• refit(), or PBmodcomp() from the pbkrtest package, for parametric bootstrap comparison
of models.

• boot(), and then boot.ci, from the boot package.

• profile-methods, for likelihood-based inference, including confidence intervals.

• pvalues, for more general approaches to inference and p-value computation in mixed models.

Examples

if (interactive()) {
fm01ML <- lmer(Yield ~ 1|Batch, Dyestuff, REML = FALSE)
see ?"profile-methods"
mySumm <- function(.) { s <- sigma(.)

c(beta =getME(., "beta"), sigma = s, sig01 = unname(s * getME(., "theta"))) }
(t0 <- mySumm(fm01ML)) # just three parameters
alternatively:
mySumm2 <- function(.) {

c(beta=fixef(.),sigma=sigma(.), sig01=sqrt(unlist(VarCorr(.))))
}

set.seed(101)
3.8s (on a 5600 MIPS 64bit fast(year 2009) desktop "AMD Phenom(tm) II X4 925"):
system.time(boo01 <- bootMer(fm01ML, mySumm, nsim = 100))

to "look" at it
if (requireNamespace("boot")) {

boo01
note large estimated bias for sig01

https://CRAN.R-project.org/package=boot
https://CRAN.R-project.org/package=pbkrtest

cake 11

(~30% low, decreases _slightly_ for nsim = 1000)

extract the bootstrapped values as a data frame ...
head(as.data.frame(boo01))

------ Bootstrap-based confidence intervals ------------

warnings about "Some ... intervals may be unstable" go away
for larger bootstrap samples, e.g. nsim=500

intercept
(bCI.1 <- boot::boot.ci(boo01, index=1, type=c("norm", "basic", "perc")))# beta

Residual standard deviation - original scale:
(bCI.2 <- boot::boot.ci(boo01, index=2, type=c("norm", "basic", "perc")))
Residual SD - transform to log scale:
(bCI.2L <- boot::boot.ci(boo01, index=2, type=c("norm", "basic", "perc"),

h = log, hdot = function(.) 1/., hinv = exp))

Among-batch variance:
(bCI.3 <- boot::boot.ci(boo01, index=3, type=c("norm", "basic", "perc"))) # sig01

confint(boo01)
confint(boo01,type="norm")
confint(boo01,type="basic")

Graphical examination:
plot(boo01,index=3)

Check stored values from a longer (1000-replicate) run:
(load(system.file("testdata","boo01L.RData", package="lme4")))# "boo01L"
plot(boo01L, index=3)
mean(boo01L$t[,"sig01"]==0) ## note point mass at zero!

}
}

cake Breakage Angle of Chocolate Cakes

Description

Data on the breakage angle of chocolate cakes made with three different recipes and baked at six
different temperatures. This is a split-plot design with the recipes being whole-units and the differ-
ent temperatures being applied to sub-units (within replicates). The experimental notes suggest that
the replicate numbering represents temporal ordering.

Format

A data frame with 270 observations on the following 5 variables.

12 cbpp

replicate a factor with levels 1 to 15

recipe a factor with levels A, B and C

temperature an ordered factor with levels 175 < 185 < 195 < 205 < 215 < 225

angle a numeric vector giving the angle at which the cake broke.
temp numeric value of the baking temperature (degrees F).

Details

The replicate factor is nested within the recipe factor, and temperature is nested within replicate.

Source

Original data were presented in Cook (1938), and reported in Cochran and Cox (1957, p. 300).
Also cited in Lee, Nelder and Pawitan (2006).

References

Cook, F. E. (1938) Chocolate cake, I. Optimum baking temperature. Master’s Thesis, Iowa State
College.

Cochran, W. G., and Cox, G. M. (1957) Experimental designs, 2nd Ed. New York, John Wiley &
Sons.

Lee, Y., Nelder, J. A., and Pawitan, Y. (2006) Generalized linear models with random effects.
Unified analysis via H-likelihood. Boca Raton, Chapman and Hall/CRC.

Examples

str(cake)
'temp' is continuous, 'temperature' an ordered factor with 6 levels

(fm1 <- lmer(angle ~ recipe * temperature + (1|recipe:replicate), cake, REML= FALSE))
(fm2 <- lmer(angle ~ recipe + temperature + (1|recipe:replicate), cake, REML= FALSE))
(fm3 <- lmer(angle ~ recipe + temp + (1|recipe:replicate), cake, REML= FALSE))

and now "choose" :
anova(fm3, fm2, fm1)

cbpp Contagious bovine pleuropneumonia

Description

Contagious bovine pleuropneumonia (CBPP) is a major disease of cattle in Africa, caused by a
mycoplasma. This dataset describes the serological incidence of CBPP in zebu cattle during a
follow-up survey implemented in 15 commercial herds located in the Boji district of Ethiopia. The
goal of the survey was to study the within-herd spread of CBPP in newly infected herds. Blood
samples were quarterly collected from all animals of these herds to determine their CBPP status.
These data were used to compute the serological incidence of CBPP (new cases occurring during a
given time period). Some data are missing (lost to follow-up).

checkConv 13

Format

A data frame with 56 observations on the following 4 variables.

herd A factor identifying the herd (1 to 15).

incidence The number of new serological cases for a given herd and time period.

size A numeric vector describing herd size at the beginning of a given time period.

period A factor with levels 1 to 4.

Details

Serological status was determined using a competitive enzyme-linked immuno-sorbent assay (cELISA).

Source

Lesnoff, M., Laval, G., Bonnet, P., Abdicho, S., Workalemahu, A., Kifle, D., Peyraud, A., Lancelot,
R., Thiaucourt, F. (2004) Within-herd spread of contagious bovine pleuropneumonia in Ethiopian
highlands. Preventive Veterinary Medicine 64, 27–40.

Examples

response as a matrix
(m1 <- glmer(cbind(incidence, size - incidence) ~ period + (1 | herd),

family = binomial, data = cbpp))
response as a vector of probabilities and usage of argument "weights"
m1p <- glmer(incidence / size ~ period + (1 | herd), weights = size,

family = binomial, data = cbpp)
Confirm that these are equivalent:
stopifnot(all.equal(fixef(m1), fixef(m1p), tolerance = 1e-5),

all.equal(ranef(m1), ranef(m1p), tolerance = 1e-5))

GLMM with individual-level variability (accounting for overdispersion)
cbpp$obs <- 1:nrow(cbpp)
(m2 <- glmer(cbind(incidence, size - incidence) ~ period + (1 | herd) + (1|obs),

family = binomial, data = cbpp))

checkConv Extended Convergence Checking

Description

Primarily internal code for checking optimization convergence, see convergence for a more detailed
discussion.

Usage

checkConv(derivs, coefs, ctrl, lbound, debug = FALSE)

14 confint.merMod

Arguments

derivs typically the "derivs" attribute of optimizeLmer(); with "gradients" and possi-
bly "Hessian" component

coefs current coefficient estimates

ctrl list of lists, each with action character strings specifying what should hap-
pen when a check triggers, and tol numerical tolerances, as is the result of
lmerControl()$checkConv.

lbound vector of lower bounds for random-effects parameters only (length is taken to
determine number of RE parameters)

debug enable debugging output, useful if some checks are on "ignore", but would "trig-
ger"

Value

A result list containing

code The return code for the check

messages A character vector of warnings and messages generated by the check

See Also

convergence

confint.merMod Compute Confidence Intervals for Parameters of a [ng]lmer Fit

Description

Compute confidence intervals on the parameters of a *lmer() model fit (of class"merMod").

Usage

S3 method for class 'merMod'
confint(object, parm, level = 0.95,
method = c("profile", "Wald", "boot"), zeta,
nsim = 500,

boot.type = c("perc","basic","norm"),
FUN = NULL, quiet = FALSE,

oldNames = TRUE, ...)
S3 method for class 'thpr'
confint(object, parm, level = 0.95,

zeta, non.mono.tol=1e-2,
...)

confint.merMod 15

Arguments

object a fitted [ng]lmer model or profile

parm parameters for which intervals are sought. Specified by an integer vector of
positions, character vector of parameter names, or (unless doing parametric
bootstrapping with a user-specified bootstrap function) "theta_" or "beta_"
to specify variance-covariance or fixed effects parameters only: see the which
parameter of profile.

level confidence level < 1, typically above 0.90.

method a character string determining the method for computing the confidence inter-
vals.

zeta (for method = "profile" only:) likelihood cutoff (if not specified, as by default,
computed from level).

nsim number of simulations for parametric bootstrap intervals.

FUN bootstrap function; if NULL, an internal function that returns the fixed-effect pa-
rameters as well as the random-effect parameters on the standard deviation/correlation
scale will be used. See bootMer for details.

boot.type bootstrap confidence interval type, as described in boot.ci. (Methods ‘stud’
and ‘bca’ are unavailable because they require additional components to be cal-
culated.)

quiet (logical) suppress messages about computationally intensive profiling?

oldNames (logical) use old-style names for variance-covariance parameters, e.g. ".sig01",
rather than newer (more informative) names such as "sd_(Intercept)|Subject"?
(See signames argument to profile).

non.mono.tol tolerance for detecting a non-monotonic profile and warning/falling back to lin-
ear interpolation

... additional parameters to be passed to profile.merMod or bootMer, respec-
tively.

Details

Depending on the method specified, confint() computes confidence intervals by

"profile": computing a likelihood profile and finding the appropriate cutoffs based on the likeli-
hood ratio test;

"Wald": approximating the confidence intervals (of fixed-effect parameters only; all variance-
covariance parameters CIs will be returned as NA) based on the estimated local curvature of
the likelihood surface;

"boot": performing parametric bootstrapping with confidence intervals computed from the boot-
strap distribution according to boot.type (see bootMer, boot.ci).

Value

a numeric table (matrix with column and row names) of confidence intervals; the confidence inter-
vals are computed on the standard deviation scale.

16 convergence

Note

The default method "profile" amounts to

confint(profile(object, which=parm, signames=oldNames, ...),
level, zeta)

where the profile method profile.merMod does almost all the computations. Therefore it is
typically advisable to store the profile(.) result, say in pp, and then use confint(pp, level=*)
e.g., for different levels.

Examples

if (interactive() || lme4_testlevel() >= 3) {
fm1 <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy)
fm1W <- confint(fm1, method="Wald")# very fast, but not useful for "sigmas" = var-cov pars
fm1W
(fm2 <- lmer(Reaction ~ Days + (Days || Subject), sleepstudy))
(CI2 <- confint(fm2, maxpts = 8)) # method = "profile"; 8: to be much faster

if (lme4_testlevel() >= 3) {
system.time(fm1P <- confint(fm1, method="profile", ## <- default

oldNames = FALSE))
--> ~ 2.2 seconds (2022)
set.seed(123) # (reproducibility when using bootstrap)
system.time(fm1B <- confint(fm1, method="boot", oldNames=FALSE,

.progress="txt", PBargs= list(style=3)))
--> ~ 6.2 seconds (2022) and warning, messages

} else {
load(system.file("testdata","confint_ex.rda",package="lme4"))

}
fm1P
fm1B
} ## if interactive && testlevel>=3

convergence Assessing Convergence for Fitted Models

Description

[g]lmer fits may produce convergence warnings; these do not necessarily mean the fit is incorrect
(see “Theoretical details” below). The following steps are recommended assessing and resolving
convergence warnings (also see examples below):

• double-check the model specification and the data

• adjust stopping (convergence) tolerances for the nonlinear optimizer, using the optCtrl argu-
ment to [g]lmerControl (see “Convergence controls” below)

• center and scale continuous predictor variables (e.g. with scale)

convergence 17

• double-check the Hessian calculation with the more expensive Richardson extrapolation method
(see examples)

• restart the fit from the reported optimum, or from a point perturbed slightly away from the
reported optimum

• use allFit to try the fit with all available optimizers (e.g. several different implementations of
BOBYQA and Nelder-Mead, L-BFGS-B from optim, nlminb, . . .). While this will of course
be slow for large fits, we consider it the gold standard; if all optimizers converge to values
that are practically equivalent, then we would consider the convergence warnings to be false
positives.

Details

Convergence controls:

• the controls for the nloptwrap optimizer (the default for lmer) are
ftol_abs (default 1e-6) stop on small change in deviance
ftol_rel (default 0) stop on small relative change in deviance
xtol_abs (default 1e-6) stop on small change of parameter values
xtol_rel (default 0) stop on small relative change of parameter values
maxeval (default 1000) maximum number of function evaluations
Changing ftol_abs and xtol_abs to stricter values (e.g. 1e-8) is a good first step for resolv-
ing convergence problems, at the cost of slowing down model fits.

• the controls for minqa::bobyqa (default for glmer first-stage optimization) are
rhobeg (default 2e-3) initial radius of the trust region
rhoend (default 2e-7) final radius of the trust region
maxfun (default 10000) maximum number of function evaluations
rhoend, which describes the scale of parameter uncertainty on convergence, is approximately
analogous to xtol_abs.

• the controls for Nelder_Mead (default for glmer second-stage optimization) are
FtolAbs (default 1e-5) stop on small change in deviance
FtolRel (default 1e-15) stop on small relative change in deviance
XtolRel (default 1e-7) stop on small change of parameter values
maxfun (default 10000) maximum number of function evaluations

Theoretical issues: lme4 uses general-purpose nonlinear optimizers (e.g. Nelder-Mead or
Powell’s BOBYQA method) to estimate the variance-covariance matrices of the random effects.
Assessing the convergence of such algorithms reliably is difficult. For example, evaluating the
Karush-Kuhn-Tucker conditions (convergence criteria which reduce in simple cases to showing
that the gradient is zero and the Hessian is positive definite) is challenging because of the difficulty
of evaluating the gradient and Hessian.
We (the lme4 authors and maintainers) are still in the process of finding the best strategies for
testing convergence. Some of the relevant issues are

• the gradient and Hessian are the basic ingredients of KKT-style testing, but (at least for now)
lme4 estimates them by finite-difference approximations which are sometimes unreliable.

https://en.wikipedia.org/wiki/Karush%E2%80%93Kuhn%E2%80%93Tucker_conditions

18 convergence

• The Hessian computation in particular represents a difficult tradeoff between computational
expense and accuracy. At present the Hessian computations used for convergence checking
(and for estimating standard errors of fixed-effect parameters for GLMMs) follow the ordinal
package in using a naive but computationally cheap centered finite difference computation
(with a fixed step size of 10−4). A more reliable but more expensive approach is to use
Richardson extrapolation, as implemented in the numDeriv package.

• it is important to scale the estimated gradient at the estimate appropriately; two reasonable
approaches are
1. scale gradients by the inverse Cholesky factor of the Hessian, equivalent to scaling gra-

dients by the estimated Wald standard error of the estimated parameters. lme4 uses this
approach; it requires the Hessian to be estimated (although the Hessian is required for
reliable estimation of the fixed-effect standard errors for GLMMs in any case).

2. use unscaled gradients on the random-effects parameters, since these are essentially al-
ready unitless (for LMMs they are scaled relative to the residual variance; for GLMMs
they are scaled relative to the sampling variance of the conditional distribution); for
GLMMs, scale fixed-effect gradients by the standard deviations of the corresponding
input variable

• Exploratory analyses suggest that (1) the naive estimation of the Hessian may fail for large
data sets (number of observations greater than approximately 105); (2) the magnitude of the
scaled gradient increases with sample size, so that warnings will occur even for apparently
well-behaved fits with large data sets.

See Also

lmerControl, isSingular

Examples

if (interactive()) {
fm1 <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy)

1. decrease stopping tolerances
strict_tol <- lmerControl(optCtrl=list(xtol_abs=1e-8, ftol_abs=1e-8))
if (all(fm1@optinfo$optimizer=="nloptwrap")) {

fm1.tol <- update(fm1, control=strict_tol)
}

2. center and scale predictors:
ss.CS <- transform(sleepstudy, Days=scale(Days))
fm1.CS <- update(fm1, data=ss.CS)

3. recompute gradient and Hessian with Richardson extrapolation
devfun <- update(fm1, devFunOnly=TRUE)
if (isLMM(fm1)) {

pars <- getME(fm1,"theta")
} else {

GLMM: requires both random and fixed parameters
pars <- getME(fm1, c("theta","fixef"))

}
if (require("numDeriv")) {

https://CRAN.R-project.org/package=ordinal
https://en.wikipedia.org/wiki/Richardson_extrapolation
https://CRAN.R-project.org/package=numDeriv
https://github.com/lme4/lme4/issues/47
https://github.com/lme4/lme4/issues/47

devcomp 19

cat("hess:\n"); print(hess <- hessian(devfun, unlist(pars)))
cat("grad:\n"); print(grad <- grad(devfun, unlist(pars)))
cat("scaled gradient:\n")
print(scgrad <- solve(chol(hess), grad))

}
compare with internal calculations:
fm1@optinfo$derivs

compute reciprocal condition number of Hessian
H <- fm1@optinfo$derivs$Hessian
Matrix::rcond(H)

4. restart the fit from the original value (or
a slightly perturbed value):
fm1.restart <- update(fm1, start=pars)
set.seed(101)
pars_x <- runif(length(pars),pars/1.01,pars*1.01)
fm1.restart2 <- update(fm1, start=pars_x,

control=strict_tol)

5. try all available optimizers

fm1.all <- allFit(fm1)
ss <- summary(fm1.all)
ss$ fixef ## fixed effects
ss$ llik ## log-likelihoods
ss$ sdcor ## SDs and correlations
ss$ theta ## Cholesky factors
ss$ which.OK ## which fits worked

}

devcomp Extract the deviance component list

Description

Return the deviance component list

Usage

devcomp(x)

Arguments

x a fitted model of class merMod

Details

A fitted model of class merMod has a devcomp slot as described in the value section.

20 devfun2

Value

a list with components

dims a named integer vector of various dimensions

cmp a named numeric vector of components of the deviance

Note

This function is deprecated, use getME(., "devcomp")

devfun2 Deviance Function in Terms of Standard Deviations/Correlations

Description

The deviance is profiled with respect to the fixed-effects parameters but not with respect to sigma;
that is, the function takes parameters for the variance-covariance parameters and for the residual
standard deviation. The random-effects variance-covariance parameters are on the standard devia-
tion/correlation scale, not the theta (Cholesky factor) scale.

Usage

devfun2(fm, useSc = if(isLMM(fm)) TRUE else NA,
transfuns = list(from.chol = Cv_to_Sv,

to.chol = Sv_to_Cv,
to.sd = identity), ...)

Arguments

fm a fitted model inheriting from class "merMod".

useSc (logical) indicating whether a scale parameter has been in the model or should
be used.

transfuns a list of functions for converting parameters to and from the Cholesky-factor
scale

... arguments passed to the internal profnames function (signames=TRUE to use
old-style .sigxx names, FALSE uses (sd_cor|xx); also prefix=c("sd","cor"))

Value

Returns a function that takes a vector of standard deviations and correlations and returns the de-
viance (or REML criterion). The function has additional attributes

optimum a named vector giving the parameter values at the optimum

basedev the deviance at the optimum, (i.e., not the REML criterion).

thopt the optimal variance-covariance parameters on the “theta” (Cholesky factor) scale

stderr standard errors of fixed effect parameters

drop1.merMod 21

Note

Even if the original model was fitted using REML=TRUE as by default with lmer(), this returns the
deviance, i.e., the objective function for maximum (log) likelihood (ML).

For the REML objective function, use getME(fm, "devfun") instead.

Examples

m1 <- lmer(Reaction~Days+(Days|Subject),sleepstudy)
dd <- devfun2(m1, useSc=TRUE)
pp <- attr(dd,"optimum")
extract variance-covariance and residual std dev parameters
sigpars <- pp[grepl("^\\.sig",names(pp))]
all.equal(unname(dd(sigpars)),deviance(refitML(m1)))

drop1.merMod Drop all possible single fixed-effect terms from a mixed effect model

Description

Drop allowable single terms from the model: see drop1 for details of how the appropriate scope for
dropping terms is determined.

Usage

S3 method for class 'merMod'
drop1(object, scope, scale = 0,

test = c("none", "Chisq", "user"),
k = 2, trace = FALSE, sumFun, ...)

Arguments

object a fitted merMod object.

scope a formula giving the terms to be considered for adding or dropping.

scale Currently ignored (included for S3 method compatibility)

test should the results include a test statistic relative to the original model? The χ2

test is a likelihood-ratio test, which is approximate due to finite-size effects.

k the penalty constant in AIC

trace print tracing information?

sumFun a summary function to be used when test=="user". It must allow argu-
ments scale and k, but these may be ignored (e.g. swallowed by ..., see
the examples). The first two arguments must be object, the full model fit, and
objectDrop, a reduced model. If objectDrop is missing, sumFun(*) should
return a vector with the appropriate length and names (the actual contents are
ignored).

... other arguments (ignored)

22 drop1.merMod

Details

drop1 relies on being able to find the appropriate information within the environment of the formula
of the original model. If the formula is created in an environment that does not contain the data, or
other variables passed to the original model (for example, if a separate function is called to define
the formula), then drop1 will fail. A workaround (see example below) is to manually specify an
appropriate environment for the formula.

Value

An object of class anova summarizing the differences in fit between the models.

Examples

fm1 <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy)
likelihood ratio tests
drop1(fm1,test="Chisq")
use Kenward-Roger corrected F test, or parametric bootstrap,
to test the significance of each dropped predictor
if (require(pbkrtest) && packageVersion("pbkrtest")>="0.3.8") {

KRSumFun <- function(object, objectDrop, ...) {
krnames <- c("ndf","ddf","Fstat","p.value","F.scaling")
r <- if (missing(objectDrop)) {

setNames(rep(NA,length(krnames)),krnames)
} else {

krtest <- KRmodcomp(object,objectDrop)
unlist(krtest$stats[krnames])

}
attr(r,"method") <- c("Kenward-Roger via pbkrtest package")
r

}
drop1(fm1, test="user", sumFun=KRSumFun)

if(lme4:::testLevel() >= 3) { ## takes about 16 sec
nsim <- 100
PBSumFun <- function(object, objectDrop, ...) {

pbnames <- c("stat","p.value")
r <- if (missing(objectDrop)) {

setNames(rep(NA,length(pbnames)),pbnames)
} else {

pbtest <- PBmodcomp(object,objectDrop,nsim=nsim)
unlist(pbtest$test[2,pbnames])

}
attr(r,"method") <- c("Parametric bootstrap via pbkrtest package")
r

}
system.time(drop1(fm1, test="user", sumFun=PBSumFun))

}
}
workaround for creating a formula in a separate environment
createFormula <- function(resp, fixed, rand) {

f <- reformulate(c(fixed,rand),response=resp)
use the parent (createModel) environment, not the

dummy 23

environment of this function (which does not contain 'data')
environment(f) <- parent.frame()
f

}
createModel <- function(data) {

mf.final <- createFormula("Reaction", "Days", "(Days|Subject)")
lmer(mf.final, data=data)

}
drop1(createModel(data=sleepstudy))

dummy Dummy variables (experimental)

Description

Largely a wrapper for model.matrix that accepts a factor, f, and returns a dummy matrix with
nlevels(f)-1 columns (the first column is dropped by default). Useful whenever one wishes to
avoid the behaviour of model.matrix of always returning an nlevels(f)-column matrix, either by
the addition of an intercept column, or by keeping one column for all levels.

Usage

dummy(f, levelsToKeep)

Arguments

f An object coercible to factor.

levelsToKeep An optional character vector giving the subset of levels(f) to be converted to
dummy variables.

Value

A model.matrix with dummy variables as columns.

Examples

data(Orthodont,package="nlme")
lmer(distance ~ age + (age|Subject) +

(0+dummy(Sex, "Female")|Subject), data = Orthodont)

24 Dyestuff

Dyestuff Yield of dyestuff by batch

Description

The Dyestuff data frame provides the yield of dyestuff (Naphthalene Black 12B) from 5 different
preparations from each of 6 different batchs of an intermediate product (H-acid). The Dyestuff2
data were generated data in the same structure but with a large residual variance relative to the batch
variance.

Format

Data frames, each with 30 observations on the following 2 variables.

Batch a factor indicating the batch of the intermediate product from which the preparation was
created.

Yield the yield of dyestuff from the preparation (grams of standard color).

Details

The Dyestuff data are described in Davies and Goldsmith (1972) as coming from “an investigation
to find out how much the variation from batch to batch in the quality of an intermediate product
(H-acid) contributes to the variation in the yield of the dyestuff (Naphthalene Black 12B) made
from it. In the experiment six samples of the intermediate, representing different batches of works
manufacture, were obtained, and five preparations of the dyestuff were made in the laboratory from
each sample. The equivalent yield of each preparation as grams of standard colour was determined
by dye-trial.”

The Dyestuff2 data are described in Box and Tiao (1973) as illustrating “ the case where between-
batches mean square is less than the within-batches mean square. These data had to be constructed
for although examples of this sort undoubtably occur in practice, they seem to be rarely published.”

Source

O.L. Davies and P.L. Goldsmith (eds), Statistical Methods in Research and Production, 4th ed.,
Oliver and Boyd, (1972), section 6.4

G.E.P. Box and G.C. Tiao, Bayesian Inference in Statistical Analysis, Addison-Wesley, (1973),
section 5.1.2

Examples

require(lattice)
str(Dyestuff)
dotplot(reorder(Batch, Yield) ~ Yield, Dyestuff,

ylab = "Batch", jitter.y = TRUE, aspect = 0.3,
type = c("p", "a"))

dotplot(reorder(Batch, Yield) ~ Yield, Dyestuff2,

expandDoubleVerts 25

ylab = "Batch", jitter.y = TRUE, aspect = 0.3,
type = c("p", "a"))

(fm1 <- lmer(Yield ~ 1|Batch, Dyestuff))
(fm2 <- lmer(Yield ~ 1|Batch, Dyestuff2))

expandDoubleVerts Expand terms with ’||’ notation into separate ’|’ terms

Description

From the right hand side of a formula for a mixed-effects model, expand terms with the double
vertical bar operator into separate, independent random effect terms.

Usage

expandDoubleVerts(term)

Arguments

term a mixed-model formula

Value

the modified term

Note

Because || works at the level of formula parsing, it has no way of knowing whether a variable is a
factor. It just takes the terms within a random-effects term and literally splits them into the intercept
and separate no-intercept terms, e.g. (1+x+y|f) would be split into (1|f) + (0+x|f) + (0+y|f).
However, || will fail to break up factors into separate terms; the dummy function can be useful in
this case, although it is not as convenient as ||.

See Also

formula, model.frame, model.matrix, dummy.

Other utilities: mkRespMod, mkReTrms, nlformula, nobars, subbars

Examples

m <- ~ x + (x || g)
expandDoubleVerts(m)
set.seed(101)
dd <- expand.grid(f=factor(letters[1:3]),g=factor(1:200),rep=1:3)
dd$y <- simulate(~f + (1|g) + (0+dummy(f,"b")|g) + (0+dummy(f,"c")|g),

newdata=dd,
newparams=list(beta=rep(0,3),

theta=c(1,2,1),
sigma=1),

26 findbars

family=gaussian)[[1]]
m1 <- lmer(y~f+(f|g),data=dd)
VarCorr(m1)
m2 <- lmer(y~f+(1|g) + (0+dummy(f,"b")|g) + (0+dummy(f,"c")|g),

data=dd)
VarCorr(m2)

factorize Attempt to convert grouping variables to factors

Description

If variables within a data frame are not factors, try to convert them. Not intended for end-user use;
this is a utility function that needs to be exported, for technical reasons.

Usage

factorize(x,frloc,char.only=FALSE)

Arguments

x a formula

frloc a data frame

char.only (logical) convert only character variables to factors?

Value

a copy of the data frame with factors converted

findbars Determine random-effects expressions from a formula

Description

From the right hand side of a formula for a mixed-effects model, determine the pairs of expressions
that are separated by the vertical bar operator. Also expand the slash operator in grouping factor ex-
pressions and expand terms with the double vertical bar operator into separate, independent random
effect terms.

Usage

findbars(term)

Arguments

term a mixed-model formula

fixef 27

Value

pairs of expressions that were separated by vertical bars

Note

This function is called recursively on individual terms in the model, which is why the argument is
called term and not a name like form, indicating a formula.

See Also

formula, model.frame, model.matrix.

Other utilities: mkRespMod, mkReTrms, nlformula, nobars, subbars

Examples

findbars(f1 <- Reaction ~ Days + (Days | Subject))
=> list(Days | Subject)
These two are equivalent:% tests in ../inst/tests/test-doubleVertNotation.R
findbars(y ~ Days + (1 | Subject) + (0 + Days | Subject))
findbars(y ~ Days + (Days || Subject))
=> list of length 2: list (1 | Subject , 0 + Days | Subject)
findbars(~ 1 + (1 | batch / cask))
=> list of length 2: list (1 | cask:batch , 1 | batch)

fixef Extract fixed-effects estimates

Description

Extract the fixed-effects estimates

Usage

S3 method for class 'merMod'
fixef(object, add.dropped=FALSE, ...)

Arguments

object any fitted model object from which fixed effects estimates can be extracted.

add.dropped for models with rank-deficient design matrix, reconstitute the full-length param-
eter vector by adding NA values in appropriate locations?

... optional additional arguments. Currently none are used in any methods.

Details

Extract the estimates of the fixed-effects parameters from a fitted model.

28 fortify

Value

a named, numeric vector of fixed-effects estimates.

Examples

fixef(lmer(Reaction ~ Days + (1|Subject) + (0+Days|Subject), sleepstudy))
fm2 <- lmer(Reaction ~ Days + Days2 + (1|Subject),

data=transform(sleepstudy,Days2=Days))
fixef(fm2,add.dropped=TRUE)
first two parameters are the same ...
stopifnot(all.equal(fixef(fm2,add.dropped=TRUE)[1:2],

fixef(fm2)))

fortify add information to data based on a fitted model

Description

fortify adds information to data based on a fitted model; getData retrieves data as specified in
the data argument

Usage

fortify.merMod(model, data = getData(model),
...)

S3 method for class 'merMod'
getData(object)

Arguments

model fitted model

object fitted model

data original data set, if needed

... additional arguments

Details

• fortify is defined in the ggplot2 package, q.v. for more details. fortify is not defined
here, and fortify.merMod is defined as a function rather than an S3 method, to avoid (1)
inducing a dependency on ggplot2 or (2) masking methods from ggplot2. This feature is
both experimental and semi-deprecated, as the help page for fortify itself says: “Rather
than using this function, I now recommend using the broom package, which implements a
much wider range of methods. fortify may be deprecated in the future.” The broom.mixed
package is recommended for mixed models in general.

• getData is a bare-bones implementation; it relies on a data argument having been specified
and the data being available in the environment of the formula. Unlike the functions in the
nlme package, it does not do anything special with na.action or subset.

https://CRAN.R-project.org/package=ggplot2

getME 29

Examples

fm1 <- lmer(Reaction~Days+(1|Subject),sleepstudy)
names(fortify.merMod(fm1))

getME Extract or Get Generalized Components from a Fitted Mixed Effects
Model

Description

Extract (or “get”) “components” – in a generalized sense – from a fitted mixed-effects model, i.e.,
(in this version of the package) from an object of class "merMod".

Usage

getME(object, name, ...)

S3 method for class 'merMod'
getME(object,

name = c("X", "Z", "Zt", "Ztlist", "mmList", "y", "mu", "u", "b",
"Gp", "Tp", "L", "Lambda", "Lambdat", "Lind", "Tlist",
"A", "RX", "RZX", "sigma", "flist",
"fixef", "beta", "theta", "ST", "REML", "is_REML",
"n_rtrms", "n_rfacs", "N", "n", "p", "q",
"p_i", "l_i", "q_i", "k", "m_i", "m",

"cnms", "devcomp", "offset", "lower", "devfun", "glmer.nb.theta"),
...)

Arguments

object a fitted mixed-effects model of class "merMod", i.e., typically the result of lmer(),
glmer() or nlmer().

name a character vector specifying the name(s) of the “component”. If length(name)
> 1 or if name = "ALL", a named list of components will be returned. Possible
values are:

"X": fixed-effects model matrix
"Z": random-effects model matrix
"Zt": transpose of random-effects model matrix. Note that the structure of

Zt has changed since lme4.0; to get a backward-compatible structure, use
do.call(Matrix::rBind,getME(.,"Ztlist"))

"Ztlist": list of components of the transpose of the random-effects model ma-
trix, separated by individual variance component

"mmList": list of raw model matrices associated with random effects terms
"y": response vector

30 getME

"mu": conditional mean of the response
"u": conditional mode of the “spherical” random effects variable
"b": conditional mode of the random effects variable
"Gp": groups pointer vector. A pointer to the beginning of each group of ran-

dom effects corresponding to the random-effects terms, beginning with 0
and including a final element giving the total number of random effects

"Tp": theta pointer vector. A pointer to the beginning of the theta sub-vectors
corresponding to the random-effects terms, beginning with 0 and including
a final element giving the number of thetas.

"L": sparse Cholesky factor of the penalized random-effects model.
"Lambda": relative covariance factor Λ of the random effects.
"Lambdat": transpose Λ′ of Λ above.
"Lind": index vector for inserting elements of θ into the nonzeros of Λ.
"Tlist": vector of template matrices from which the blocks of Λ are generated.
"A": Scaled sparse model matrix (class "dgCMatrix") for the unit, orthogonal

random effects, U , equal to getME(.,"Zt") %*% getME(.,"Lambdat")

"RX": Cholesky factor for the fixed-effects parameters
"RZX": cross-term in the full Cholesky factor
"sigma": residual standard error; note that sigma(object) is preferred.
"flist": a list of the grouping variables (factors) involved in the random effect

terms
"fixef": fixed-effects parameter estimates
"beta": fixed-effects parameter estimates (identical to the result of fixef, but

without names)
"theta": random-effects parameter estimates: these are parameterized as the

relative Cholesky factors of each random effect term
"ST": A list of S and T factors in the TSST’ Cholesky factorization of the rela-

tive variance matrices of the random effects associated with each random-
effects term. The unit lower triangular matrix, T , and the diagonal matrix,
S, for each term are stored as a single matrix with diagonal elements from
S and off-diagonal elements from T .

"n_rtrms": number of random-effects terms
"n_rfacs": number of distinct random-effects grouping factors
"N": number of rows of X
"n": length of the response vector, y
"p": number of columns of the fixed effects model matrix, X
"q": number of columns of the random effects model matrix, Z
"p_i": numbers of columns of the raw model matrices, mmList
"l_i": numbers of levels of the grouping factors
"q_i": numbers of columns of the term-wise model matrices, ZtList
"k": number of random effects terms
"m_i": numbers of covariance parameters in each term
"m": total number of covariance parameters, i.e., the same as dims@nth below.
"cnms": the “component names”, a list.

getME 31

"REML": 0 indicates the model was fitted by maximum likelihood, any other
positive integer indicates fitting by restricted maximum likelihood

"is_REML": same as the result of isREML(.)
"devcomp": a list consisting of a named numeric vector, cmp, and a named in-

teger vector, dims, describing the fitted model. The elements of cmp are:

ldL2 twice the log determinant of L
ldRX2 twice the log determinant of RX
wrss weighted residual sum of squares
ussq squared length of u
pwrss penalized weighted residual sum of squares, “wrss + ussq”
drsum sum of residual deviance (GLMMs only)
REML REML criterion at optimum (LMMs fit by REML only)
dev deviance criterion at optimum (models fit by ML only)
sigmaML ML estimate of residual standard deviation
sigmaREML REML estimate of residual standard deviation
tolPwrss tolerance for declaring convergence in the penalized iteratively

weighted residual sum-of-squares (GLMMs only)
The elements of dims are:

N number of rows of X
n length of y
p number of columns of X
nmp n-p

nth length of theta
q number of columns of Z
nAGQ see glmer

compDev see glmerControl

useSc TRUE if model has a scale parameter
reTrms number of random effects terms
REML 0 indicates the model was fitted by maximum likelihood, any other

positive integer indicates fitting by restricted maximum likelihood
GLMM TRUE if a GLMM
NLMM TRUE if an NLMM

"offset": model offset
"lower": lower bounds on random-effects model parameters (i.e, "theta" pa-

rameters). In order to constrain random effects covariance matrices to be
semi-positive-definite, this vector is equal to 0 for elements of the theta
vector corresponding to diagonal elements of the Cholesky factor, -Inf
otherwise. (getME(.,"lower")==0 can be used as a test to identify diago-
nal elements, as in isSingular.)

"devfun": deviance function (so far only available for LMMs)
"glmer.nb.theta": negative binomial θ parameter, only for glmer.nb.
"ALL": get all of the above as a list.

... currently unused in lme4, potentially further arguments in methods.

32 GHrule

Details

The goal is to provide “everything a user may want” from a fitted "merMod" object as far as it is not
available by methods, such as fixef, ranef, vcov, etc.

Value

Unspecified, as very much depending on the name.

See Also

getCall(). More standard methods for "merMod" objects, such as ranef, fixef, vcov, etc.: see
methods(class="merMod")

Examples

shows many methods you should consider *before* using getME():
methods(class = "merMod")

(fm1 <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy))
Z <- getME(fm1, "Z")
stopifnot(is(Z, "CsparseMatrix"),

c(180,36) == dim(Z),
all.equal(fixef(fm1), b1 <- getME(fm1, "beta"),

check.attributes=FALSE, tolerance = 0))

A way to get *all* getME()s :
internal consistency check ensuring that all work:
parts <- getME(fm1, "ALL")
str(parts, max=2)
stopifnot(identical(Z, parts $ Z),

identical(b1, parts $ beta))

GHrule Univariate Gauss-Hermite quadrature rule

Description

Create a univariate Gauss-Hermite quadrature rule.

Usage

GHrule(ord, asMatrix = TRUE)

Arguments

ord scalar integer between 1 and 100 - the order, or number of nodes and weights, in
the rule. When the function being multiplied by the standard normal density is
a polynomial of order 2k − 1 the rule of order k integrates the product exactly.

asMatrix logical scalar - should the result be returned as a matrix. If FALSE a data frame
is returned. Defaults to TRUE.

GHrule 33

Details

This version of Gauss-Hermite quadrature provides the node positions and weights for a scalar
integral of a function multiplied by the standard normal density.

Originally based on package SparseGrid’s hidden GQN(), then on fastGHQuad’s gaussHermiteData(.).

Value

a matrix (or data frame, is asMatrix is false) with ord rows and three columns which are z the node
positions, w the weights and ldnorm, the logarithm of the normal density evaluated at the nodes.

References

Qing Liu and Donald A. Pierce (1994). A Note on Gauss-Hermite Quadrature. Biometrika 81(3),
624–629. doi:10.2307/2337136

See Also

a different interface is available via GQdk().

Examples

(r5 <- GHrule(5, asMatrix=FALSE))
(r12 <- GHrule(12, asMatrix=FALSE))

second, fourth, sixth, eighth and tenth central moments of the
standard Gaussian N(0,1) density:
ps <- seq(2, 10, by = 2)
cbind(p = ps, "E[X^p]" = with(r5, sapply(ps, function(p) sum(w * z^p)))) # p=10 is wrong for 5-rule
p <- 1:15
GQ12 <- with(r12, sapply(p, function(p) sum(w * z^p)))
cbind(p = p, "E[X^p]" = zapsmall(GQ12))
standard R numerical integration can do it too:
intL <- lapply(p, function(p) integrate(function(x) x^p * dnorm(x),

-Inf, Inf, rel.tol=1e-11))
integR <- sapply(intL, `[[`, "value")
cbind(p, "E[X^p]" = integR)# no zapsmall() needed here
all.equal(GQ12, integR, tol=0)# => shows small difference
stopifnot(all.equal(GQ12, integR, tol = 1e-10))
(xactMom <- cumprod(seq(1,13, by=2)))
stopifnot(all.equal(xactMom, GQ12[2*(1:7)], tol=1e-14))
mean relative errors :
mean(abs(GQ12 [2*(1:7)] / xactMom - 1)) # 3.17e-16
mean(abs(integR[2*(1:7)] / xactMom - 1)) # 9.52e-17 {even better}

https://CRAN.R-project.org/package=SparseGrid
https://CRAN.R-project.org/package=fastGHQuad
https://doi.org/10.2307/2337136

34 glmer

glmer Fitting Generalized Linear Mixed-Effects Models

Description

Fit a generalized linear mixed-effects model (GLMM). Both fixed effects and random effects are
specified via the model formula.

Usage

glmer(formula, data = NULL, family = gaussian
, control = glmerControl()
, start = NULL
, verbose = 0L
, nAGQ = 1L
, subset, weights, na.action, offset, contrasts = NULL
, mustart, etastart
, devFunOnly = FALSE)

Arguments

formula a two-sided linear formula object describing both the fixed-effects and random-
effects part of the model, with the response on the left of a ~ operator and the
terms, separated by + operators, on the right. Random-effects terms are distin-
guished by vertical bars ("|") separating expressions for design matrices from
grouping factors.

data an optional data frame containing the variables named in formula. By default
the variables are taken from the environment from which lmer is called. While
data is optional, the package authors strongly recommend its use, especially
when later applying methods such as update and drop1 to the fitted model
(such methods are not guaranteed to work properly if data is omitted). If data
is omitted, variables will be taken from the environment of formula (if specified
as a formula) or from the parent frame (if specified as a character vector).

family a GLM family, see glm and family.
control a list (of correct class, resulting from lmerControl() or glmerControl() re-

spectively) containing control parameters, including the nonlinear optimizer to
be used and parameters to be passed through to the nonlinear optimizer, see the
*lmerControl documentation for details.

start a named list of starting values for the parameters in the model, or a numeric
vector. A numeric start argument will be used as the starting value of theta.
If start is a list, the theta element (a numeric vector) is used as the starting
value for the first optimization step (default=1 for diagonal elements and 0 for
off-diagonal elements of the lower Cholesky factor); the fitted value of theta
from the first step, plus start[["fixef"]], are used as starting values for the
second optimization step. If start has both fixef and theta elements, the first
optimization step is skipped. For more details or finer control of optimization,
see modular.

glmer 35

verbose integer scalar. If > 0 verbose output is generated during the optimization of the
parameter estimates. If > 1 verbose output is generated during the individual
penalized iteratively reweighted least squares (PIRLS) steps.

nAGQ integer scalar - the number of points per axis for evaluating the adaptive Gauss-
Hermite approximation to the log-likelihood. Defaults to 1, corresponding to
the Laplace approximation. Values greater than 1 produce greater accuracy in
the evaluation of the log-likelihood at the expense of speed. A value of zero uses
a faster but less exact form of parameter estimation for GLMMs by optimizing
the random effects and the fixed-effects coefficients in the penalized iteratively
reweighted least squares step. (See Details.)

subset an optional expression indicating the subset of the rows of data that should be
used in the fit. This can be a logical vector, or a numeric vector indicating which
observation numbers are to be included, or a character vector of the row names
to be included. All observations are included by default.

weights an optional vector of ‘prior weights’ to be used in the fitting process. Should be
NULL or a numeric vector.

na.action a function that indicates what should happen when the data contain NAs. The de-
fault action (na.omit, inherited from the ‘factory fresh’ value of getOption("na.action"))
strips any observations with any missing values in any variables.

offset this can be used to specify an a priori known component to be included in the
linear predictor during fitting. This should be NULL or a numeric vector of length
equal to the number of cases. One or more offset terms can be included in the
formula instead or as well, and if more than one is specified their sum is used.
See model.offset.

contrasts an optional list. See the contrasts.arg of model.matrix.default.

mustart optional starting values on the scale of the conditional mean, as in glm; see there
for details.

etastart optional starting values on the scale of the unbounded predictor as in glm; see
there for details.

devFunOnly logical - return only the deviance evaluation function. Note that because the
deviance function operates on variables stored in its environment, it may not
return exactly the same values on subsequent calls (but the results should always
be within machine tolerance).

Details

Fit a generalized linear mixed model, which incorporates both fixed-effects parameters and ran-
dom effects in a linear predictor, via maximum likelihood. The linear predictor is related to the
conditional mean of the response through the inverse link function defined in the GLM family.

The expression for the likelihood of a mixed-effects model is an integral over the random effects
space. For a linear mixed-effects model (LMM), as fit by lmer, this integral can be evaluated
exactly. For a GLMM the integral must be approximated. The most reliable approximation for
GLMMs is adaptive Gauss-Hermite quadrature, at present implemented only for models with a
single scalar random effect. The nAGQ argument controls the number of nodes in the quadrature for-
mula. A model with a single, scalar random-effects term could reasonably use up to 25 quadrature
points per scalar integral.

36 glmer

Value

An object of class merMod (more specifically, an object of subclass glmerMod) for which many
methods are available (e.g. methods(class="merMod"))

Note

In earlier version of the lme4 package, a method argument was used. Its functionality has been
replaced by the nAGQ argument.

See Also

lmer (for details on formulas and parameterization); glm for Generalized Linear Models (without
random effects). nlmer for nonlinear mixed-effects models.

glmer.nb to fit negative binomial GLMMs.

Examples

generalized linear mixed model
library(lattice)
xyplot(incidence/size ~ period|herd, cbpp, type=c('g','p','l'),

layout=c(3,5), index.cond = function(x,y)max(y))
(gm1 <- glmer(cbind(incidence, size - incidence) ~ period + (1 | herd),

data = cbpp, family = binomial))
using nAGQ=0 only gets close to the optimum
(gm1a <- glmer(cbind(incidence, size - incidence) ~ period + (1 | herd),

cbpp, binomial, nAGQ = 0))
using nAGQ = 9 provides a better evaluation of the deviance
Currently the internal calculations use the sum of deviance residuals,
which is not directly comparable with the nAGQ=0 or nAGQ=1 result.
'verbose = 1' monitors iteratin a bit; (verbose = 2 does more):
(gm1a <- glmer(cbind(incidence, size - incidence) ~ period + (1 | herd),

cbpp, binomial, verbose = 1, nAGQ = 9))

GLMM with individual-level variability (accounting for overdispersion)
For this data set the model is the same as one allowing for a period:herd
interaction, which the plot indicates could be needed.
cbpp$obs <- 1:nrow(cbpp)
(gm2 <- glmer(cbind(incidence, size - incidence) ~ period +

(1 | herd) + (1|obs),
family = binomial, data = cbpp))

anova(gm1,gm2)

glmer and glm log-likelihoods are consistent
gm1Devfun <- update(gm1,devFunOnly=TRUE)
gm0 <- glm(cbind(incidence, size - incidence) ~ period,

family = binomial, data = cbpp)
evaluate GLMM deviance at RE variance=theta=0, beta=(GLM coeffs)
gm1Dev0 <- gm1Devfun(c(0,coef(gm0)))
compare
stopifnot(all.equal(gm1Dev0,c(-2*logLik(gm0))))
the toenail oncholysis data from Backer et al 1998

glmer.nb 37

these data are notoriously difficult to fit
Not run:
if (require("HSAUR3")) {

gm2 <- glmer(outcome~treatment*visit+(1|patientID),
data=toenail,
family=binomial,nAGQ=20)

}

End(Not run)

glmer.nb Fitting Negative Binomial GLMMs

Description

Fits a generalized linear mixed-effects model (GLMM) for the negative binomial family, building
on glmer, and initializing via theta.ml from MASS.

Usage

glmer.nb(..., interval = log(th) + c(-3, 3),
tol = 5e-5, verbose = FALSE, nb.control = NULL,
initCtrl = list(limit = 20, eps = 2*tol, trace = verbose,

theta = NULL))

Arguments

... arguments as for glmer(.) such as formula, data, control, etc, but not family!

interval interval in which to start the optimization. The default is symmetric on log scale
around the initially estimated theta.

tol tolerance for the optimization via optimize.

verbose logical indicating how much progress information should be printed during
the optimization. Use verbose = 2 (or larger) to enable verbose=TRUE in the
glmer() calls.

nb.control optional list, like the output of glmerControl(), used in refit(*, control
= control.nb) during the optimization (control, if included in ..., will be
used in the initial-stage glmer(...,family=poisson) fit, and passed on to the
later optimization stages as well)

initCtrl (experimental, do not rely on this:) a list with named components as in the
default, passed to theta.ml (package MASS) for the initial value of the negative
binomial parameter theta. May also include a theta component, in which case
the initial estimation step is skipped

Value

An object of class glmerMod, for which many methods are available (e.g. methods(class="glmerMod")),
see glmer.

https://CRAN.R-project.org/package=MASS

38 glmerLaplaceHandle

Note

For historical reasons, the shape parameter of the negative binomial and the random effects param-
eters in our (G)LMM models are both called theta (θ), but are unrelated here.

The negative binomial θ can be extracted from a fit g <- glmer.nb() by getME(g, "glmer.nb.theta").

Parts of glmer.nb() are still experimental and methods are still missing or suboptimal. In particu-
lar, there is no inference available for the dispersion parameter θ, yet.

To fit a negative binomial model with known overdispersion parameter (e.g. as part of a model
comparison exercise, use glmer with the negative.binomial family from the MASS package, e.g.
glmer(...,family=MASS::negative.binomial(theta=1.75)).

See Also

glmer; from package MASS, negative.binomial (which we re-export currently) and theta.ml,
the latter for initialization of optimization.

The ‘Details’ of pnbinom for the definition of the negative binomial distribution.

Examples

set.seed(101)
dd <- expand.grid(f1 = factor(1:3),

f2 = LETTERS[1:2], g=1:9, rep=1:15,
KEEP.OUT.ATTRS=FALSE)

summary(mu <- 5*(-4 + with(dd, as.integer(f1) + 4*as.numeric(f2))))
dd$y <- rnbinom(nrow(dd), mu = mu, size = 0.5)
str(dd)
require("MASS")## and use its glm.nb() - as indeed we have zero random effect:
Not run:
m.glm <- glm.nb(y ~ f1*f2, data=dd, trace=TRUE)
summary(m.glm)
m.nb <- glmer.nb(y ~ f1*f2 + (1|g), data=dd, verbose=TRUE)
m.nb
The neg.binomial theta parameter:
getME(m.nb, "glmer.nb.theta")
LL <- logLik(m.nb)
mixed model has 1 additional parameter (RE variance)
stopifnot(attr(LL,"df")==attr(logLik(m.glm),"df")+1)
plot(m.nb, resid(.) ~ g)# works, as long as data 'dd' is found

End(Not run)

glmerLaplaceHandle Handle for glmerLaplace

Description

Handle for calling the glmerLaplace C++ function. Not intended for routine use.

https://CRAN.R-project.org/package=MASS

glmFamily 39

Usage

glmerLaplaceHandle(pp, resp, nAGQ, tol, maxit, verbose)

Arguments

pp merPredD object

resp lmResp object

nAGQ see glmer

tol tolerance

maxit maximum number of pwrss iterations

verbose display optimizer progress

Value

Value of the objective function

glmFamily Generator object for the glmFamily class

Description

The generator object for the glmFamily reference class. Such an object is primarily used through
its new method.

Usage

glmFamily(...)

Arguments

... Named argument (see Note below)

Methods

new(family=family) Create a new glmFamily object

Note

Arguments to the new method must be named arguments.

See Also

glmFamily

40 golden-class

glmFamily-class Class "glmFamily" - a reference class for family

Description

This class is a wrapper class for family objects specifying a distibution family and link function
for a generalized linear model (glm). The reference class contains an external pointer to a C++
object representing the class. For common families and link functions the functions in the family
are implemented in compiled code so they can be accessed from other compiled code and for a
speed boost.

Extends

All reference classes extend and inherit methods from "envRefClass".

Note

Objects from this reference class correspond to objects in a C++ class. Methods are invoked on
the C++ class using the external pointer in the Ptr field. When saving such an object the external
pointer is converted to a null pointer, which is why there is a redundant field ptr that is an active-
binding function returning the external pointer. If the Ptr field is a null pointer, the external pointer
is regenerated for the stored family field.

See Also

family, glmFamily

Examples

str(glmFamily$new(family=poisson()))

golden-class Class "golden" and Generator for Golden Search Optimizer Class

Description

"golden" is a reference class for a golden search scalar optimizer, for a parameter within an interval.

golden() is the generator for the "golden" class. The optimizer uses reverse communications.

Usage

golden(...)

Arguments

... (partly optional) arguments passed to new() must be named arguments. lower
and upper are the bounds for the scalar parameter; they must be finite.

GQdk 41

Extends

All reference classes extend and inherit methods from "envRefClass".

Examples

showClass("golden")

golden(lower= -100, upper= 1e100)

GQdk Sparse Gaussian / Gauss-Hermite Quadrature grid

Description

Generate the sparse multidimensional Gaussian quadrature grids.

Currently unused. See GHrule() for the version currently in use in package lme4.

Usage

GQdk(d = 1L, k = 1L)
GQN

Arguments

d integer scalar - the dimension of the function to be integrated with respect to the
standard d-dimensional Gaussian density.

k integer scalar - the order of the grid. A grid of order k provides an exact result
for a polynomial of total order of 2k - 1 or less.

Value

GQdk() returns a matrix with d + 1 columns. The first column is the weights and the remaining d
columns are the node coordinates.

GQN is a list of lists, containing the non-redundant quadrature nodes and weights for integration
of a scalar function of a d-dimensional argument with respect to the density function of the d-
dimensional Gaussian density function.
The outer list is indexed by the dimension, d, in the range of 1 to 20. The inner list is indexed by k,
the order of the quadrature.

Note

GQN contains only the non-redundant nodes. To regenerate the whole array of nodes, all possible
permutations of axes and all possible combinations of ±1 must be applied to the axes. This entire
array of nodes is exactly what GQdk() reproduces.

The number of nodes gets very large very quickly with increasing d and k. See the charts at http:
//www.sparse-grids.de.

http://www.sparse-grids.de
http://www.sparse-grids.de

42 grouseticks

Examples

GQdk(2,5) # 53 x 3

GQN[[3]][[5]] # a 14 x 4 matrix

grouseticks Data on red grouse ticks from Elston et al. 2001

Description

Number of ticks on the heads of red grouse chicks sampled in the field (grouseticks) and an
aggregated version (grouseticks_agg); see original source for more details

Usage

data(grouseticks)

Format

INDEX (factor) chick number (observation level)

TICKS number of ticks sampled

BROOD (factor) brood number

HEIGHT height above sea level (meters)

YEAR year (-1900)

LOCATION (factor) geographic location code

cHEIGHT centered height, derived from HEIGHT

meanTICKS mean number of ticks by brood

varTICKS variance of number of ticks by brood

Details

grouseticks_agg is just a brood-level aggregation of the data

Source

Robert Moss, via David Elston

References

Elston, D. A., R. Moss, T. Boulinier, C. Arrowsmith, and X. Lambin. 2001. "Analysis of Aggre-
gation, a Worked Example: Numbers of Ticks on Red Grouse Chicks." Parasitology 122 (05): 563-
569. doi:10.1017/S0031182001007740. http://journals.cambridge.org/action/displayAbstract?
fromPage=online&aid=82701.

http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=82701
http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=82701

hatvalues.merMod 43

Examples

if (interactive()) {
data(grouseticks)
Figure 1a from Elston et al
par(las=1,bty="l")
tvec <- c(0,1,2,5,20,40,80)
pvec <- c(4,1,3)
with(grouseticks_agg,plot(1+meanTICKS~HEIGHT,

pch=pvec[factor(YEAR)],
log="y",axes=FALSE,
xlab="Altitude (m)",
ylab="Brood mean ticks"))

axis(side=1)
axis(side=2,at=tvec+1,label=tvec)
box()
abline(v=405,lty=2)
Figure 1b
with(grouseticks_agg,plot(varTICKS~meanTICKS,

pch=4,
xlab="Brood mean ticks",
ylab="Within-brood variance"))

curve(1*x,from=0,to=70,add=TRUE)
Model fitting
form <- TICKS~YEAR+HEIGHT+(1|BROOD)+(1|INDEX)+(1|LOCATION)
(full_mod1 <- glmer(form, family="poisson",data=grouseticks))
}

hatvalues.merMod Diagonal elements of the hat matrix

Description

Returns the values on the diagonal of the hat matrix, which is the matrix that transforms the response
vector (minus any offset) into the fitted values (minus any offset). Note that this method should
only be used for linear mixed models. It is not clear if the hat matrix concept even makes sense for
generalized linear mixed models.

Usage

S3 method for class 'merMod'
hatvalues(model, fullHatMatrix = FALSE, ...)

Arguments

model An object of class merMod.

fullHatMatrix Return full hat matrix (not just diagonal values)?

... Not currently used

44 influence.merMod

Value

The diagonal elements of the hat matrix.

Examples

m <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy)
hatvalues(m)

influence.merMod Influence Diagnostics for Mixed-Effects Models

Description

These functions compute deletion influence diagnostics for linear (fit by lmer) and generalized lin-
ear mixed-effects models (fit by glmer). The main functions are methods for the influence generic
function. Other functions are provided for computing dfbeta, dfbetas, cooks.distance, and in-
fluence on variance-covariance components based on the objects computed by influence.merMod

Usage

S3 method for class 'merMod'
influence(model, groups, data, maxfun = 1000,

do.coef = TRUE, ncores = getOption("mc.cores",1), start, ...)
S3 method for class 'influence.merMod'
cooks.distance(model, ...)
S3 method for class 'influence.merMod'
dfbeta(model, which = c("fixed", "var.cov"), ...)
S3 method for class 'influence.merMod'
dfbetas(model, ...)

Arguments

model in the case of influence.merMod, a model of class "merMod"; in the case of
cooks.distance, dfbeta, or dfbetas, an object returned by influence.merMod

groups a character vector containing the name of a grouping factor or names of group-
ing factors; if more than one name is supplied, then groups are defined by all
combinations of levels of the grouping factors that appear in the data. If omit-
ted, then each individual row of the data matrix is treated as a "group" to be
deleted in turn.

data an optional data frame with the data to which model was fit; influence.merMod
can usually retrieve the data used to fit the model, unless it can’t be found in the
current environment, so it’s usually unnecessary to supply this argument.

maxfun The maximum number of function evaluations (for influence.merMod) to per-
form after deleting each group; the defaults are large enough so that the iterations
will typically continue to convergence. Setting to maxfun=20 for an lmer model

influence.merMod 45

or 100 for a glmer model will typically produce a faster reasonable approxima-
tion. An even smaller value can be used if interest is only in influence on the
fixed effects.

which if "fixed.effects" (the default), return influence on the fixed effects; if "var.cov",
return influence on the variance-covariance components.

do.coef if FALSE, skip potentially time-consuming computations, returning just a list
containing hat values.

ncores number of computational cores to use if run in parallel; directly passed to makeCluster()
from R’s parallel package.

start starting value for new fits (set to optimal values from original fit by default)

... ignored.

Details

influence.merMod start with the estimated variance-covariance components from model and then
refit the model omitting each group in turn, not necessarily iterating to completion. For example,
maxfun=20 takes up to 20 function evaluations step away from the ML or REML solution for the
full data, which usually provides decent approximations to the fully iterated estimates.

The other functions are methods for the dfbeta, dfbetas, and cooks.distance generics, to be ap-
plied to the "influence.merMod" object produced by the influence function; the dfbeta methods
can also return influence on the variance-covariance components.

Value

influence.merMod returns objects of class "influence.merMod", which contain the following
elements:

"fixed.effects" the estimated fixed effects for the model.

"fixed.effects[-groups]" a matrix with columns corresponding to the fixed-effects coefficients
and rows corresponding to groups, giving the estimated fixed effects with each group deleted
in turn; groups is formed from the name(s) of the grouping factor(s).

"var.cov.comps" the estimated variance-covariance parameters for the model.

"var.cov.comps[-groups]" a matrix with the estimated covariance parameters (in columns) with
each group deleted in turn.

"vcov" The estimated covariance matrix of the fixed-effects coefficients.

"vcov[-groups]" a list each of whose elements is the estimated covariance matrix of the fixed-
effects coefficients with one group deleted.

"groups" a character vector giving the names of the grouping factors.

"deleted" the possibly composite grouping factor, each of whose elements is deleted in turn.

"converged" for influence.merMod, a logical vector indicating whether the computation con-
verged for each group.

"function.evals" for influence.merMod, a vector of the number of function evaluations per-
formed for each group.

For plotting "influence.merMod" objects, see infIndexPlot.

46 InstEval

Author(s)

J. Fox <jfox@mcmaster.ca>

References

Fox, J. and Weisberg, S. (2019) An R Companion to Applied Regression, Third Edition, Sage.

See Also

infIndexPlot, influence.measures

Examples

if (interactive()) {
fm1 <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy)
inf_fm1 <- influence(fm1, "Subject")
if (require("car")) {

infIndexPlot(inf_fm1)
}
dfbeta(inf_fm1)
dfbetas(inf_fm1)
gm1 <- glmer(cbind(incidence, size - incidence) ~ period + (1 | herd),

data = cbpp, family = binomial)
inf_gm1 <- influence(gm1, "herd", maxfun=100)
gm1.11 <- update(gm1, subset = herd != 11) # check deleting herd 11
if (require("car")) {
infIndexPlot(inf_gm1)
compareCoefs(gm1, gm1.11)

}
if(packageVersion("car") >= "3.0.10") {

dfbeta(inf_gm1)
dfbetas(inf_gm1)

}
}

InstEval University Lecture/Instructor Evaluations by Students at ETH

Description

University lecture evaluations by students at ETH Zurich, anonymized for privacy protection. This
is an interesting “medium” sized example of a partially nested mixed effect model.

Format

A data frame with 73421 observations on the following 7 variables.

s a factor with levels 1:2972 denoting individual students.

d a factor with 1128 levels from 1:2160, denoting individual professors or lecturers.

isNested 47

studage an ordered factor with levels 2 < 4 < 6 < 8, denoting student’s “age” measured in the
semester number the student has been enrolled.

lectage an ordered factor with 6 levels, 1 < 2 < ... < 6, measuring how many semesters back the
lecture rated had taken place.

service a binary factor with levels 0 and 1; a lecture is a “service”, if held for a different depart-
ment than the lecturer’s main one.

dept a factor with 14 levels from 1:15, using a random code for the department of the lecture.

y a numeric vector of ratings of lectures by the students, using the discrete scale 1:5, with meanings
of ‘poor’ to ‘very good’.

Each observation is one student’s rating for a specific lecture (of one lecturer, during one semester
in the past).

Details

The main goal of the survey is to find “the best liked prof”, according to the lectures given. Statis-
tical analysis of such data has been the basis for a (student) jury selecting the final winners.

The present data set has been anonymized and slightly simplified on purpose.

Examples

str(InstEval)

head(InstEval, 16)
xtabs(~ service + dept, InstEval)

isNested Is f1 nested within f2?

Description

Does every level of f1 occur in conjunction with exactly one level of f2? The function is based on
converting a triplet sparse matrix to a compressed column-oriented form in which the nesting can
be quickly evaluated.

Usage

isNested(f1, f2)

Arguments

f1 factor 1

f2 factor 2

48 isREML

Value

TRUE if factor 1 is nested within factor 2

Examples

with(Pastes, isNested(cask, batch)) ## => FALSE
with(Pastes, isNested(sample, batch)) ## => TRUE

isREML Check characteristics of models

Description

Check characteristics of models: whether a model fit corresponds to a linear (LMM), generalized
linear (GLMM), or nonlinear (NLMM) mixed model, and whether a linear mixed model has been
fitted by REML or not (isREML(x) is always FALSE for GLMMs and NLMMs).

Usage

isREML(x, ...)

isLMM(x, ...)

isNLMM(x, ...)

isGLMM(x, ...)

Arguments

x a fitted model.

... additional, optional arguments. (None are used in the merMod methods)

Details

These are generic functions. At present the only methods are for mixed-effects models of class
merMod.

Value

a logical value

See Also

getME

isSingular 49

Examples

fm1 <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy)
gm1 <- glmer(cbind(incidence, size - incidence) ~ period + (1 | herd),

data = cbpp, family = binomial)
nm1 <- nlmer(circumference ~ SSlogis(age, Asym, xmid, scal) ~ Asym|Tree,

Orange, start = c(Asym = 200, xmid = 725, scal = 350))

isLMM(fm1)
isGLMM(gm1)
check all :
is.MM <- function(x) c(LMM = isLMM(x), GLMM= isGLMM(x), NLMM= isNLMM(x))
stopifnot(cbind(is.MM(fm1), is.MM(gm1), is.MM(nm1))

== diag(rep(TRUE,3)))

isSingular Test Fitted Model for (Near) Singularity

Description

Evaluates whether a fitted mixed model is (almost / near) singular, i.e., the parameters are on the
boundary of the feasible parameter space: variances of one or more linear combinations of effects
are (close to) zero.

Usage

isSingular(x, tol = 1e-4)

Arguments

x a fitted merMod object (result of lmer or glmer).

tol numerical tolerance for detecting singularity.

Details

Complex mixed-effect models (i.e., those with a large number of variance-covariance parameters)
frequently result in singular fits, i.e. estimated variance-covariance matrices with less than full
rank. Less technically, this means that some "dimensions" of the variance-covariance matrix have
been estimated as exactly zero. For scalar random effects such as intercept-only models, or 2-
dimensional random effects such as intercept+slope models, singularity is relatively easy to detect
because it leads to random-effect variance estimates of (nearly) zero, or estimates of correlations
that are (almost) exactly -1 or 1. However, for more complex models (variance-covariance matrices
of dimension >=3) singularity can be hard to detect; models can often be singular without any of
their individual variances being close to zero or correlations being close to +/-1.

This function performs a simple test to determine whether any of the random effects covariance
matrices of a fitted model are singular. The rePCA method provides more detail about the singularity
pattern, showing the standard deviations of orthogonal variance components and the mapping from
variance terms in the model to orthogonal components (i.e., eigenvector/rotation matrices).

50 isSingular

While singular models are statistically well defined (it is theoretically sensible for the true maximum
likelihood estimate to correspond to a singular fit), there are real concerns that (1) singular fits
correspond to overfitted models that may have poor power; (2) chances of numerical problems
and mis-convergence are higher for singular models (e.g. it may be computationally difficult to
compute profile confidence intervals for such models); (3) standard inferential procedures such as
Wald statistics and likelihood ratio tests may be inappropriate.

There is not yet consensus about how to deal with singularity, or more generally to choose which
random-effects specification (from a range of choices of varying complexity) to use. Some propos-
als include:

• avoid fitting overly complex models in the first place, i.e. design experiments/restrict models
a priori such that the variance-covariance matrices can be estimated precisely enough to avoid
singularity (Matuschek et al 2017)

• use some form of model selection to choose a model that balances predictive accuracy and
overfitting/type I error (Bates et al 2015, Matuschek et al 2017)

• “keep it maximal”, i.e. fit the most complex model consistent with the experimental design,
removing only terms required to allow a non-singular fit (Barr et al. 2013), or removing further
terms based on p-values or AIC

• use a partially Bayesian method that produces maximum a posteriori (MAP) estimates using
regularizing priors to force the estimated random-effects variance-covariance matrices away
from singularity (Chung et al 2013, blme package)

• use a fully Bayesian method that both regularizes the model via informative priors and gives
estimates and credible intervals for all parameters that average over the uncertainty in the
random effects parameters (Gelman and Hill 2006, McElreath 2015; MCMCglmm, rstanarm
and brms packages)

Value

a logical value

References

Dale J. Barr, Roger Levy, Christoph Scheepers, and Harry J. Tily (2013). Random effects structure
for confirmatory hypothesis testing: Keep it maximal; Journal of Memory and Language 68(3),
255–278.

Douglas Bates, Reinhold Kliegl, Shravan Vasishth, and Harald Baayen (2015). Parsimonious Mixed
Models; preprint (https://arxiv.org/abs/1506.04967).

Yeojin Chung, Sophia Rabe-Hesketh, Vincent Dorie, Andrew Gelman, and Jingchen Liu (2013).
A nondegenerate penalized likelihood estimator for variance parameters in multilevel models; Psy-
chometrika 78, 685–709; doi:10.1007/S1133601393282.

Andrew Gelman and Jennifer Hill (2006). Data Analysis Using Regression and Multilevel/Hierarchical
Models. Cambridge University Press.

Hannes Matuschek, Reinhold Kliegl, Shravan Vasishth, Harald Baayen, and Douglas Bates (2017).
Balancing type I error and power in linear mixed models. Journal of Memory and Language 94,
305–315.

Richard McElreath (2015) Statistical Rethinking: A Bayesian Course with Examples in R and Stan.
Chapman and Hall/CRC.

https://CRAN.R-project.org/package=blme
https://CRAN.R-project.org/package=MCMCglmm
https://CRAN.R-project.org/package=rstanarm
https://CRAN.R-project.org/package=brms
https://arxiv.org/abs/1506.04967
https://doi.org/10.1007/S11336-013-9328-2

lme4_testlevel 51

See Also

getME, rePCA

lme4_testlevel Detect testing level for lme4 examples and tests

Description

Reads the environment variable LME4_TEST_LEVEL to determine which tests and examples to run

Usage

lme4_testlevel()

Value

a numeric value: 1 for standard/’light’ testing, larger values for more testing. Defaults to 1 if the
environment variable is not set.

lmer Fit Linear Mixed-Effects Models

Description

Fit a linear mixed-effects model (LMM) to data, via REML or maximum likelihood.

Usage

lmer(formula, data = NULL, REML = TRUE, control = lmerControl(),
start = NULL, verbose = 0L, subset, weights, na.action,
offset, contrasts = NULL, devFunOnly = FALSE)

Arguments

formula a two-sided linear formula object describing both the fixed-effects and random-
effects part of the model, with the response on the left of a ~ operator and the
terms, separated by + operators, on the right. Random-effects terms are dis-
tinguished by vertical bars (|) separating expressions for design matrices from
grouping factors. Two vertical bars (||) can be used to specify multiple uncor-
related random effects for the same grouping variable. (Because of the way it is
implemented, the ||-syntax works only for design matrices containing numeric
(continuous) predictors; to fit models with independent categorical effects, see
dummy or the lmer_alt function from the afex package.)

https://CRAN.R-project.org/package=afex

52 lmer

data an optional data frame containing the variables named in formula. By default
the variables are taken from the environment from which lmer is called. While
data is optional, the package authors strongly recommend its use, especially
when later applying methods such as update and drop1 to the fitted model
(such methods are not guaranteed to work properly if data is omitted). If data
is omitted, variables will be taken from the environment of formula (if specified
as a formula) or from the parent frame (if specified as a character vector).

REML logical scalar - Should the estimates be chosen to optimize the REML criterion
(as opposed to the log-likelihood)?

control a list (of correct class, resulting from lmerControl() or glmerControl() re-
spectively) containing control parameters, including the nonlinear optimizer to
be used and parameters to be passed through to the nonlinear optimizer, see the
*lmerControl documentation for details.

start a named list of starting values for the parameters in the model. For lmer this
can be a numeric vector or a list with one component named "theta".

verbose integer scalar. If > 0 verbose output is generated during the optimization of the
parameter estimates. If > 1 verbose output is generated during the individual
penalized iteratively reweighted least squares (PIRLS) steps.

subset an optional expression indicating the subset of the rows of data that should be
used in the fit. This can be a logical vector, or a numeric vector indicating which
observation numbers are to be included, or a character vector of the row names
to be included. All observations are included by default.

weights an optional vector of ‘prior weights’ to be used in the fitting process. Should
be NULL or a numeric vector. Prior weights are not normalized or standardized
in any way. In particular, the diagonal of the residual covariance matrix is the
squared residual standard deviation parameter sigma times the vector of inverse
weights. Therefore, if the weights have relatively large magnitudes, then in
order to compensate, the sigma parameter will also need to have a relatively
large magnitude.

na.action a function that indicates what should happen when the data contain NAs. The de-
fault action (na.omit, inherited from the ’factory fresh’ value of getOption("na.action"))
strips any observations with any missing values in any variables.

offset this can be used to specify an a priori known component to be included in the
linear predictor during fitting. This should be NULL or a numeric vector of length
equal to the number of cases. One or more offset terms can be included in the
formula instead or as well, and if more than one is specified their sum is used.
See model.offset.

contrasts an optional list. See the contrasts.arg of model.matrix.default.
devFunOnly logical - return only the deviance evaluation function. Note that because the

deviance function operates on variables stored in its environment, it may not
return exactly the same values on subsequent calls (but the results should always
be within machine tolerance).

Details

• If the formula argument is specified as a character vector, the function will attempt to coerce
it to a formula. However, this is not recommended (users who want to construct formulas by

lmer 53

pasting together components are advised to use as.formula or reformulate); model fits will
work but subsequent methods such as drop1, update may fail.

• When handling perfectly collinear predictor variables (i.e. design matrices of less than full
rank), [gn]lmer is not quite as sophisticated as some simpler modeling frameworks such
as lm and glm. While it does automatically drop collinear variables (with a message rather
than a warning), it does not automatically fill in NA values for the dropped coefficients; these
can be added via fixef(fitted.model,add.dropped=TRUE). This information can also be
retrieved via attr(getME(fitted.model,"X"),"col.dropped").

• the deviance function returned when devFunOnly is TRUE takes a single numeric vector ar-
gument, representing the theta vector. This vector defines the scaled variance-covariance
matrices of the random effects, in the Cholesky parameterization. For models with only sim-
ple (intercept-only) random effects, theta is a vector of the standard deviations of the random
effects. For more complex or multiple random effects, running getME(.,"theta") to retrieve
the theta vector for a fitted model and examining the names of the vector is probably the
easiest way to determine the correspondence between the elements of the theta vector and
elements of the lower triangles of the Cholesky factors of the random effects.

Value

An object of class merMod (more specifically, an object of subclass lmerMod), for which many
methods are available (e.g. methods(class="merMod"))

Note

In earlier version of the lme4 package, a method argument was used. Its functionality has been
replaced by the REML argument.

Also, lmer(.) allowed a family argument (to effectively switch to glmer(.)). This has been
deprecated in summer 2013, and been disabled in spring 2019.

See Also

lm for linear models; glmer for generalized linear; and nlmer for nonlinear mixed models.

Examples

linear mixed models - reference values from older code
(fm1 <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy))
summary(fm1)# (with its own print method; see class?merMod % ./merMod-class.Rd

str(terms(fm1))
stopifnot(identical(terms(fm1, fixed.only=FALSE),

terms(model.frame(fm1))))
attr(terms(fm1, FALSE), "dataClasses") # fixed.only=FALSE needed for dataCl.

Maximum Likelihood (ML), and "monitor" iterations via 'verbose':
fm1_ML <- update(fm1, REML=FALSE, verbose = 1)
(fm2 <- lmer(Reaction ~ Days + (Days || Subject), sleepstudy))
anova(fm1, fm2)
sm2 <- summary(fm2)
print(fm2, digits=7, ranef.comp="Var") # the print.merMod() method

54 lmerControl

print(sm2, digits=3, corr=FALSE) # the print.summary.merMod() method

(vv <- vcov.merMod(fm2, corr=TRUE))
as(vv, "corMatrix")# extracts the ("hidden") 'correlation' entry in @factors

Fit sex-specific variances by constructing numeric dummy variables
for sex and sex:age; in this case the estimated variance differences
between groups in both intercept and slope are zero ...
data(Orthodont,package="nlme")
Orthodont$nsex <- as.numeric(Orthodont$Sex=="Male")
Orthodont$nsexage <- with(Orthodont, nsex*age)
lmer(distance ~ age + (age|Subject) + (0+nsex|Subject) +

(0 + nsexage|Subject), data=Orthodont)

lmerControl Control of Mixed Model Fitting

Description

Construct control structures for mixed model fitting. All arguments have defaults, and can be
grouped into

• general control parameters, most importantly optimizer, further restart_edge, etc;

• model- or data-checking specifications, in short “checking options”, such as check.nobs.vs.rankZ,
or check.rankX (currently not for nlmerControl);

• all the parameters to be passed to the optimizer, e.g., maximal number of iterations, passed via
the optCtrl list argument.

Usage

lmerControl(optimizer = "nloptwrap",

restart_edge = TRUE,
boundary.tol = 1e-5,
calc.derivs = TRUE,
use.last.params = FALSE,
sparseX = FALSE,
standardize.X = FALSE,
input checking options
check.nobs.vs.rankZ = "ignore",
check.nobs.vs.nlev = "stop",
check.nlev.gtreq.5 = "ignore",
check.nlev.gtr.1 = "stop",
check.nobs.vs.nRE= "stop",
check.rankX = c("message+drop.cols", "silent.drop.cols", "warn+drop.cols",

"stop.deficient", "ignore"),
check.scaleX = c("warning","stop","silent.rescale",

"message+rescale","warn+rescale","ignore"),

lmerControl 55

check.formula.LHS = "stop",
convergence checking options
check.conv.grad = .makeCC("warning", tol = 2e-3, relTol = NULL),

check.conv.singular = .makeCC(action = "message", tol = formals(isSingular)$tol),
check.conv.hess = .makeCC(action = "warning", tol = 1e-6),
optimizer args
optCtrl = list(),
mod.type = "lmer"

)

glmerControl(optimizer = c("bobyqa", "Nelder_Mead"),
restart_edge = FALSE,
boundary.tol = 1e-5,
calc.derivs = TRUE,
use.last.params = FALSE,
sparseX = FALSE,
standardize.X = FALSE,
input checking options
check.nobs.vs.rankZ = "ignore",
check.nobs.vs.nlev = "stop",
check.nlev.gtreq.5 = "ignore",
check.nlev.gtr.1 = "stop",
check.nobs.vs.nRE= "stop",
check.rankX = c("message+drop.cols", "silent.drop.cols", "warn+drop.cols",

"stop.deficient", "ignore"),
check.scaleX = c("warning","stop","silent.rescale",

"message+rescale","warn+rescale","ignore"),
check.formula.LHS = "stop",
convergence checking options
check.conv.grad = .makeCC("warning", tol = 2e-3, relTol = NULL),

check.conv.singular = .makeCC(action = "message", tol = formals(isSingular)$tol),
check.conv.hess = .makeCC(action = "warning", tol = 1e-6),
optimizer args
optCtrl = list(),
mod.type = "glmer",
tolPwrss = 1e-7,
compDev = TRUE,
nAGQ0initStep = TRUE,
check.response.not.const = "stop"

)

nlmerControl(optimizer = "Nelder_Mead", tolPwrss = 1e-10,
optCtrl = list())

.makeCC(action, tol, relTol, ...)

56 lmerControl

Arguments

optimizer character - name of optimizing function(s). A character vector or list of func-
tions: length 1 for lmer or glmer, possibly length 2 for glmer). Built-in optimiz-
ers are "Nelder_Mead", "bobyqa" (from the minqa package), "nlminbwrap"
(using base R’s nlminb) and the default for lmerControl(), "nloptwrap".
Any minimizing function that allows box constraints can be used provided that
it

(1) takes input parameters fn (function to be optimized), par (starting param-
eter values), lower and upper (parameter bounds) and control (control
parameters, passed through from the control argument) and

(2) returns a list with (at least) elements par (best-fit parameters), fval (best-fit
function value), conv (convergence code, equal to zero for successful con-
vergence) and (optionally) message (informational message, or explanation
of convergence failure).

Special provisions are made for bobyqa, Nelder_Mead, and optimizers wrapped
in the optimx package; to use the optimx optimizers (including L-BFGS-B from
base optim and nlminb), pass the method argument to optim in the optCtrl ar-
gument (you may need to load the optimx package manually using library(optimx)).
For glmer, if length(optimizer)==2, the first element will be used for the
preliminary (random effects parameters only) optimization, while the second
will be used for the final (random effects plus fixed effect parameters) phase.
See modular for more information on these two phases.
If optimizer is NULL (at present for lmer only), all of the model structures will
be set up, but no optimization will be done (e.g. parameters will all be returned
as NA).

calc.derivs logical - compute gradient and Hessian of nonlinear optimization solution?
use.last.params

logical - should the last value of the parameters evaluated (TRUE), rather than the
value of the parameters corresponding to the minimum deviance, be returned?
This is a "backward bug-compatibility" option; use TRUE only when trying to
match previous results.

sparseX logical - should a sparse model matrix be used for the fixed-effects terms? Cur-
rently inactive.

restart_edge logical - should the optimizer attempt a restart when it finds a solution at the
boundary (i.e. zero random-effect variances or perfect +/-1 correlations)? (Cur-
rently only implemented for lmerControl.)

boundary.tol numeric - within what distance of a boundary should the boundary be checked
for a better fit? (Set to zero to disable boundary checking.)

tolPwrss numeric scalar - the tolerance for declaring convergence in the penalized itera-
tively weighted residual sum-of-squares step.

compDev logical scalar - should compiled code be used for the deviance evaluation during
the optimization of the parameter estimates?

nAGQ0initStep Run an initial optimization phase with nAGQ = 0. While the initial optimization
usually provides a good starting point for subsequent fitting (thus increasing
overall computational speed), setting this option to FALSE can be useful in cases

https://CRAN.R-project.org/package=minqa
https://CRAN.R-project.org/package=optimx

lmerControl 57

where the initial phase results in bad fixed-effect estimates (seen most often in
binomial models with link="cloglog" and offsets).

check.nlev.gtreq.5

character - rules for checking whether all random effects have >= 5 levels. See
action.

check.nlev.gtr.1

character - rules for checking whether all random effects have > 1 level. See
action.

check.nobs.vs.rankZ

character - rules for checking whether the number of observations is greater than
(or greater than or equal to) the rank of the random effects design matrix (Z),
usually necessary for identifiable variances. As for action, with the addition of
"warningSmall" and "stopSmall", which run the test only if the dimensions
of Z are < 1e6. nobs > rank(Z) will be tested for LMMs and GLMMs with
estimated scale parameters; nobs >= rank(Z) will be tested for GLMMs with
fixed scale parameter. The rank test is done using the method="qr" option of
the rankMatrix function.

check.nobs.vs.nlev

character - rules for checking whether the number of observations is less than
(or less than or equal to) the number of levels of every grouping factor, usually
necessary for identifiable variances. As for action. nobs<nlevels will be
tested for LMMs and GLMMs with estimated scale parameters; nobs<=nlevels
will be tested for GLMMs with fixed scale parameter.

check.nobs.vs.nRE

character - rules for checking whether the number of observations is greater than
(or greater than or equal to) the number of random-effects levels for each term,
usually necessary for identifiable variances. As for check.nobs.vs.nlev.

check.conv.grad

rules for checking the gradient of the deviance function for convergence. A list
as returned by .makeCC, or a character string with only the action.

check.conv.singular

rules for checking for a singular fit, i.e. one where some parameters are on the
boundary of the feasible space (for example, random effects variances equal to 0
or correlations between random effects equal to +/- 1.0); as for check.conv.grad
above. The default is to use isSingular(.., tol = *)’s default.

check.conv.hess

rules for checking the Hessian of the deviance function for convergence.; as for
check.conv.grad above.

check.rankX character - specifying if rankMatrix(X) should be compared with ncol(X) and
if columns from the design matrix should possibly be dropped to ensure that
it has full rank. Sometimes needed to make the model identifiable. The op-
tions can be abbreviated; the three "*.drop.cols" options all do drop columns,
"stop.deficient" gives an error when the rank is smaller than the number of
columns where "ignore" does no rank computation, and will typically lead to
less easily understandable errors, later.

check.scaleX character - check for problematic scaling of columns of fixed-effect model ma-
trix, e.g. parameters measured on very different scales.

58 lmerControl

check.formula.LHS

check whether specified formula has a left-hand side. Primarily for internal use
within simulate.merMod; use at your own risk as it may allow the generation
of unstable merMod objects

check.response.not.const

character - check that the response is not constant.

optCtrl a list of additional arguments to be passed to the nonlinear optimizer (see
Nelder_Mead, bobyqa). In particular, both Nelder_Mead and bobyqa use maxfun
to specify the maximum number of function evaluations they will try before giv-
ing up - in contrast to optim and optimx-wrapped optimizers, which use maxit.
(Also see convergence for details of stopping tolerances for different optimiz-
ers.)
Note: All of lmer(), glmer() and nlmer() have an optional integer argument
verbose which you should raise (to a positive value) in order to get diagnostic
console output about the optimization progress.

action character - generic choices for the severity level of any test, with possible values

"ignore": skip the test.
"warning": warn if test fails.
"message": print a message if test fails.
"stop": throw an error if test fails.

tol (numeric) tolerance for checking the gradient, scaled relative to the curvature
(i.e., testing the gradient on a scale defined by its Wald standard deviation)

relTol (numeric) tolerance for the gradient, scaled relative to the magnitude of the es-
timated coefficient

mod.type model type (for internal use)

standardize.X scale columns of X matrix? (not yet implemented)

... other elements to include in check specification

Details

Note that (only!) the pre-fitting “checking options” (i.e., all those starting with "check." but not
including the convergence checks ("check.conv.*") or rank-checking ("check.rank*") options)
may also be set globally via options. In that case, (g)lmerControl will use them rather than the
default values, but will not override values that are passed as explicit arguments.

For example, options(lmerControl=list(check.nobs.vs.rankZ = "ignore")) will suppress
warnings that the number of observations is less than the rank of the random effects model matrix
Z.

Value

The *Control functions return a list (inheriting from class "merControl") containing

1. general control parameters, such as optimizer, restart_edge;

2. (currently not for nlmerControl:) "checkControl", a list of data-checking specifications,
e.g., check.nobs.vs.rankZ;

lmerControl 59

3. parameters to be passed to the optimizer, i.e., the optCtrl list, which may contain maxiter.

.makeCC returns a list containing the check specification (action, tolerance, and optionally relative
tolerance).

See Also

convergence and allFit() which fits for a couple of optimizers; nloptwrap for the lmerControl()
default optimizer.

Examples

str(lmerControl())
str(glmerControl())
fit with default algorithm [nloptr version of BOBYQA] ...
fm0 <- lmer(Reaction ~ Days + (1 | Subject), sleepstudy)
fm1 <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy)
or with "bobyqa" (default 2013 - 2019-02) ...
fm1_bobyqa <- update(fm1, control = lmerControl(optimizer="bobyqa"))
or with "Nelder_Mead" (the default till 2013) ...
fm1_NMead <- update(fm1, control = lmerControl(optimizer="Nelder_Mead"))
or with the nlminb function used in older (<1.0) versions of lme4;
this will usually replicate older results
if (require(optimx)) {

fm1_nlminb <- update(fm1,
control = lmerControl(optimizer= "optimx",

optCtrl = list(method="nlminb")))
The other option here is method="L-BFGS-B".

}

Or we can wrap base::optim():
optimwrap <- function(fn,par,lower,upper,control=list(),

...) {
if (is.null(control$method)) stop("must specify method in optCtrl")
method <- control$method
control$method <- NULL
"Brent" requires finite upper values (lower bound will always
be zero in this case)
if (method=="Brent") upper <- pmin(1e4,upper)
res <- optim(par=par, fn=fn, lower=lower,upper=upper,

control=control,method=method,...)
with(res, list(par = par,

fval = value,
feval= counts[1],
conv = convergence,
message = message))

}
fm0_brent <- update(fm0,

control = lmerControl(optimizer = "optimwrap",
optCtrl = list(method="Brent")))

You can also use functions (in addition to the lmerControl() default "NLOPT_BOBYQA")
from the 'nloptr' package, see also '?nloptwrap' :

60 lmList

if (require(nloptr)) {
fm1_nloptr_NM <- update(fm1, control=lmerControl(optimizer="nloptwrap",

optCtrl=list(algorithm="NLOPT_LN_NELDERMEAD")))
fm1_nloptr_COBYLA <- update(fm1, control=lmerControl(optimizer="nloptwrap",

optCtrl=list(algorithm="NLOPT_LN_COBYLA",
xtol_rel=1e-6,
xtol_abs=1e-10,
ftol_abs=1e-10)))

}
other algorithm options include NLOPT_LN_SBPLX

lmList Fit List of lm or glm Objects with a Common Model

Description

Fit a list of lm or glm objects with a common model for different subgroups of the data.

Usage

lmList(formula, data, family, subset, weights, na.action,
offset, pool = !isGLM || .hasScale(family2char(family)),
warn = TRUE, ...)

Arguments

formula a linear formula object of the form y ~ x1+...+xn | g. In the formula object,
y represents the response, x1,...,xn the covariates, and g the grouping factor
specifying the partitioning of the data according to which different lm fits should
be performed.

family an optional family specification for a generalized linear model (glm).
data an optional data frame containing the variables named in formula. By default

the variables are taken from the environment from which lmer is called. See
Details.

subset an optional expression indicating the subset of the rows of data that should be
used in the fit. This can be a logical vector, or a numeric vector indicating which
observation numbers are to be included, or a character vector of the row names
to be included. All observations are included by default.

weights an optional vector of ‘prior weights’ to be used in the fitting process. Should be
NULL or a numeric vector.

na.action a function that indicates what should happen when the data contain NAs. The de-
fault action (na.omit, inherited from the ‘factory fresh’ value of getOption("na.action"))
strips any observations with any missing values in any variables.

offset this can be used to specify an a priori known component to be included in the
linear predictor during fitting. This should be NULL or a numeric vector of length
equal to the number of cases. One or more offset terms can be included in the
formula instead or as well, and if more than one is specified their sum is used.
See model.offset.

lmList4-class 61

pool logical scalar indicating if the variance estimate should pool the residual sums
of squares. By default true if the model has a scale parameter (which includes
all linear, lmer(), ones).

warn indicating if errors in the single fits should signal a “summary” warning.

... additional, optional arguments to be passed to the model function or family eval-
uation.

Details

• While data is optional, the package authors strongly recommend its use, especially when
later applying methods such as update and drop1 to the fitted model (such methods are not
guaranteed to work properly if data is omitted). If data is omitted, variables will be taken
from the environment of formula (if specified as a formula) or from the parent frame (if
specified as a character vector).

• Since lme4 version 1.1-16, if there are errors (see stop) in the single (lm() or glm()) fits,
they are summarized to a warning message which is returned as attribute "warnMessage" and
signalled as warning() when the warn argument is true.
In previous lme4 versions, a general (different) warning had been signalled in this case.

Value

an object of class lmList4 (see there, notably for the methods defined).

See Also

lmList4

Examples

fm.plm <- lmList(Reaction ~ Days | Subject, sleepstudy)
coef(fm.plm)
fm.2 <- update(fm.plm, pool = FALSE)
coefficients are the same, "pooled or unpooled":
stopifnot(all.equal(coef(fm.2), coef(fm.plm)))

(ci <- confint(fm.plm)) # print and rather *see* :
plot(ci) # how widely they vary for the individuals

lmList4-class Class "lmList4" of ’lm’ Objects on Common Model

Description

Class "lmList4" is an S4 class with basically a list of objects of class lm with a common model
(but different data); see lmList() which returns these.

Package nlme’s lmList() returns objects of S3 class "lmList" and provides methods for them, on
which our methods partly build.

62 lmResp

Objects from the Class

Objects can be created by calls of the form new("lmList4", ...) or, more commonly, by a call to
lmList().

Methods

A dozen methods are provided. Currently, S4 methods for show, coercion (as(.,.)) and others
inherited via "list", and S3 methods for coef, confint, fitted, fixef, formula, logLik, pairs,
plot, predict, print, qqnorm, ranef, residuals, sigma, summary, and update.

sigma(object) returns the standard deviation σ̂ (of the errors in the linear models), assuming a
common variance σ2 by pooling (even when pool = FALSE was used in the fit).

See Also

lmList

Examples

if(getRversion() >= "3.2.0") {
(mm <- methods(class = "lmList4"))
The S3 ("not S4") ones :
mm[!attr(mm,"info")[,"isS4"]]

}
For more examples: example(lmList) i.e., ?lmList

lmResp Generator objects for the response classes

Description

The generator objects for the lmResp, lmerResp, glmResp and nlsResp reference classes. Such
objects are primarily used through their new methods.

Usage

lmResp(...)

Arguments

... List of arguments (see Note).

Methods

new(y=y): Create a new lmResp or lmerResp object.

new(family=family, y=y): Create a new glmResp object.

new(y=y, nlmod=nlmod, nlenv=nlenv, pnames=pnames, gam=gam): Create a new nlsResp ob-
ject.

lmResp-class 63

Note

Arguments to the new methods must be named arguments.

y the numeric response vector

family a family object

nlmod the nonlinear model function

nlenv an environment holding data objects for evaluation of nlmod

pnames a character vector of parameter names

gam a numeric vector - the initial linear predictor

See Also

lmResp, lmerResp, glmResp, nlsResp

lmResp-class Reference Classes for Response Modules,
"(lm|glm|nls|lmer)Resp"

Description

Reference classes for response modules, including linear models, "lmResp", generalized linear
models, "glmResp", nonlinear models, "nlsResp" and linear mixed-effects models, "lmerResp".
Each reference class is associated with a C++ class of the same name. As is customary, the generator
object for each class has the same name as the class.

Extends

All reference classes extend and inherit methods from "envRefClass". Furthermore, "glmResp",
"nlsResp" and "lmerResp" all extend the "lmResp" class.

Note

Objects from these reference classes correspond to objects in C++ classes. Methods are invoked
on the C++ classes using the external pointer in the ptr field. When saving such an object the
external pointer is converted to a null pointer, which is why there are redundant fields containing
enough information as R objects to be able to regenerate the C++ object. The convention is that a
field whose name begins with an upper-case letter is an R object and the corresponding field whose
name begins with the lower-case letter is a method. Access to the external pointer should be through
the method, not through the field.

See Also

lmer, glmer, nlmer, merMod.

64 merMod-class

Examples

showClass("lmResp")
str(lmResp$new(y=1:4))
showClass("glmResp")
str(glmResp$new(family=poisson(), y=1:4))
showClass("nlsResp")
showClass("lmerResp")
str(lmerResp$new(y=1:4))

merMod-class Class "merMod" of Fitted Mixed-Effect Models

Description

A mixed-effects model is represented as a merPredD object and a response module of a class that
inherits from class lmResp. A model with a lmerResp response has class lmerMod; a glmResp
response has class glmerMod; and a nlsResp response has class nlmerMod.

Usage

S3 method for class 'merMod'
anova(object, ..., refit = TRUE, model.names=NULL)
S3 method for class 'merMod'
as.function(x, ...)
S3 method for class 'merMod'
coef(object, ...)
S3 method for class 'merMod'
deviance(object, REML = NULL, ...)
REMLcrit(object)
S3 method for class 'merMod'
extractAIC(fit, scale = 0, k = 2, ...)
S3 method for class 'merMod'
family(object, ...)
S3 method for class 'merMod'
formula(x, fixed.only = FALSE, random.only = FALSE, ...)
S3 method for class 'merMod'
fitted(object, ...)
S3 method for class 'merMod'
logLik(object, REML = NULL, ...)
S3 method for class 'merMod'
nobs(object, ...)
S3 method for class 'merMod'
ngrps(object, ...)
S3 method for class 'merMod'
terms(x, fixed.only = TRUE, random.only = FALSE, ...)
S3 method for class 'merMod'
vcov(object, correlation = TRUE, sigm = sigma(object),

merMod-class 65

use.hessian = NULL, ...)
S3 method for class 'merMod'
model.frame(formula, fixed.only = FALSE, ...)
S3 method for class 'merMod'
model.matrix(object, type = c("fixed", "random", "randomListRaw"), ...)
S3 method for class 'merMod'
print(x, digits = max(3, getOption("digits") - 3),

correlation = NULL, symbolic.cor = FALSE,
signif.stars = getOption("show.signif.stars"),
ranef.comp = "Std.Dev.",
ranef.corr = any(ranef.comp == "Std.Dev."), ...)

S3 method for class 'merMod'
summary(object, correlation = , use.hessian = NULL, ...)
S3 method for class 'summary.merMod'
print(x, digits = max(3, getOption("digits") - 3),

correlation = NULL, symbolic.cor = FALSE,
signif.stars = getOption("show.signif.stars"),
ranef.comp = c("Variance", "Std.Dev."),
ranef.corr = any(ranef.comp == "Std.Dev."), show.resids = TRUE, ...)

S3 method for class 'merMod'
update(object, formula., ..., evaluate = TRUE)
S3 method for class 'merMod'
weights(object, type = c("prior", "working"), ...)

Arguments

object an R object of class merMod, i.e., as resulting from lmer(), or glmer(), etc.

x an R object of class merMod or summary.merMod, respectively, the latter result-
ing from summary(<merMod>).

fit an R object of class merMod.

formula in the case of model.frame, a merMod object.

refit logical indicating if objects of class lmerMod should be refitted with ML before
comparing models. The default is TRUE to prevent the common mistake of inap-
propriately comparing REML-fitted models with different fixed effects, whose
likelihoods are not directly comparable.

model.names character vectors of model names to be used in the anova table.

scale Not currently used (see extractAIC).

k see extractAIC.

REML Logical. If TRUE, return the restricted log-likelihood rather than the log-likelihood.
If NULL (the default), set REML to isREML(object) (see isREML).

fixed.only logical indicating if only the fixed effects components (terms or formula ele-
ments) are sought. If false, all components, including random ones, are returned.

random.only complement of fixed.only; indicates whether random components only are
sought. (Trying to specify fixed.only and random.only at the same time will
produce an error.)

66 merMod-class

correlation (logical) for vcov, indicates whether the correlation matrix as well as the variance-
covariance matrix is desired; for summary.merMod, indicates whether the cor-
relation matrix should be computed and stored along with the covariance; for
print.summary.merMod, indicates whether the correlation matrix of the fixed-
effects parameters should be printed. In the latter case, when NULL (the default),
the correlation matrix is printed when it has been computed by summary(.), and
when p <= 12, and the cutoff 12 may be modified by options(lme4.summary.cor.max
= <n>)

use.hessian (logical) indicates whether to use the finite-difference Hessian of the deviance
function to compute standard errors of the fixed effects, rather estimating based
on internal information about the inverse of the model matrix (see getME(.,"RX")).
The default is to use the Hessian whenever the fixed effect parameters are ar-
guments to the deviance function (i.e. for GLMMs with nAGQ>0), and to use
getME(.,"RX") whenever the fixed effect parameters are profiled out (i.e. for
GLMMs with nAGQ==0 or LMMs).
use.hessian=FALSE is backward-compatible with older versions of lme4, but
may give less accurate SE estimates when the estimates of the fixed-effect (see
getME(.,"beta")) and random-effect (see getME(.,"theta")) parameters are
correlated.

sigm the residual standard error; by default sigma(object).

digits number of significant digits for printing

symbolic.cor should a symbolic encoding of the fixed-effects correlation matrix be printed?
If so, the symnum function is used.

signif.stars (logical) should significance stars be used?

ranef.comp character vector of length one or two, indicating if random-effects parameters
should be reported on the variance and/or standard deviation scale.

show.resids should the quantiles of the scaled residuals be printed?

formula. see update.formula.

evaluate see update.

type For

weights(), type of weights to be returned; either "prior" for the initially
supplied weights or "working" for the weights at the final iteration of the
penalized iteratively reweighted least squares algorithm (PIRLS).

model.matrix(), type of model matrix to return: one of "fixed" giving the
fixed effects model matrix, "random" giving the random effects model ma-
trix, or "randomListRaw" giving a list of the raw random effects model
matrices associated with each random effects term.

ranef.corr (logical) print correlations (rather than covariances) of random effects?

... potentially further arguments passed from other methods.

Objects from the Class

Objects of class merMod are created by calls to lmer, glmer or nlmer.

merMod-class 67

S3 methods

The following S3 methods with arguments given above exist (this list is currently not complete):

anova: returns the sequential decomposition of the contributions of fixed-effects terms or, for mul-
tiple arguments, model comparison statistics. For objects of class lmerMod the default behav-
ior is to refit the models with ML if fitted with REML = TRUE, this can be controlled via the
refit argument. See also anova.

as.function: returns the deviance function, the same as lmer(*, devFunOnly=TRUE), and mkLmerDevfun()
or mkGlmerDevfun(), respectively.

coef: Computes the sum of the random and fixed effects coefficients for each explanatory variable
for each level of each grouping factor.

extractAIC: Computes the (generalized) Akaike An Information Criterion. If isREML(fit), then
fit is refitted using maximum likelihood.

family: family of fitted GLMM. (Warning: this accessor may not work properly with customized
families/link functions.)

fitted: Fitted values, given the conditional modes of the random effects. For more flexible access
to fitted values, use predict.merMod.

logLik: Log-likelihood at the fitted value of the parameters. Note that for GLMMs, the returned
value is only proportional to the log probability density (or distribution) of the response vari-
able. See logLik.

model.frame: returns the frame slot of merMod.

model.matrix: returns the fixed effects model matrix.

nobs, ngrps: Number of observations and vector of the numbers of levels in each grouping factor.
See ngrps.

summary: Computes and returns a list of summary statistics of the fitted model, the amount of
output can be controlled via the print method, see also summary.

print.summary: Controls the output for the summary method.

vcov: Calculate variance-covariance matrix of the fixed effect terms, see also vcov.

update: See update.

Deviance and log-likelihood of GLMMs

One must be careful when defining the deviance of a GLM. For example, should the deviance be
defined as minus twice the log-likelihood or does it involve subtracting the deviance for a saturated
model? To distinguish these two possibilities we refer to absolute deviance (minus twice the log-
likelihood) and relative deviance (relative to a saturated model, e.g. Section 2.3.1 in McCullagh and
Nelder 1989).

With GLMMs however, there is an additional complication involving the distinction between the
likelihood and the conditional likelihood. The latter is the likelihood obtained by conditioning on
the estimates of the conditional modes of the spherical random effects coefficients, whereas the
likelihood itself (i.e. the unconditional likelihood) involves integrating out these coefficients. The
following table summarizes how to extract the various types of deviance for a glmerMod object:

conditional unconditional
relative deviance(object) NA in lme4
absolute object@resp$aic() -2*logLik(object)

68 merMod-class

This table requires two caveats:

• If the link function involves a scale parameter (e.g. Gamma) then object@resp$aic() - 2 *
getME(object, "devcomp")$dims["useSc"] is required for the absolute-conditional case.

• If adaptive Gauss-Hermite quadrature is used, then logLik(object) is currently only propor-
tional to the absolute-unconditional log-likelihood.

For more information about this topic see the misc/logLikGLMM directory in the package source.

Slots

resp: A reference class object for an lme4 response module (lmResp-class).

Gp: See getME.

call: The matched call.

frame: The model frame containing all of the variables required to parse the model formula.

flist: See getME.

cnms: See getME.

lower: See getME.

theta: Covariance parameter vector.

beta: Fixed effects coefficients.

u: Conditional model of spherical random effects coefficients.

devcomp: See getME.

pp: A reference class object for an lme4 predictor module (merPredD-class).

optinfo: List containing information about the nonlinear optimization.

See Also

lmer, glmer, nlmer, merPredD, lmerResp, glmResp, nlsResp

Other methods for merMod objects documented elsewhere include: fortify.merMod, drop1.merMod,
isLMM.merMod, isGLMM.merMod, isNLMM.merMod, isREML.merMod, plot.merMod, predict.merMod,
profile.merMod, ranef.merMod, refit.merMod, refitML.merMod, residuals.merMod, sigma.merMod,
simulate.merMod, summary.merMod.

Examples

showClass("merMod")
methods(class="merMod")## over 30 (S3) methods available

m1 <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy)
print(m1, ranef.corr = TRUE) ## print correlations of REs
print(m1, ranef.corr = FALSE) ## print covariances of REs

-> example(lmer) for an example of vcov.merMod()

merPredD 69

merPredD Generator object for the merPredD class

Description

The generator object for the merPredD reference class. Such an object is primarily used through its
new method.

Usage

merPredD(...)

Arguments

... List of arguments (see Note).

Note

merPredD(...) is a short form of new("merPredD", ...) to create a new merPredD object and
the ... must be named arguments, (X, Zt, Lambdat, Lind, theta,n):

X: dense model matrix for the fixed-effects parameters, to be stored in the X field.

Zt: transpose of the sparse model matrix for the random effects. It is stored in the Zt field.

Lambdat: transpose of the sparse lower triangular relative variance factor (stored in the Lambdat
field).

Lind: integer vector of the same length as the x slot in the Lambdat field. Its elements should be in
the range 1 to the length of the theta field.

theta: numeric vector of variance component parameters (stored in the theta field).

n: sample size, usually nrow(X).

See Also

The class definition, merPredD, also for examples.

merPredD-class Class "merPredD" - a Dense Predictor Reference Class

Description

A reference class (see mother class definition "envRefClass" for a mixed-effects model predictor
module with a dense model matrix for the fixed-effects parameters. The reference class is associated
with a C++ class of the same name. As is customary, the generator object, merPredD, for the class
has the same name as the class.

70 mkMerMod

Note

Objects from this reference class correspond to objects in a C++ class. Methods are invoked on
the C++ class object using the external pointer in the Ptr field. When saving such an object the
external pointer is converted to a null pointer, which is why there are redundant fields containing
enough information as R objects to be able to regenerate the C++ object. The convention is that a
field whose name begins with an upper-case letter is an R object and the corresponding field, whose
name begins with the lower-case letter is a method. References to the external pointer should be
through the method, not directly through the Ptr field.

See Also

lmer, glmer, nlmer, merPredD, merMod.

Examples

showClass("merPredD")
pp <- slot(lmer(Yield ~ 1|Batch, Dyestuff), "pp")
stopifnot(is(pp, "merPredD"))
str(pp) # an overview of all fields and methods' names.

mkMerMod Create a ’merMod’ Object

Description

Create an object of (a subclass of) class merMod from the environment of the objective function and
the value returned by the optimizer.

Usage

mkMerMod(rho, opt, reTrms, fr, mc, lme4conv = NULL)

Arguments

rho the environment of the objective function

opt the optimization result returned by the optimizer (a list: see lmerControl for
required elements)

reTrms random effects structure from the calling function (see mkReTrms for required
elements)

fr model frame (see model.frame)

mc matched call from the calling function

lme4conv lme4-specific convergence information (results of checkConv)

Value

an object from a class that inherits from merMod.

mkRespMod 71

mkRespMod Create an lmerResp, glmResp or nlsResp instance

Description

Create an lmerResp, glmResp or nlsResp instance

Usage

mkRespMod(fr, REML = NULL, family = NULL, nlenv = NULL,
nlmod = NULL, ...)

Arguments

fr a model frame
REML logical scalar, value of REML for an lmerResp instance
family the optional glm family (glmResp only)
nlenv the nonlinear model evaluation environment (nlsResp only)
nlmod the nonlinear model function (nlsResp only)
... where to look for response information if fr is missing. Can contain a model

response, y, offset, offset, and weights, weights.

Value

an lmerResp or glmResp or nlsResp instance

See Also

Other utilities: findbars, mkReTrms, nlformula, nobars, subbars

mkReTrms Make Random Effect Terms: Create Z, Lambda, Lind, etc.

Description

From the result of findbars applied to a model formula and the evaluation frame fr, create the
model matrix Zt, etc, associated with the random-effects terms.

Usage

mkReTrms(bars, fr, drop.unused.levels=TRUE,
reorder.terms=TRUE,
reorder.vars=FALSE)

mkNewReTrms(object, newdata, re.form=NULL,
na.action=na.pass,
allow.new.levels=FALSE,
sparse = max(lengths(orig.random.levs)) > 100)

72 mkReTrms

Arguments

bars a list of parsed random-effects terms

fr a model frame in which to evaluate these terms
drop.unused.levels

(logical) drop unused factor levels?

reorder.terms arrange random effects terms in decreasing order of number of groups (factor
levels)?

reorder.vars arrange columns of individual random effects terms in alphabetical order?

object a fitted merMod object

newdata data frame for which to create new RE terms object

re.form (formula, NULL, or NA) specify which random effects to condition on when pre-
dicting. If NULL, include all random effects; if NA or ~0, include no random
effects

na.action function determining what should be done with missing values for fixed effects
in newdata

allow.new.levels

(logical) if new levels (or NA values) in newdata are allowed. If FALSE (de-
fault), such new values in newdata will trigger an error; if TRUE, then the pre-
diction will use the unconditional (population-level) values for data with previ-
ously unobserved levels (or NAs)

sparse generate sparse contrast matrices?

Value

a list with components

Zt transpose of the sparse model matrix for the random effects

theta initial values of the covariance parameters

Lind an integer vector of indices determining the mapping of the elements of the
theta vector to the "x" slot of Lambdat

Gp a vector indexing the association of elements of the conditional mode vector
with random-effect terms; if nb is the vector of numbers of conditional modes
per term (i.e. number of groups times number of effects per group), Gp is
c(0,cumsum(nb)) (and conversely nb is diff(Gp))

lower lower bounds on the covariance parameters

Lambdat transpose of the sparse relative covariance factor

flist list of grouping factors used in the random-effects terms

cnms a list of column names of the random effects according to the grouping factors

Ztlist list of components of the transpose of the random-effects model matrix, sepa-
rated by random-effects term

nl names of the terms (in the same order as Zt, i.e. reflecting the reorder.terms
argument)

mkSimulateTemplate 73

Note

mkNewReTrms is used in the context of prediction, to generate a new "random effects terms" object
from an already fitted model

See Also

Other utilities: findbars, mkRespMod, nlformula, nobars, subbars. getME can retrieve these
components from a fitted model, although their values and/or forms may be slightly different in the
final fitted model from their original values as returned from mkReTrms.

Examples

data("Pixel", package="nlme")
mform <- pixel ~ day + I(day^2) + (day | Dog) + (1 | Side/Dog)
(bar.f <- findbars(mform)) # list with 3 terms
mf <- model.frame(subbars(mform),data=Pixel)
rt <- mkReTrms(bar.f,mf)
names(rt)

mkSimulateTemplate Make templates suitable for guiding mixed model simulations

Description

Make data and parameter templates suitable for guiding mixed model simulations, by specifying
a model formula and other information (EXPERIMENTAL). Most useful for simulating balanced
designs and for getting started on unbalanced simulations.

Usage

mkParsTemplate(formula, data)
mkDataTemplate(formula, data, nGrps = 2, nPerGrp = 1, rfunc = NULL, ...)

Arguments

formula A mixed model formula (see lmer).

data A data frame containing the names in formula.

nGrps Number of levels of a grouping factor.

nPerGrp Number of observations per level.

rfunc Function for generating covariate data (e.g. rnorm.

... Additional parameters for rfunc.

See Also

These functions are designed to be used with simulate.merMod.

74 modular

mkVarCorr Make Variance and Correlation Matrices from theta

Description

Make variance and correlation matrices from theta

Usage

mkVarCorr(sc, cnms, nc, theta, nms)

Arguments

sc scale factor (residual standard deviation).

cnms component names.

nc numeric vector: number of terms in each RE component.

theta theta vector (lower-triangle of Cholesky factors).

nms component names (FIXME: nms/cnms redundant: nms=names(cnms)?)

Value

A matrix

See Also

VarCorr

modular Modular Functions for Mixed Model Fits

Description

Modular functions for mixed model fits

Usage

lFormula(formula, data = NULL, REML = TRUE,
subset, weights, na.action, offset, contrasts = NULL,
control = lmerControl(), ...)

mkLmerDevfun(fr, X, reTrms, REML = TRUE, start = NULL,
verbose = 0, control = lmerControl(), ...)

optimizeLmer(devfun,
optimizer = formals(lmerControl)$optimizer,

modular 75

restart_edge = formals(lmerControl)$restart_edge,
boundary.tol = formals(lmerControl)$boundary.tol,
start = NULL, verbose = 0L,
control = list(), ...)

glFormula(formula, data = NULL, family = gaussian,
subset, weights, na.action, offset, contrasts = NULL,
start, mustart, etastart, control = glmerControl(), ...)

mkGlmerDevfun(fr, X, reTrms, family, nAGQ = 1L,
verbose = 0L, maxit = 100L, control = glmerControl(), ...)

optimizeGlmer(devfun,
optimizer = if(stage == 1) "bobyqa" else "Nelder_Mead",
restart_edge = FALSE,
boundary.tol = formals(glmerControl)$boundary.tol,
verbose = 0L, control = list(),
nAGQ = 1L, stage = 1, start = NULL, ...)

updateGlmerDevfun(devfun, reTrms, nAGQ = 1L)

Arguments

formula a two-sided linear formula object describing both the fixed-effects and random-
effects parts of the model, with the response on the left of a ~ operator and
the terms, separated by + operators, on the right. Random-effects terms are
distinguished by vertical bars ("|") separating expressions for design matrices
from grouping factors.

data an optional data frame containing the variables named in formula. By default
the variables are taken from the environment from which lmer is called. While
data is optional, the package authors strongly recommend its use, especially
when later applying methods such as update and drop1 to the fitted model
(such methods are not guaranteed to work properly if data is omitted). If data
is omitted, variables will be taken from the environment of formula (if specified
as a formula) or from the parent frame (if specified as a character vector).

REML (logical) indicating to fit restricted maximum likelihood model.

subset an optional expression indicating the subset of the rows of data that should be
used in the fit. This can be a logical vector, or a numeric vector indicating which
observation numbers are to be included, or a character vector of the row names
to be included. All observations are included by default.

weights an optional vector of ‘prior weights’ to be used in the fitting process. Should be
NULL or a numeric vector.

na.action a function that indicates what should happen when the data contain NAs. The de-
fault action (na.omit, inherited from the ’factory fresh’ value of getOption("na.action"))
strips any observations with any missing values in any variables.

offset this can be used to specify an a priori known component to be included in the
linear predictor during fitting. This should be NULL or a numeric vector of length

76 modular

equal to the number of cases. One or more offset terms can be included in the
formula instead or as well, and if more than one is specified their sum is used.
See model.offset.

contrasts an optional list. See the contrasts.arg of model.matrix.default.

control a list giving

for [g]lFormula: all options for running the model, see lmerControl;
for mkLmerDevfun,mkGlmerDevfun: options for the inner optimization step;
for optimizeLmer and optimizeGlmer: control parameters for nonlinear op-

timizer (typically inherited from the . . . argument to lmerControl).

fr A model frame containing the variables needed to create an lmerResp or glmResp
instance.

X fixed-effects design matrix

reTrms information on random effects structure (see mkReTrms).

start starting values (see lmer; for glFormula, should be just a numeric vector of
fixed-effect coefficients)

verbose print output?

maxit maximal number of Pwrss update iterations.

devfun a deviance function, as generated by mkLmerDevfun

nAGQ number of Gauss-Hermite quadrature points

stage optimization stage (1: nAGQ=0, optimize over theta only; 2: nAGQ possibly
>0, optimize over theta and beta)

optimizer character - name of optimizing function(s). A character vector or list of func-
tions: length 1 for lmer or glmer, possibly length 2 for glmer. The built-in
optimizers are "Nelder_Mead" and "bobyqa" (from the minqa package). Any
minimizing function that allows box constraints can be used provided that it

1. takes input parameters fn (function to be optimized), par (starting parame-
ter values), lower (lower bounds) and control (control parameters, passed
through from the control argument) and

2. returns a list with (at least) elements par (best-fit parameters), fval (best-fit
function value), conv (convergence code) and (optionally) message (infor-
mational message, or explanation of convergence failure).

Special provisions are made for bobyqa, Nelder_Mead, and optimizers wrapped
in the optimx package; to use optimx optimizers (including L-BFGS-B from
base optim and nlminb), pass the method argument to optim in the control
argument.
For glmer, if length(optimizer)==2, the first element will be used for the
preliminary (random effects parameters only) optimization, while the second
will be used for the final (random effects plus fixed effect parameters) phase.
See modular for more information on these two phases.

restart_edge see lmerControl

boundary.tol see lmerControl

family a GLM family; see glm and family.

https://CRAN.R-project.org/package=minqa
https://CRAN.R-project.org/package=optimx

modular 77

mustart optional starting values on the scale of the conditional mean; see glm for details.

etastart optional starting values on the scale of the unbounded predictor; see glm for
details.

... other potential arguments; for optimizeLmer and optimizeGlmer, these are
passed to internal function optwrap, which has relevant parameters calc.derivs
and use.last.params (see lmerControl).

Details

These functions make up the internal components of an [gn]lmer fit.

• [g]lFormula takes the arguments that would normally be passed to [g]lmer, checking for
errors and processing the formula and data input to create a list of objects required to fit a
mixed model.

• mk(Gl|L)merDevfun takes the output of the previous step (minus the formula component)
and creates a deviance function

• optimize(Gl|L)mer takes a deviance function and optimizes over theta (or over theta and
beta, if stage is set to 2 for optimizeGlmer

• updateGlmerDevfun takes the first stage of a GLMM optimization (with nAGQ=0, optimizing
over theta only) and produces a second-stage deviance function

• mkMerMod takes the environment of a deviance function, the results of an optimization, a list
of random-effect terms, a model frame, and a model all and produces a [g]lmerMod object.

Value

lFormula and glFormula return a list containing components:

fr model frame

X fixed-effect design matrix

reTrms list containing information on random effects structure: result of mkReTrms

REML (lFormula only): logical indicating if restricted maximum likelihood was used (Copy of
argument.)

mkLmerDevfun and mkGlmerDevfun return a function to calculate deviance (or restricted deviance)
as a function of the theta (random-effect) parameters. updateGlmerDevfun returns a function to
calculate the deviance as a function of a concatenation of theta and beta (fixed-effect) parameters.
These deviance functions have an environment containing objects required for their evaluation.
CAUTION: The environment of functions returned by mk(Gl|L)merDevfun contains reference
class objects (see ReferenceClasses, merPredD-class, lmResp-class), which behave in ways
that may surprise many users. For example, if the output of mk(Gl|L)merDevfun is naively copied,
then modifications to the original will also appear in the copy (and vice versa). To avoid this
behavior one must make a deep copy (see ReferenceClasses for details).

optimizeLmer and optimizeGlmer return the results of an optimization.

78 namedList

Examples

Fitting a linear mixed model in 4 modularized steps

1. Parse the data and formula:
lmod <- lFormula(Reaction ~ Days + (Days|Subject), sleepstudy)
names(lmod)
2. Create the deviance function to be optimized:
(devfun <- do.call(mkLmerDevfun, lmod))
ls(environment(devfun)) # the environment of 'devfun' contains objects

required for its evaluation
3. Optimize the deviance function:
opt <- optimizeLmer(devfun)
opt[1:3]
4. Package up the results:
mkMerMod(environment(devfun), opt, lmod$reTrms, fr = lmod$fr)

Same model in one line
lmer(Reaction ~ Days + (Days|Subject), sleepstudy)

Fitting a generalized linear mixed model in six modularized steps

1. Parse the data and formula:
glmod <- glFormula(cbind(incidence, size - incidence) ~ period + (1 | herd),

data = cbpp, family = binomial)
#.... see what've got :

str(glmod, max=1, give.attr=FALSE)
2. Create the deviance function for optimizing over theta:
(devfun <- do.call(mkGlmerDevfun, glmod))
ls(environment(devfun)) # the environment of devfun contains lots of info
3. Optimize over theta using a rough approximation (i.e. nAGQ = 0):
(opt <- optimizeGlmer(devfun))
4. Update the deviance function for optimizing over theta and beta:
(devfun <- updateGlmerDevfun(devfun, glmod$reTrms))
5. Optimize over theta and beta:
opt <- optimizeGlmer(devfun, stage=2)
str(opt, max=1) # seeing what we'got
6. Package up the results:
(fMod <- mkMerMod(environment(devfun), opt, glmod$reTrms, fr = glmod$fr))

Same model in one line
fM <- glmer(cbind(incidence, size - incidence) ~ period + (1 | herd),

data = cbpp, family = binomial)
all.equal(fMod, fM, check.attributes=FALSE, tolerance = 1e-12)

---- -- even tolerance = 0 may work

namedList Self-naming list function

NelderMead 79

Description

this function takes a list of arguments and combines them into a list; any unnamed arguments
are automatically named to match their symbols. The tibble::lst() function offers similarly
functionality.

Usage

namedList(...)

Arguments

... comma-separated arguments

Examples

a <- 1
b <- 2
c <- 3
str(namedList(a, b, d = c))

NelderMead Nelder-Mead Optimization of Parameters, Possibly (Box) Constrained

Description

Nelder-Mead optimization of parameters, allowing optimization subject to box constraints (contrary
to the default, method = "Nelder-Mead", in R’s optim()), and using reverse communications.

Usage

Nelder_Mead(fn, par, lower = rep.int(-Inf, n), upper = rep.int(Inf, n),
control = list())

Arguments

fn a function of a single numeric vector argument returning a numeric scalar.

par numeric vector of starting values for the parameters.

lower numeric vector of lower bounds (elements may be -Inf).

upper numeric vector of upper bounds (elements may be Inf).

control a named list of control settings. Possible settings are

iprint numeric scalar - frequency of printing evaluation information. Defaults
to 0 indicating no printing.

maxfun numeric scalar - maximum number of function evaluations allowed
(default:10000).

FtolAbs numeric scalar - absolute tolerance on change in function values (de-
fault: 1e-5)

80 NelderMead

FtolRel numeric scalar - relative tolerance on change in function values (default:1e-
15)

XtolRel numeric scalar - relative tolerance on change in parameter values (de-
fault: 1e-7)

MinfMax numeric scalar - maximum value of the minimum (default: .Ma-
chine$double.xmin)

xst numeric vector of initial step sizes to establish the simplex - all elements
must be non-zero (default: rep(0.02,length(par)))

xt numeric vector of tolerances on the parameters (default: xst*5e-4)
verbose numeric value: 0=no printing, 1=print every 20 evaluations, 2=print

every 10 evalutions, 3=print every evaluation. Sets ‘iprint’, if specified, but
does not override it.

warnOnly a logical indicating if non-convergence (codes -1,-2,-3) should not
stop(.), but rather only call warning and return a result which might in-
spected. Defaults to FALSE, i.e., stop on non-convergence.

Value

a list with components

fval numeric scalar - the minimum function value achieved

par numeric vector - the value of x providing the minimum

convergence integer valued scalar, if not 0, an error code:

-4 nm_evals: maximum evaluations reached
-3 nm_forced: ?
-2 nm_nofeasible: cannot generate a feasible simplex
-1 nm_x0notfeasible: initial x is not feasible (?)
0 successful convergence

message a string specifying the kind of convergence.

control the list of control settings after substituting for defaults.

feval the number of function evaluations.

See Also

The NelderMead class definition and generator function.

Examples

fr <- function(x) { ## Rosenbrock Banana function
x1 <- x[1]
x2 <- x[2]
100 * (x2 - x1 * x1)^2 + (1 - x1)^2

}
p0 <- c(-1.2, 1)

oo <- optim(p0, fr) ## also uses Nelder-Mead by default
o. <- Nelder_Mead(fr, p0)

NelderMead-class 81

o.1 <- Nelder_Mead(fr, p0, control=list(verbose=1))# -> some iteration output
stopifnot(identical(o.[1:4], o.1[1:4]),

all.equal(o.par, oopar, tolerance=1e-3))# diff: 0.0003865

o.2 <- Nelder_Mead(fr, p0, control=list(verbose=3, XtolRel=1e-15, FtolAbs= 1e-14))
all.equal(o.2[-5],o.1[-5], tolerance=1e-15)# TRUE, unexpectedly

NelderMead-class Class "NelderMead" of Nelder-Mead optimizers and its Generator

Description

Class "NelderMead" is a reference class for a Nelder-Mead simplex optimizer allowing box con-
straints on the parameters and using reverse communication.

The NelderMead() function conveniently generates such objects.

Usage

NelderMead(...)

Arguments

... Argument list (see Note below).

Methods

NelderMead$new(lower, upper, xst, x0, xt) Create a new NelderMead object

Extends

All reference classes extend and inherit methods from "envRefClass".

Note

This is the default optimizer for the second stage of glmer and nlmer fits. We found that it was
more reliable and often faster than more sophisticated optimizers.

Arguments to NelderMead() and the new method must be named arguments:

lower numeric vector of lower bounds - elements may be -Inf.

upper numeric vector of upper bounds - elements may be Inf.

xst numeric vector of initial step sizes to establish the simplex - all elements must be non-zero.

x0 numeric vector of starting values for the parameters.

xt numeric vector of tolerances on the parameters.

References

Based on code in the NLopt collection.

82 ngrps

See Also

Nelder_Mead, the typical “constructor”. Further, glmer, nlmer

Examples

showClass("NelderMead")

ngrps Number of Levels of a Factor or a "merMod" Model

Description

Returns the number of levels of a factor or a set of factors, currently e.g., for each of the grouping
factors of lmer(), glmer(), etc.

Usage

ngrps(object, ...)

Arguments

object an R object, see Details.

... currently ignored.

Details

Currently there are methods for objects of class merMod, i.e., the result of lmer() etc, and factor
objects.

Value

The number of levels (of a factor) or vector of number of levels for each “grouping factor” of a

Examples

ngrps(factor(seq(1,10,2)))
ngrps(lmer(Reaction ~ 1|Subject, sleepstudy))

A named vector if there's more than one grouping factor :
ngrps(lmer(strength ~ (1|batch/cask), Pastes))
cask:batch batch
30 10

methods(ngrps) # -> "factor" and "merMod"

nlformula 83

nlformula Manipulate a Nonlinear Model Formula

Description

Check and manipulate the formula for a nonlinear model, such as specified in nlmer.

Usage

nlformula(mc)

Arguments

mc matched call from the calling function, typically nlmer(). Should have argu-
ments named

formula: a formula of the form resp ~ nlmod ~ meform where resp is an ex-
pression for the response, nlmod is the nonlinear model expression and
meform is the mixed-effects model formula. resp can be omitted when,
e.g., optimizing a design.

data: a data frame in which to evaluate the model function
start: either a numeric vector containing initial estimates for the nonlinear model

parameters or a list with components
nlpars: the initial estimates of the nonlinear model parameters
theta: the initial estimates of the variance component parameters

Details

The model formula for a nonlinear mixed-effects model is of the form resp ~ nlmod ~ mixed where
resp is an expression (usually just a name) for the response, nlmod is the call to the nonlinear model
function, and mixed is the mixed-effects formula defining the linear predictor for the parameter
matrix. If the formula is to be used for optimizing designs, the resp part can be omitted.

Value

a list with components

"respMod" a response module of class "nlsResp"

"frame" the model frame, including a terms attribute

"X" the fixed-effects model matrix

"reTrms" the random-effects terms object

See Also

Other utilities: findbars, mkRespMod, mkReTrms, nobars, subbars

84 nlmer

nlmer Fitting Nonlinear Mixed-Effects Models

Description

Fit a nonlinear mixed-effects model (NLMM) to data, via maximum likelihood.

Usage

nlmer(formula, data = NULL, control = nlmerControl(),
start = NULL, verbose = 0L, nAGQ = 1L, subset, weights, na.action,
offset, contrasts = NULL, devFunOnly = FALSE)

Arguments

formula a three-part “nonlinear mixed model” formula, of the form resp ~ Nonlin(...)
~ fixed + random, where the third part is similar to the RHS formula of, e.g.,
lmer.
Currently, the Nonlin(..) formula part must not only return a numeric vector,
but also must have a "gradient" attribute, a matrix. The functions SSbiexp,
SSlogis, etc, see selfStart, provide this (and more). Alternatively, you can
use deriv() to automatically produce such functions or expressions.

data an optional data frame containing the variables named in formula. By default
the variables are taken from the environment from which lmer is called. While
data is optional, the package authors strongly recommend its use, especially
when later applying methods such as update and drop1 to the fitted model
(such methods are not guaranteed to work properly if data is omitted). If data
is omitted, variables will be taken from the environment of formula (if specified
as a formula) or from the parent frame (if specified as a character vector).

control a list (of correct class, resulting from lmerControl() or glmerControl() re-
spectively) containing control parameters, including the nonlinear optimizer to
be used and parameters to be passed through to the nonlinear optimizer, see the
*lmerControl documentation for details.

start starting estimates for the nonlinear model parameters, as a named numeric vec-
tor or as a list with components

nlpars required numeric vector of starting values for the nonlinear model pa-
rameters

theta optional numeric vector of starting values for the covariance parameters

verbose integer scalar. If > 0 verbose output is generated during the optimization of the
parameter estimates. If > 1 verbose output is generated during the individual
PIRLS steps (PIRLS aka PRSS, e.g. in the C++ sources).

nAGQ integer scalar - the number of points per axis for evaluating the adaptive Gauss-
Hermite approximation to the log-likelihood. Defaults to 1, corresponding to
the Laplace approximation. Values greater than 1 produce greater accuracy in
the evaluation of the log-likelihood at the expense of speed. A value of zero uses

nlmer 85

a faster but less exact form of parameter estimation for GLMMs by optimizing
the random effects and the fixed-effects coefficients in the penalized iteratively
reweighted least squares (PIRLS) step.

subset an optional expression indicating the subset of the rows of data that should be
used in the fit. This can be a logical vector, or a numeric vector indicating which
observation numbers are to be included, or a character vector of the row names
to be included. All observations are included by default.

weights an optional vector of ‘prior weights’ to be used in the fitting process. Should be
NULL or a numeric vector.

na.action a function that indicates what should happen when the data contain NAs. The de-
fault action (na.omit, inherited from the ‘factory fresh’ value of getOption("na.action"))
strips any observations with any missing values in any variables.

offset this can be used to specify an a priori known component to be included in the
linear predictor during fitting. This should be NULL or a numeric vector of length
equal to the number of cases. One or more offset terms can be included in the
formula instead or as well, and if more than one is specified their sum is used.
See model.offset.

contrasts an optional list. See the contrasts.arg of model.matrix.default.

devFunOnly logical - return only the deviance evaluation function. Note that because the
deviance function operates on variables stored in its environment, it may not
return exactly the same values on subsequent calls (but the results should always
be within machine tolerance).

Details

Fit nonlinear mixed-effects models, such as those used in population pharmacokinetics.

Note

Adaptive Gauss-Hermite quadrature (nAGQ > 1) is not currently implemented for nlmer. Several
other methods, such as simulation or prediction with new data, are unimplemented or very lightly
tested.

A method argument was used in earlier versions of the lme4 package. Its functionality has been
replaced by the nAGQ argument.

Examples

nonlinear mixed models --- 3-part formulas ---
1. basic nonlinear fit. Use stats::SSlogis for its
implementation of the 3-parameter logistic curve.
"SS" stands for "self-starting logistic", but the
"self-starting" part is not currently used by nlmer ... 'start' is
necessary
startvec <- c(Asym = 200, xmid = 725, scal = 350)
(nm1 <- nlmer(circumference ~ SSlogis(age, Asym, xmid, scal) ~ Asym|Tree,

Orange, start = startvec))
2. re-run with "quick and dirty" PIRLS step
(nm1a <- update(nm1, nAGQ = 0L))

86 nloptwrap

3. Fit the same model with a user-built function:
a. Define formula
nform <- ~Asym/(1+exp((xmid-input)/scal))
b. Use deriv() to construct function:
nfun <- deriv(nform,namevec=c("Asym","xmid","scal"),

function.arg=c("input","Asym","xmid","scal"))
nm1b <- update(nm1,circumference ~ nfun(age, Asym, xmid, scal) ~ Asym | Tree)

4. User-built function without using deriv():
derivatives could be computed more efficiently
by pre-computing components, but these are essentially
the gradients as one would derive them by hand
nfun2 <- function(input, Asym, xmid, scal) {

value <- Asym/(1+exp((xmid-input)/scal))
grad <- cbind(Asym=1/(1+exp((xmid-input)/scal)),

xmid=-Asym/(1+exp((xmid-input)/scal))^2*1/scal*
exp((xmid-input)/scal),

scal=-Asym/(1+exp((xmid-input)/scal))^2*
-(xmid-input)/scal^2*exp((xmid-input)/scal))

attr(value,"gradient") <- grad
value

}
stopifnot(all.equal(attr(nfun(2,1,3,4),"gradient"),

attr(nfun(2,1,3,4),"gradient")))
nm1c <- update(nm1,circumference ~ nfun2(age, Asym, xmid, scal) ~ Asym | Tree)

nloptwrap Wrappers for additional optimizers

Description

Wrappers to allow use of alternative optimizers, from the NLopt library (via nloptr) or elsewhere,
for the nonlinear optimization stage.

Usage

nloptwrap (par, fn, lower, upper, control = list(), ...)
nlminbwrap(par, fn, lower, upper, control = list(), ...)

Arguments

par starting parameter vector

fn objective function

lower, upper numeric vector of lower and upper bounds.

control list of control parameters, corresponding to optCtrl = *, e.g., in lmerControl().
For nloptwrap, see defaultControl in ‘Details’.

... additional arguments to be passed to objective function

https://CRAN.R-project.org/package=nloptr

nloptwrap 87

Details

Using alternative optimizers is an important trouble-shooting tool for mixed models. These wrap-
pers provide convenient access to the optimizers provided by Steven Johnson’s NLopt library (via
the nloptr R package), and to the nlminb optimizer from base R. nlminb is also available via the
optimx package; this wrapper provides access to nlminb() without the need to install/link the pack-
age, and without the additional post-fitting checks that are implemented by optimx (see examples
below).

One important difference between the nloptr-provided implementation of BOBYQA and the minqa-
provided version accessible via optimizer="bobyqa" is that it provides simpler access to optimiza-
tion tolerances. bobyqa provides only the rhoend parameter (“[t]he smallest value of the trust re-
gion radius that is allowed”), while nloptr provides a more standard set of tolerances for relative or
absolute change in the objective function or the parameter values (ftol_rel, ftol_abs, xtol_rel,
xtol_abs).

The default (empty) control list corresponds to the following settings:

nlminbwrap: control exactly corresponds to nlminb()’s defaults, see there.

nloptwrap: environment(nloptwrap)$defaultControl contains the defaults, notably algorithm
= "NLOPT_LN_BOBYQA".
nloptr::nloptr.print.options() shows and explains the many possible algorithm and
options.

Value

par estimated parameters

fval objective function value at minimum

feval number of function evaluations

conv convergence code (0 if no error)

message convergence message

Author(s)

Gabor Grothendieck (nlminbwrap)

Examples

library(lme4)
ls.str(environment(nloptwrap)) # 'defaultControl' algorithm "NLOPT_LN_BOBYQA"
Note that 'optimizer = "nloptwrap"' is now the default for lmer() :
fm1 <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy)
tighten tolerances
fm1B <- update(fm1, control= lmerControl(optCtrl = list(xtol_abs=1e-8, ftol_abs=1e-8)))
run for longer (no effect in this case)
fm1C <- update(fm1,control = lmerControl(optCtrl = list(maxeval=10000)))

logLik(fm1B) - logLik(fm1) ## small difference in log likelihood
c(logLik(fm1C) - logLik(fm1)) ## no difference in LL
Nelder-Mead
fm1_nloptr_NM <- update(fm1, control=

https://CRAN.R-project.org/package=nloptr
https://CRAN.R-project.org/package=optimx
https://CRAN.R-project.org/package=optimx
https://CRAN.R-project.org/package=nloptr
https://CRAN.R-project.org/package=minqa

88 nobars

lmerControl(optimizer = "nloptwrap",
optCtrl = list(algorithm = "NLOPT_LN_NELDERMEAD")))

other nlOpt algorithm options include NLOPT_LN_COBYLA, NLOPT_LN_SBPLX, see
if(interactive())

nloptr::nloptr.print.options()

fm1_nlminb <- update(fm1, control=lmerControl(optimizer = "nlminbwrap"))
if (require(optimx)) { ## the 'optimx'-based nlminb :

fm1_nlminb2 <- update(fm1, control=
lmerControl(optimizer = "optimx",

optCtrl = list(method="nlminb", kkt=FALSE)))
cat("Likelihood difference (typically zero): ",

c(logLik(fm1_nlminb) - logLik(fm1_nlminb2)), "\n")
}

nobars Omit terms separated by vertical bars in a formula

Description

Remove the random-effects terms from a mixed-effects formula, thereby producing the fixed-effects
formula.

Usage

nobars(term)

Arguments

term the right-hand side of a mixed-model formula

Value

the fixed-effects part of the formula

Note

This function is called recursively on individual terms in the model, which is why the argument is
called term and not a name like form, indicating a formula.

See Also

formula, model.frame, model.matrix.

Other utilities: findbars, mkRespMod, mkReTrms, nlformula, subbars

Examples

nobars(Reaction ~ Days + (Days|Subject)) ## => Reaction ~ Days

Pastes 89

Pastes Paste strength by batch and cask

Description

Strength of a chemical paste product; its quality depending on the delivery batch, and the cask
within the delivery.

Format

A data frame with 60 observations on the following 4 variables.

strength paste strength.

batch delivery batch from which the sample was sample. A factor with 10 levels: ‘A’ to ‘J’.

cask cask within the delivery batch from which the sample was chosen. A factor with 3 levels: ‘a’
to ‘c’.

sample the sample of paste whose strength was assayed, two assays per sample. A factor with 30
levels: ‘A:a’ to ‘J:c’.

Details

The data are described in Davies and Goldsmith (1972) as coming from “ deliveries of a chem-
ical paste product contained in casks where, in addition to sampling and testing errors, there are
variations in quality between deliveries . . . As a routine, three casks selected at random from each
delivery were sampled and the samples were kept for reference. . . . Ten of the delivery batches were
sampled at random and two analytical tests carried out on each of the 30 samples”.

Source

O.L. Davies and P.L. Goldsmith (eds), Statistical Methods in Research and Production, 4th ed.,
Oliver and Boyd, (1972), section 6.5

Examples

str(Pastes)
require(lattice)
dotplot(cask ~ strength | reorder(batch, strength), Pastes,

strip = FALSE, strip.left = TRUE, layout = c(1, 10),
ylab = "Cask within batch",
xlab = "Paste strength", jitter.y = TRUE)

Modifying the factors to enhance the plot
Pastes <- within(Pastes, batch <- reorder(batch, strength))
Pastes <- within(Pastes, sample <- reorder(reorder(sample, strength),

as.numeric(batch)))
dotplot(sample ~ strength | batch, Pastes,

strip = FALSE, strip.left = TRUE, layout = c(1, 10),
scales = list(y = list(relation = "free")),
ylab = "Sample within batch",

90 Penicillin

xlab = "Paste strength", jitter.y = TRUE)
Four equivalent models differing only in specification
(fm1 <- lmer(strength ~ (1|batch) + (1|sample), Pastes))
(fm2 <- lmer(strength ~ (1|batch/cask), Pastes))
(fm3 <- lmer(strength ~ (1|batch) + (1|batch:cask), Pastes))
(fm4 <- lmer(strength ~ (1|batch/sample), Pastes))
fm4 results in redundant labels on the sample:batch interaction
head(ranef(fm4)[[1]])
compare to fm1
head(ranef(fm1)[[1]])
This model is different and NOT appropriate for these data
(fm5 <- lmer(strength ~ (1|batch) + (1|cask), Pastes))

L <- getME(fm1, "L")
Matrix::image(L, sub = "Structure of random effects interaction in pastes model")

Penicillin Variation in penicillin testing

Description

Six samples of penicillin were tested using the B. subtilis plate method on each of 24 plates. The
response is the diameter (mm) of the zone of inhibition of growth of the organism.

Format

A data frame with 144 observations on the following 3 variables.

diameter diameter (mm) of the zone of inhibition of the growth of the organism.

plate assay plate. A factor with levels ‘a’ to ‘x’.

sample penicillin sample. A factor with levels ‘A’ to ‘F’.

Details

The data are described in Davies and Goldsmith (1972) as coming from an investigation to “assess
the variability between samples of penicillin by the B. subtilis method. In this test method a bulk-
inoculated nutrient agar medium is poured into a Petri dish of approximately 90 mm. diameter,
known as a plate. When the medium has set, six small hollow cylinders or pots (about 4 mm. in
diameter) are cemented onto the surface at equally spaced intervals. A few drops of the penicillin
solutions to be compared are placed in the respective cylinders, and the whole plate is placed in
an incubator for a given time. Penicillin diffuses from the pots into the agar, and this produces a
clear circular zone of inhibition of growth of the organisms, which can be readily measured. The
diameter of the zone is related in a known way to the concentration of penicillin in the solution.”

Source

O.L. Davies and P.L. Goldsmith (eds), Statistical Methods in Research and Production, 4th ed.,
Oliver and Boyd, (1972), section 6.6

plot.merMod 91

Examples

str(Penicillin)
require(lattice)
dotplot(reorder(plate, diameter) ~ diameter, Penicillin, groups = sample,

ylab = "Plate", xlab = "Diameter of growth inhibition zone (mm)",
type = c("p", "a"), auto.key = list(columns = 3, lines = TRUE,
title = "Penicillin sample"))

(fm1 <- lmer(diameter ~ (1|plate) + (1|sample), Penicillin))

L <- getME(fm1, "L")
Matrix::image(L, main = "L",

sub = "Penicillin: Structure of random effects interaction")

plot.merMod Diagnostic Plots for ’merMod’ Fits

Description

diagnostic plots for merMod fits

Usage

S3 method for class 'merMod'
plot(x,

form = resid(., type = "pearson") ~ fitted(.), abline,
id = NULL, idLabels = NULL, grid, ...)

S3 method for class 'merMod'
qqmath(x, data = NULL, id = NULL, idLabels = NULL, ...)

Arguments

x a fitted [ng]lmer model

form an optional formula specifying the desired type of plot. Any variable present in
the original data frame used to obtain x can be referenced. In addition, x itself
can be referenced in the formula using the symbol ".". Conditional expressions
on the right of a | operator can be used to define separate panels in a lattice
display. Default is resid(., type = "pearson") ~ fitted(.), corresponding
to a plot of the standardized residuals versus fitted values.

abline an optional numeric value, or numeric vector of length two. If given as a single
value, a horizontal line will be added to the plot at that coordinate; else, if given
as a vector, its values are used as the intercept and slope for a line added to the
plot. If missing, no lines are added to the plot.

id an optional numeric value, or one-sided formula. If given as a value, it is used as
a significance level for a two-sided outlier test for the standardized, or normal-
ized residuals. Observations with absolute standardized (normalized) residuals
greater than the 1 − value/2 quantile of the standard normal distribution are
identified in the plot using idLabels. If given as a one-sided formula, its right

92 plot.merMod

hand side must evaluate to a logical, integer, or character vector which is used
to identify observations in the plot. If missing, no observations are identified.

idLabels an optional vector, or one-sided formula. If given as a vector, it is converted
to character and used to label the observations identified according to id. If
given as a vector, it is converted to character and used to label the observations
identified according to id. If given as a one-sided formula, its right hand side
must evaluate to a vector which is converted to character and used to label the
identified observations. Default is the interaction of all the grouping variables in
the data frame. The special formula idLabels=~.obs will label the observations
according to observation number.

data ignored: required for S3 method compatibility

grid an optional logical value indicating whether a grid should be added to plot. De-
fault depends on the type of lattice plot used: if xyplot defaults to TRUE, else
defaults to FALSE.

... optional arguments passed to the lattice plot function.

Details

Diagnostic plots for the linear mixed-effects fit are obtained. The form argument gives considerable
flexibility in the type of plot specification. A conditioning expression (on the right side of a |
operator) always implies that different panels are used for each level of the conditioning factor,
according to a lattice display. If form is a one-sided formula, histograms of the variable on the
right hand side of the formula, before a | operator, are displayed (the lattice function histogram is
used). If form is two-sided and both its left and right hand side variables are numeric, scatter plots
are displayed (the lattice function xyplot is used). Finally, if form is two-sided and its left had
side variable is a factor, box-plots of the right hand side variable by the levels of the left hand side
variable are displayed (the lattice function bwplot is used).

qqmath produces a Q-Q plot of the residuals (see qqmath.ranef.mer for Q-Q plots of the condi-
tional mode values).

Author(s)

original version in nlme package by Jose Pinheiro and Douglas Bates.

See Also

influencePlot in the car package

Examples

data(Orthodont,package="nlme")
fm1 <- lmer(distance ~ age + (age|Subject), data=Orthodont)
standardized residuals versus fitted values by gender
plot(fm1, resid(., scaled=TRUE) ~ fitted(.) | Sex, abline = 0)
box-plots of residuals by Subject
plot(fm1, Subject ~ resid(., scaled=TRUE))
observed versus fitted values by Subject
plot(fm1, distance ~ fitted(.) | Subject, abline = c(0,1))
residuals by age, separated by Subject

https://CRAN.R-project.org/package=nlme

plots.thpr 93

plot(fm1, resid(., scaled=TRUE) ~ age | Sex, abline = 0)
scale-location plot, with red smoothed line
scale_loc_plot <- function(m, line.col = "red", line.lty = 1,

line.lwd = 2) {
plot(fm1, sqrt(abs(resid(.))) ~ fitted(.),

type = c("p", "smooth"),
par.settings = list(plot.line =

list(alpha=1, col = line.col,
lty = line.lty, lwd = line.lwd)))

}
scale_loc_plot(fm1)
Q-Q plot
lattice::qqmath(fm1, id=0.05)
ggp.there <- "package:ggplot2" %in% search()
if (ggp.there || require("ggplot2")) {

we can create the same plots using ggplot2 and the fortify() function
fm1F <- fortify.merMod(fm1)
ggplot(fm1F, aes(.fitted, .resid)) + geom_point(colour="blue") +

facet_grid(. ~ Sex) + geom_hline(yintercept=0)
note: Subjects are ordered by mean distance
ggplot(fm1F, aes(Subject,.resid)) + geom_boxplot() + coord_flip()
ggplot(fm1F, aes(.fitted,distance)) + geom_point(colour="blue") +

facet_wrap(~Subject) +geom_abline(intercept=0,slope=1)
ggplot(fm1F, aes(age,.resid)) + geom_point(colour="blue") + facet_grid(.~Sex) +

geom_hline(yintercept=0)+ geom_line(aes(group=Subject),alpha=0.4) +
geom_smooth(method="loess")

(warnings about loess are due to having only 4 unique x values)
if(!ggp.there) detach("package:ggplot2")

}

plots.thpr Mixed-Effects Profile Plots (Regular / Density / Pairs)

Description

Xyplot, Densityplot, and Pairs plot methods for a mixed-effects model profile.

xyplot() draws “zeta diagrams”, also visualizing confidence intervals and their asymmetry.

densityplot() draws the profile densities.

splom() draws profile pairs plots. Contours are for the marginal two-dimensional regions (i.e.
using df = 2).

Usage

S3 method for class 'thpr'
xyplot(x, data = NULL,

levels = sqrt(qchisq(pmax.int(0, pmin.int(1, conf)), df = 1)),
conf = c(50, 80, 90, 95, 99)/100,
absVal = FALSE, scales=NULL,

94 plots.thpr

which = 1:nptot, ...)

S3 method for class 'thpr'
densityplot(x, data, npts = 201, upper = 0.999, ...)

S3 method for class 'thpr'
splom(x, data,

levels = sqrt(qchisq(pmax.int(0, pmin.int(1, conf)), 2)),
conf = c(50, 80, 90, 95, 99)/100, which = 1:nptot,
draw.lower = TRUE, draw.upper = TRUE, ...)

Arguments

x a mixed-effects profile, i.e., of class "thpr", typically resulting from profile(fm)
where fm is a fitted model from lmer (or its generalizations).

data unused - only for compatibility with generic.

npts the number of points to use for the densityplot().

upper a number in (0, 1) to specify upper (and lower) boundaries as +/- qnorm(upper).

levels the contour levels to be shown; usually derived from conf.

conf numeric vector of confidence levels to be shown as contours.

absVal logical indicating if abs(.)olute values should be plotted, often preferred for
confidence interval visualization.

scales plotting options to be passed to xyplot

which integer or character vector indicating which parameters to profile: default is all
parameters (see profile-methods for details).

draw.lower (logical) draw lower-triangle (zeta scale) panels?

draw.upper (logical) draw upper-triangle (standard dev/cor scale) panels?

... further arguments passed to xyplot, densityplot, or splom from package lat-
tice, respectively.

Value

xyplot: a density plot, a "trellis" object (lattice package) which when print()ed produces
plots on the current graphic device.

densityplot: a density plot, a "trellis" object, see above.

splom: a pairs plot, aka scatterplot matrix, a "trellis" object, see above.

See Also

profile, notably for an example.

Examples

see example("profile.merMod")

https://CRAN.R-project.org/package=lattice
https://CRAN.R-project.org/package=lattice

predict.merMod 95

predict.merMod Predictions from a model at new data values

Description

The predict method for merMod objects, i.e. results of lmer(), glmer(), etc.

Usage

S3 method for class 'merMod'
predict(object, newdata = NULL, newparams = NULL,

re.form = NULL, ReForm, REForm, REform,
random.only=FALSE, terms = NULL,
type = c("link", "response"), allow.new.levels = FALSE,
na.action = na.pass,
se.fit = FALSE,
...)

Arguments

object a fitted model object

newdata data frame for which to evaluate predictions.

newparams new parameters to use in evaluating predictions, specified as in the start pa-
rameter for lmer or glmer – a list with components theta and/or (for GLMMs)
beta.

re.form (formula, NULL, or NA) specify which random effects to condition on when pre-
dicting. If NULL, include all random effects; if NA or ~0, include no random
effects.

ReForm, REForm, REform

allowed for backward compatibility: re.form is now the preferred argument
name.

random.only (logical) ignore fixed effects, making predictions only using random effects?

terms a terms object - unused at present.

type character string - either "link", the default, or "response" indicating the type
of prediction object returned.

allow.new.levels

logical if new levels (or NA values) in newdata are allowed. If FALSE (default),
such new values in newdata will trigger an error; if TRUE, then the prediction
will use the unconditional (population-level) values for data with previously un-
observed levels (or NAs).

na.action function determining what should be done with missing values for fixed effects
in newdata. The default is to predict NA: see na.pass.

se.fit (Experimental) A logical value indicating whether the standard errors should be
included or not. Default is FALSE.

... optional additional parameters. None are used at present.

96 profile-methods

Details

• If any random effects are included in re.form (i.e. it is not ~0 or NA), newdata must contain
columns corresponding to all of the grouping variables and random effects used in the original
model, even if not all are used in prediction; however, they can be safely set to NA in this case.

• There is no option for computing standard errors of predictions because it is difficult to define
an efficient method that incorporates uncertainty in the variance parameters; we recommend
bootMer for this task.

Value

a numeric vector of predicted values

Examples

(gm1 <- glmer(cbind(incidence, size - incidence) ~ period + (1 |herd), cbpp, binomial))
str(p0 <- predict(gm1)) # fitted values
str(p1 <- predict(gm1,re.form=NA)) # fitted values, unconditional (level-0)
newdata <- with(cbpp, expand.grid(period=unique(period), herd=unique(herd)))
str(p2 <- predict(gm1,newdata)) # new data, all RE
str(p3 <- predict(gm1,newdata,re.form=NA)) # new data, level-0
str(p4 <- predict(gm1,newdata,re.form= ~(1|herd))) # explicitly specify RE
stopifnot(identical(p2, p4))

profile-methods Profile method for merMod objects

Description

Methods for profile() of [ng]lmer fitted models.

The log() method and the more flexible logProf() utility transform a lmer profile into one
where logarithms of standard deviations are used, while varianceProf converts from the standard-
deviation to the variance scale; see Details.

Usage

S3 method for class 'merMod'
profile(fitted, which = NULL, alphamax = 0.01,
maxpts = 100, delta = NULL,

delta.cutoff = 1/8, verbose = 0, devtol = 1e-09,
devmatchtol = 1e-5,
maxmult = 10, startmethod = "prev", optimizer = NULL,
control=NULL, signames = TRUE,
parallel = c("no", "multicore", "snow"),
ncpus = getOption("profile.ncpus", 1L), cl = NULL,
prof.scale = c("sdcor","varcov"),
...)

profile-methods 97

S3 method for class 'thpr'
as.data.frame(x, ...)

S3 method for class 'thpr'
log(x, base = exp(1))
logProf(x, base = exp(1), ranef = TRUE,

sigIni = if(ranef) "sig" else "sigma")
varianceProf(x, ranef = TRUE)

Arguments

fitted a fitted model, e.g., the result of lmer(..).

which NULL value, integer or character vector indicating which parameters to profile:
default (NULL) is all parameters. For integer, i.e., indexing, the parameters are
ordered as follows:

(1) random effects (theta) parameters; these are ordered as in getME(.,"theta"),
i.e., as the lower triangle of a matrix with standard deviations on the diago-
nal and correlations off the diagonal.

(2) residual standard deviation (or scale parameter for GLMMs where appro-
priate).

(3) fixed effect (beta) parameters.

Alternatively, which may be a character, containing "beta_" or "theta_" de-
noting the fixed or random effects parameters, respectively, or also containing
parameter names, such as ".sigma" or "(Intercept)".

alphamax a number in (0, 1), such that 1 - alphamax is the maximum alpha value for
likelihood ratio confidence regions; used to establish the range of values to be
profiled.

maxpts maximum number of points (in each direction, for each parameter) to evaluate
in attempting to construct the profile.

delta stepping scale for deciding on next point to profile. The code uses the local
derivative of the profile at the current step to establish a change in the focal
parameter that will lead to a step of delta on the square-root-deviance scale. If
NULL, the delta.cutoff parameter will be used to determine the stepping scale.

delta.cutoff stepping scale (see delta) expressed as a fraction of the target maximum value
of the profile on the square-root-deviance scale. Thus a delta.cutoff setting
of 1/n will lead to a profile with approximately 2*n calculated points for each
parameter (i.e., n points in each direction, below and above the estimate for each
parameter).

verbose level of output from internal calculations.

devtol tolerance for fitted deviances less than baseline (supposedly minimum) deviance.

devmatchtol tolerance for match between original deviance computation and value returned
from auxiliary deviance function

maxmult maximum multiplier of the original step size allowed, defaults to 10.

startmethod method for picking starting conditions for optimization (STUB).

optimizer (character or function) optimizer to use (see lmer for details); default is to use
the optimizer from the original model fit.

98 profile-methods

control a list of options controlling the profiling (see lmerControl): default is to use
the control settings from the original model fit.

signames logical indicating if abbreviated names of the form .sigNN should be used; oth-
erwise, names are more meaningful (but longer) of the form (sd|cor)_(effects)|(group).
Note that some code for profile transformations (e.g., log() or varianceProf)
depends on signames==TRUE.

... potential further arguments for various methods.

x an object of class thpr (i.e., output of profile)

base the base of the logarithm. Defaults to natural logarithms.

ranef logical indicating if the sigmas of the random effects should be log() trans-
formed as well. If false, only σ (standard deviation of errors) is transformed.

sigIni character string specifying the initial part of the sigma parameters to be log
transformed.

parallel The type of parallel operation to be used (if any). If missing, the default is taken
from the option "profile.parallel" (and if that is not set, "no").

ncpus integer: number of processes to be used in parallel operation: typically one
would choose this to be the number of available CPUs.

cl An optional parallel or snow cluster for use if parallel = "snow". If not sup-
plied, a cluster on the local machine is created for the duration of the profile
call.

prof.scale whether to profile on the standard deviation-correlation scale ("sdcor") or on
the variance-covariance scale ("varcov")

Details

The log method and the more flexible logProf() function transform the profile into one where
log(σ) is used instead of σ. By default all sigmas including the standard deviations of the random
effects are transformed i.e., the methods return a profile with all of the .sigNN parameters replaced
by .lsigNN. If ranef is false, only ".sigma", the standard deviation of the errors, is transformed
(as it should never be zero, whereas random effect standard deviations (.sigNN) can be reasonably
be zero).
The forward and backward splines for the log-transformed parameters are recalculated. Note that
correlation parameters are not handled sensibly at present (i.e., they are logged rather than taking
a more applicable transformation such as an arc-hyperbolic tangent, atanh(x)=log((1 + x)/(1 −
x))/2).

The varianceProf function works similarly, including non-sensibility for correlation parameters,
by squaring all parameter values, changing the names by appending sq appropriately (e.g. .sigNN
to .sigsqNN). Setting prof.scale="varcov" in the original profile() call is a more computa-
tionally intensive, but more correct, way to compute confidence intervals for covariance parameters.

Methods for function profile (package stats), here for profiling (fitted) mixed effect models.

Value

profile(<merMod>) returns an object of S3 class "thpr", which is data.frame-like. Notable
methods for such a profile object confint(), which returns the confidence intervals based on the

profile-methods 99

profile, and three plotting methods (which require the lattice package), xyplot, densityplot, and
splom.

In addition, the log() (see above) and as.data.frame() methods can transform "thpr" objects
in useful ways.

See Also

The plotting methods xyplot etc, for class "thpr".

For (more expensive) alternative confidence intervals: bootMer.

Examples

fm01ML <- lmer(Yield ~ 1|Batch, Dyestuff, REML = FALSE)
system.time(

tpr <- profile(fm01ML, optimizer="Nelder_Mead", which="beta_")
)## fast; as only *one* beta parameter is profiled over -> 0.09s (2022)

full profiling (default which means 'all') needs longer:
system.time(tpr <- profile(fm01ML, signames=FALSE))
~ 0.26s (2022) + possible warning about convergence
(confint(tpr) -> CIpr)
too much precision (etc). but just FYI:
trgt <- array(c(12.19854, 38.22998, 1486.451,

84.06305, 67.6577, 1568.548), dim = 3:2)
stopifnot(all.equal(trgt, unname(CIpr), tol = .0001)) # had 3.1e-7

if (interactive()) {
library("lattice")
xyplot(tpr)
xyplot(tpr, absVal=TRUE) # easier to see conf.int.s (and check symmetry)
xyplot(tpr, conf = c(0.95, 0.99), # (instead of all five 50, 80,...)

main = "95% and 99% profile() intervals")
xyplot(logProf(tpr, ranef=FALSE),

main = expression("lmer profile()s"~~ log(sigma)*" (only log)"))
densityplot(tpr, main="densityplot(profile(lmer(..)))")
densityplot(varianceProf(tpr), main=" varianceProf(profile(lmer(..)))")
splom(tpr)
splom(logProf(tpr, ranef=FALSE))
doMore <- lme4:::testLevel() > 2
if(doMore) { ## not typically, for time constraint reasons

Batch and residual variance only
system.time(tpr2 <- profile(fm01ML, which=1:2)) # , optimizer="Nelder_Mead" gives warning
print(xyplot(tpr2))
print(xyplot(log(tpr2)))# log(sigma) is better
print(xyplot(logProf(tpr2, ranef=FALSE)))

GLMM example
gm1 <- glmer(cbind(incidence, size - incidence) ~ period + (1 | herd),

data = cbpp, family = binomial)
running ~ 10 seconds on a modern machine {-> "verbose" while you wait}:
print(system.time(pr4 <- profile(gm1, verbose=TRUE)))
print(xyplot(pr4, layout=c(5,1), as.table=TRUE))

100 prt-utilities

print(xyplot(log(pr4), absVal=TRUE)) # log(sigma_1)
print(splom(pr4))
print(system.time(# quicker: only sig01 and one fixed effect

pr2 <- profile(gm1, which=c("theta_", "period2"))))
print(confint(pr2))
delta..: higher underlying resolution, only for 'sigma_1':
print(system.time(

pr4.hr <- profile(gm1, which="theta_", delta.cutoff=1/16)))
print(xyplot(pr4.hr))

}
} # only if interactive()

prt-utilities Print and Summary Method Utilities for Mixed Effects

Description

The print, summary methods (including the print for the summary() result) in lme4 are modular,
using about ten small utility functions. Other packages, building on lme4 can use the same utilities
for ease of programming and consistency of output.

Notably see the Examples.

llikAIC() extracts the log likelihood, AIC, and related statics from a Fitted LMM.

formatVC() “format()”s the VarCorr matrix of the random effects – for print()ing and show()ing;
it is also the “workhorse” of .prt.VC(), and returns a character matrix.

.prt.*() all use cat and print to produce output.

Usage

llikAIC(object, devianceFUN = devCrit, chkREML = TRUE,
devcomp = object@devcomp)

methTitle(dims)

.prt.methTit(mtit, class)

.prt.family (famL)

.prt.resids (resids, digits, title = "Scaled residuals:", ...)

.prt.call (call, long = TRUE)

.prt.aictab (aictab, digits = 1)

.prt.grps (ngrps, nobs)

.prt.warn (optinfo, summary = FALSE, ...)

.prt.VC (varcor, digits, comp = "Std.Dev.", corr = any(comp == "Std.Dev."),
formatter = format, ...)

formatVC(varcor, digits = max(3, getOption("digits") - 2),
comp = "Std.Dev.", corr = any(comp == "Std.Dev."),
formatter = format,
useScale = attr(varcor, "useSc"), ...)

prt-utilities 101

Arguments

object a LMM model fit

devianceFUN the function to be used for computing the deviance; should not be changed for
lme4 created objects.

chkREML optional logical indicating if object maybe a REML fit.

devcomp for lme4 always the equivalent of object@devcomp; here a list

dims for lme4 always the equivalent of object@devcomp$dims, a named vector or
list with components "GLMM", "NLMM", "REML", and "nAGQ" of which the first
two are logical scalars, and the latter two typically are FALSE or numeric.

mtit the result of methTitle(object)

class typically class(object).

famL a list with components family and link, each a character string; note that
standard R family objects can be used directly, as well.

resids numeric vector of model residuals.

digits non-negative integer of (significant) digits to print minimally.

title character string.

... optional arguments passed on, e.g., to residuals().

call the call of the model fit; e.g., available via (generic) function getCall().

long logical indicating if the output may be long, e.g., printing the control part of
the call if there is one.

aictab typically the AICtab component of the result of llikAIC().

varcor typically the result of VarCorr().

comp optional character vector of length 1 or 2, containing "Std.Dev." and/or
"Variance", indicating the columns to use.

corr logical indicating if correlations or covariances should be used for vector ran-
dom effects.

formatter a function used for formatting the numbers.

ngrps integer (vector), typically the result of ngrps(object).

nobs integer; the number of observations, e.g., the result of nobs.

optinfo typically object @ optinfo, the optimization infos, including warnings if there
were.

summary logical

useScale (logical) whether the parent model estimates a scale parameter.

Value

llikAIC() returns a list with components

logLik which is logLik(object), and

AICtab a “table” of AIC, BIC, logLik, deviance and df.residual() values.

102 prt-utilities

Examples

Create a few "lme4 standard" models ------------------------------
fm1 <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy)
fmM <- update(fm1, REML=FALSE) # -> Maximum Likelihood
fmQ <- update(fm1, . ~ Days + (Days | Subject))

gm1 <- glmer(cbind(incidence, size - incidence) ~ period + (1 | herd),
data = cbpp, family = binomial)

gmA <- update(gm1, nAGQ = 5)

(lA1 <- llikAIC(fm1))
(lAM <- llikAIC(fmM))
(lAg <- llikAIC(gmA))

(m1 <- methTitle(fm1 @ devcomp $ dims))
(mM <- methTitle(fmM @ devcomp $ dims))
(mG <- methTitle(gm1 @ devcomp $ dims))
(mA <- methTitle(gmA @ devcomp $ dims))

.prt.methTit(m1, class(fm1))

.prt.methTit(mA, class(gmA))

.prt.family(gaussian())

.prt.family(binomial())

.prt.family(poisson())

.prt.resids(residuals(fm1), digits = 4)

.prt.resids(residuals(fmM), digits = 2)

.prt.call(getCall(fm1))

.prt.call(getCall(gm1))

.prt.aictab (lA1 $ AICtab) # REML

.prt.aictab (lAM $ AICtab) # ML --> AIC, BIC, ...

V1 <- VarCorr(fm1)
m <- formatVC(V1)
stopifnot(is.matrix(m), is.character(m), ncol(m) == 4)
print(m, quote = FALSE) ## prints all but the first line of .prt.VC() below:
.prt.VC(V1, digits = 4)
Random effects:
Groups Name Std.Dev. Corr
Subject (Intercept) 24.740
Days 5.922 0.07
Residual 25.592
p1 <- capture.output(V1)
p2 <- capture.output(print(m, quote=FALSE))
pX <- capture.output(.prt.VC(V1, digits = max(3, getOption("digits")-2)))
stopifnot(identical(p1, p2),

identical(p1, pX[-1])) # [-1] : dropping 1st line

pvalues 103

(Vq <- VarCorr(fmQ)) # default print()
print(Vq, comp = c("Std.Dev.", "Variance"))
print(Vq, comp = c("Std.Dev.", "Variance"), corr=FALSE)
print(Vq, comp = "Variance")

.prt.grps(ngrps = ngrps(fm1),
nobs = nobs (fm1))

--> Number of obs: 180, groups: Subject, 18

.prt.warn(fm1 @ optinfo) # nothing .. had no warnings

.prt.warn(fmQ @ optinfo) # (ditto)

pvalues Getting p-values for fitted models

Description

One of the most frequently asked questions about lme4 is "how do I calculate p-values for estimated
parameters?" Previous versions of lme4 provided the mcmcsamp function, which efficiently gener-
ated a Markov chain Monte Carlo sample from the posterior distribution of the parameters, assum-
ing flat (scaled likelihood) priors. Due to difficulty in constructing a version of mcmcsamp that was
reliable even in cases where the estimated random effect variances were near zero (e.g. https://
stat.ethz.ch/pipermail/r-sig-mixed-models/2009q4/003115.html), mcmcsamp has been with-
drawn (or more precisely, not updated to work with lme4 versions >=1.0.0).

Many users, including users of the aovlmer.fnc function from the languageR package which relies
on mcmcsamp, will be deeply disappointed by this lacuna. Users who need p-values have a variety of
options. In the list below, the methods marked MC provide explicit model comparisons; CI denotes
confidence intervals; and P denotes parameter-level or sequential tests of all effects in a model.
The starred (*) suggestions provide finite-size corrections (important when the number of groups is
<50); those marked (+) support GLMMs as well as LMMs.

• likelihood ratio tests via anova or drop1 (MC,+)

• profile confidence intervals via profile.merMod and confint.merMod (CI,+)

• parametric bootstrap confidence intervals and model comparisons via bootMer (or PBmodcomp
in the pbkrtest package) (MC/CI,*,+)

• for random effects, simulation tests via the RLRsim package (MC,*)

• for fixed effects, F tests via Kenward-Roger approximation using KRmodcomp from the pbkrtest
package (MC,*)

• car::Anova and lmerTest::anova provide wrappers for Kenward-Roger-corrected tests us-
ing pbkrtest: lmerTest::anova also provides t tests via the Satterthwaite approximation
(P,*)

• afex::mixed is another wrapper for pbkrtest and anova providing "Type 3" tests of all
effects (P,*,+)

https://stat.ethz.ch/pipermail/r-sig-mixed-models/2009q4/003115.html
https://stat.ethz.ch/pipermail/r-sig-mixed-models/2009q4/003115.html

104 ranef

arm::sim, or bootMer, can be used to compute confidence intervals on predictions.

For glmer models, the summary output provides p-values based on asymptotic Wald tests (P); while
this is standard practice for generalized linear models, these tests make assumptions both about
the shape of the log-likelihood surface and about the accuracy of a chi-squared approximation to
differences in log-likelihoods.

When all else fails, don’t forget to keep p-values in perspective: https://phdcomics.com/comics/
archive.php?comicid=905

ranef Extract the modes of the random effects

Description

A generic function to extract the conditional modes of the random effects from a fitted model object.
For linear mixed models the conditional modes of the random effects are also the conditional means.

Usage

S3 method for class 'merMod'
ranef(object, condVar = TRUE,

drop = FALSE, whichel = names(ans), postVar = FALSE, ...)
S3 method for class 'ranef.mer'
dotplot(x, data, main = TRUE, transf = I, level = 0.95, ...)

S3 method for class 'ranef.mer'
qqmath(x, data, main = TRUE, level = 0.95, ...)

S3 method for class 'ranef.mer'
as.data.frame(x, ...)

Arguments

object an object of a class of fitted models with random effects, typically a merMod
object.

condVar a logical argument indicating if the conditional variance-covariance matrices of
the random effects should be added as an attribute.

drop should components of the return value that would be data frames with a single
column, usually a column called ‘(Intercept)’, be returned as named vectors
instead?

whichel character vector of names of grouping factors for which the random effects
should be returned.

postVar a (deprecated) synonym for condVar

x a random-effects object (of class ranef.mer) produced by ranef

main include a main title, indicating the grouping factor, on each sub-plot?

transf transformation for random effects: for example, exp for plotting parameters
from a (generalized) logistic regression on the odds rather than log-odds scale

https://phdcomics.com/comics/archive.php?comicid=905
https://phdcomics.com/comics/archive.php?comicid=905

ranef 105

data This argument is required by the dotplot and qqmath generic methods, but is
not actually used.

level confidence level for confidence intervals

... some methods for these generic functions require additional arguments.

Details

If grouping factor i has k levels and j random effects per level the ith component of the list returned
by ranef is a data frame with k rows and j columns. If condVar is TRUE the "postVar" attribute is
an array of dimension j by j by k (or a list of such arrays). The kth face of this array is a positive
definite symmetric j by j matrix. If there is only one grouping factor in the model the variance-
covariance matrix for the entire random effects vector, conditional on the estimates of the model
parameters and on the data, will be block diagonal; this j by j matrix is the kth diagonal block. With
multiple grouping factors the faces of the "postVar" attributes are still the diagonal blocks of this
conditional variance-covariance matrix but the matrix itself is no longer block diagonal.

Value

• From ranef: An object of class ranef.mer composed of a list of data frames, one for each
grouping factor for the random effects. The number of rows in the data frame is the number
of levels of the grouping factor. The number of columns is the dimension of the random effect
associated with each level of the factor.
If condVar is TRUE each of the data frames has an attribute called "postVar".

– If there is a single random-effects term for a given grouping factor, this attribute is a
three-dimensional array with symmetric faces; each face contains the variance-covariance
matrix for a particular level of the grouping factor.

– If there is more than one random-effects term for a given grouping factor (e.g. (1|f) +
(0+x|f)), this attribute is a list of arrays as described above, one for each term.

(The name of this attribute is a historical artifact, and may be changed to condVar at some
point in the future.)
When drop is TRUE any components that would be data frames of a single column are con-
verted to named numeric vectors.

• From as.data.frame:
This function converts the random effects to a "long format" data frame with columns

grpvar grouping variable
term random-effects term, e.g. “(Intercept)” or “Days”
grp level of the grouping variable (e.g., which Subject)
condval value of the conditional mean
condsd conditional standard deviation

Note

To produce a (list of) “caterpillar plots” of the random effects apply dotplot to the result of a call
to ranef with condVar = TRUE; qqmath will generate a list of Q-Q plots.

106 refit

Examples

library(lattice) ## for dotplot, qqmath
fm1 <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy)
fm2 <- lmer(Reaction ~ Days + (1|Subject) + (0+Days|Subject), sleepstudy)
fm3 <- lmer(diameter ~ (1|plate) + (1|sample), Penicillin)
ranef(fm1)
str(rr1 <- ranef(fm1))
dotplot(rr1) ## default
qqmath(rr1)
specify free scales in order to make Day effects more visible
dotplot(rr1,scales = list(x = list(relation = 'free')))[["Subject"]]
plot options: ... can specify appearance of vertical lines with
lty.v, col.line.v, lwd.v, etc..
dotplot(rr1, lty = 3, lty.v = 2, col.line.v = "purple",

col = "red", col.line.h = "gray")
ranef(fm2)
op <- options(digits = 4)
ranef(fm3, drop = TRUE)
options(op)
as.data.frame() provides RE's and conditional standard deviations:
str(dd <- as.data.frame(rr1))
if (require(ggplot2)) {

ggplot(dd, aes(y=grp,x=condval)) +
geom_point() + facet_wrap(~term,scales="free_x") +
geom_errorbarh(aes(xmin=condval -2*condsd,

xmax=condval +2*condsd), height=0)
}

refit Refit a (merMod) Model with a Different Response

Description

Refit a model, possibly after modifying the response vector. This makes use of the model represen-
tation and directly goes to the optimization.

Usage

refit(object, newresp, ...)

S3 method for class 'merMod'
refit(object, newresp = NULL, newweights = NULL,

rename.response = FALSE,
maxit = 100, ...)

Arguments

object a fitted model, usually of class lmerMod, to be refit with a new response.

refit 107

newresp an (optional) numeric vector providing the new response, of the same length as
the original response (see Details for information on NA handling). May also
be a data frame with a single numeric column, e.g. as produced by simulate(object).

newweights an (optional) numeric vector of new weights
rename.response

when refitting the model, should the name of the response variable in the formula
and model frame be replaced with the name of newresp?

maxit scalar integer, currently only for GLMMs: the maximal number of Pwrss update
iterations.

... optional additional parameters. For the merMod method, control.

Details

Refit a model, possibly after modifying the response vector. This could be done using update(), but
the refit() approach should be faster because it bypasses the creation of the model representation
and goes directly to the optimization step.

Setting rename.response = TRUE may be necessary if one wants to do further operations (such as
update) on the fitted model. However, the refitted model will still be slightly different from the
equivalent model fitted via update; in particular, the terms component is not updated to reflect the
new response variable, if it has a different name from the original.

If newresp has an na.action attribute, then it is assumed that NA values have already been re-
moved from the numeric vector; this allows the results of simulate(object) to be used even if the
original response vector contained NA values. Otherwise, the length of newresp must be the same
as the original length of the response.

Value

an object like x, but fit to a different response vector Y .

See Also

update.merMod for more flexible and extensive model refitting; refitML for refitting a REML fitted
model with maximum likelihood (‘ML’).

Examples

Ex. 1: using refit() to fit each column in a matrix of responses -------
set.seed(101)
Y <- matrix(rnorm(1000),ncol=10)
combine first column of responses with predictor variables
d <- data.frame(y=Y[,1],x=rnorm(100),f=rep(1:10,10))
(use check.conv.grad="ignore" to disable convergence checks because we
are using a fake example)
fit first response
fit1 <- lmer(y ~ x+(1|f), data = d,

control= lmerControl(check.conv.grad="ignore",
check.conv.hess="ignore"))

combine fit to first response with fits to remaining responses
res <- c(fit1, lapply(as.data.frame(Y[,-1]), refit, object=fit1))

108 refitML

Ex. 2: refitting simulated data using data that contain NA values ------
sleepstudyNA <- sleepstudy
sleepstudyNA$Reaction[1:3] <- NA
fm0 <- lmer(Reaction ~ Days + (1|Subject), sleepstudyNA)
the special case of refitting with a single simulation works ...
ss0 <- refit(fm0, simulate(fm0))
... but if simulating multiple responses (for efficiency),
need to use na.action=na.exclude in order to have proper length of data
fm1 <- lmer(Reaction ~ Days + (1|Subject), sleepstudyNA, na.action=na.exclude)
ss <- simulate(fm1, 5)
res2 <- refit(fm1, ss[[5]])

refitML Refit a Model by Maximum Likelihood Criterion

Description

Refit a (merMod) model using the maximum likelihood criterion.

Usage

refitML(x, ...)
S3 method for class 'merMod'
refitML(x, optimizer = "bobyqa", ...)

Arguments

x a fitted model, usually of class "lmerMod", to be refit according to the maximum
likelihood criterion.

... optional additional parameters. None are used at present.

optimizer a string indicating the optimizer to be used.

Details

This function is primarily used to get a maximum likelihood fit of a linear mixed-effects model for
an anova comparison.

Value

an object like x but fit by maximum likelihood

See Also

refit and update.merMod for more extensive refitting.

rePCA 109

rePCA PCA of random-effects covariance matrix

Description

PCA of random-effects variance-covariance estimates

Usage

rePCA(x)

Arguments

x a merMod object

Details

Perform a Principal Components Analysis (PCA) of the random-effects variance-covariance esti-
mates from a fitted mixed-effects model. This allows the user to detect and diagnose overfitting
problems in the random effects model (see Bates et al. 2015 for details).

Value

a prcomplist object

Author(s)

Douglas Bates

References

• Douglas Bates, Reinhold Kliegl, Shravan Vasishth, and Harald Baayen. Parsimonious Mixed
Models. arXiv:1506.04967 [stat], June 2015. arXiv: 1506.04967.

See Also

isSingular

Examples

fm1 <- lmer(Reaction~Days+(Days|Subject), sleepstudy)
rePCA(fm1)

110 rePos-class

rePos Generator object for the rePos (random-effects positions) class

Description

The generator object for the rePos class used to determine the positions and orders of random
effects associated with particular random-effects terms in the model.

Usage

rePos(...)

Arguments

... Argument list (see Note).

Methods

new(mer=mer) Create a new rePos object.

Note

Arguments to the new methods must be named arguments. mer, an object of class "merMod", is the
only required/expected argument.

See Also

rePos

rePos-class Class "rePos"

Description

A reference class for determining the positions in the random-effects vector that correspond to
particular random-effects terms in the model formula

Extends

All reference classes extend and inherit methods from "envRefClass".

Examples

showClass("rePos")

residuals.merMod 111

residuals.merMod residuals of merMod objects

Description

residuals of merMod objects

Usage

S3 method for class 'merMod'
residuals(object,

type = if (isGLMM(object)) "deviance" else "response",
scaled = FALSE, ...)

S3 method for class 'lmResp'
residuals(object,

type = c("working", "response", "deviance", "pearson", "partial"),
...)

S3 method for class 'glmResp'
residuals(object,

type = c("deviance", "pearson", "working", "response", "partial"),
...)

Arguments

object a fitted [g]lmer (merMod) object

type type of residuals

scaled scale residuals by residual standard deviation (=scale parameter)?

... additional arguments (ignored: for method compatibility)

Details

• The default residual type varies between lmerMod and glmerMod objects: they try to mimic
residuals.lm and residuals.glm respectively. In particular, the default type is "response",
i.e. (observed-fitted) for lmerMod objects vs. "deviance" for glmerMod objects. type="partial"
is not yet implemented for either type.

• Note that the meaning of "pearson" residuals differs between residuals.lm and residuals.lme.
The former returns values scaled by the square root of user-specified weights (if any), but
not by the residual standard deviation, while the latter returns values scaled by the estimated
standard deviation (which will include the effects of any variance structure specified in the
weights argument). To replicate lme behaviour, use type="pearson", scaled=TRUE.

112 simulate.formula

sigma Extract Residual Standard Deviation ’Sigma’

Description

Extract the estimated standard deviation of the errors, the “residual standard deviation” (also mis-
named the “residual standard error”), from a fitted model.

Usage

S3 method for class 'merMod'
sigma(object, ...)

Arguments

object a fitted model.

... additional, optional arguments, passed from or to methods. (None currently in
our two methods.)

Details

Package lme4 provides methods for mixed-effects models of class merMod and lists of linear models,
lmList4.

Value

Typically a number, the estimated standard deviation of the errors (“residual standard deviation”)
for Gaussian models, and - less interpretably - the square root of the residual deviance per degree
of freedom in more general models.

Examples

methods(sigma)# from R 3.3.0 on, shows methods from pkgs 'stats' *and* 'lme4'

simulate.formula A simulate Method for formula objects that dispatches based on the
Left-Hand Side

Description

This method evaluates the left-hand side (LHS) of the given formula and dispatches it to an appro-
priate method based on the result by setting an nonce class name on the formula.

simulate.merMod 113

Usage

S3 method for class 'formula'
simulate(object, nsim = 1 , seed = NULL, ...,
basis, newdata, data)

Arguments

object a one- or two-sided formula.

nsim,seed number of realisations to simulate and the random seed to use; see simulate

... additional arguments to methods

basis if given, overrides the LHS of the formula for the purposes of dispatching

newdata,data if passed, the object’s LHS is evaluated in this environment; at most one of the
two may be passed.

Details

The dispatching works as follows:

1. If basis is not passed, and the formula has an LHS the expression on the LHS of the formula
in the object is evaluated in the environment newdata or data (if given), in any case enclosed
by the environment of object. Otherwise, basis is used.

2. The result is set as an attribute ".Basis" on object. If there is no basis or LHS, it is not set.

3. The class vector of object has c("formula_lhs_CLASS", "formula_lhs") prepended to
it, where CLASS is the class of the LHS value or basis. If LHS or basis has multiple classes,
they are all prepended; if there is no LHS or basis, c("formula_lhs_", "formula_lhs")
is.

4. simulate generic is evaluated on the new object, with all arguments passed on, excluding
basis; if newdata or data are missing, they too are not passed on. The evaluation takes place
in the parent’s environment.

A "method" to receive a formula whose LHS evaluates to CLASS can therefore be implemented by
a function simulate.formula_lhs_CLASS(). This function can expect a formula object, with
additional attribute .Basis giving the evaluated LHS (so that it does not need to be evaluated again).

simulate.merMod Simulate Responses From merMod Object

Description

Simulate responses from a "merMod" fitted model object, i.e., from the model represented by it.

114 simulate.merMod

Usage

S3 method for class 'merMod'
simulate(object, nsim = 1, seed = NULL,
use.u = FALSE, re.form = NA, ReForm, REForm, REform,
newdata=NULL, newparams=NULL, family=NULL,
allow.new.levels = FALSE, na.action = na.pass, ...)

.simulateFun(object, nsim = 1, seed = NULL, use.u = FALSE,
re.form = NA, ReForm, REForm, REform,
newdata=NULL, newparams=NULL,
formula=NULL, family=NULL, weights=NULL, offset=NULL,
allow.new.levels = FALSE, na.action = na.pass,
cond.sim = TRUE, ...)

Arguments

object (for simulate.merMod) a fitted model object or (for simulate.formula) a
(one-sided) mixed model formula, as described for lmer.

nsim positive integer scalar - the number of responses to simulate.

seed an optional seed to be used in set.seed immediately before the simulation so
as to generate a reproducible sample.

use.u (logical) if TRUE, generate a simulation conditional on the current random-effects
estimates; if FALSE generate new Normally distributed random-effects values.
(Redundant with re.form, which is preferred: TRUE corresponds to re.form =
NULL (condition on all random effects), while FALSE corresponds to re.form =
~0 (condition on none of the random effects).)

re.form formula for random effects to condition on. If NULL, condition on all random
effects; if NA or ~0, condition on no random effects. See Details.

ReForm, REForm, REform

deprecated: re.form is now the preferred argument name.

newdata data frame for which to evaluate predictions.

newparams new parameters to use in evaluating predictions, specified as in the start pa-
rameter for lmer or glmer – a list with components theta and beta and (for
LMMs or GLMMs that estimate a scale parameter) sigma

formula a (one-sided) mixed model formula, as described for lmer.

family a GLM family, as in glmer.

weights prior weights, as in lmer or glmer.

offset offset, as in glmer.
allow.new.levels

(logical) if FALSE (default), then any new levels (or NA values) detected in
newdata will trigger an error; if TRUE, then the prediction will use the un-
conditional (population-level) values for data with previously unobserved levels
(or NAs).

na.action what to do with NA values in new data: see na.fail

simulate.merMod 115

cond.sim (experimental) simulate the conditional distribution? if FALSE, simulate only
random effects; do not simulate from the conditional distribution, rather return
the predicted group-level values

... optional additional arguments (none are used in .simulateFormula)

Details

• ordinarily simulate is used to generate new values from an existing, fitted model (merMod
object): however, if formula, newdata, and newparams are specified, simulate generates the
appropriate model structure to simulate from. formula must be a one-sided formula (i.e. with
an empty left-hand side); in general, if f is a two-sided formula, f[-2] can be used to drop
the LHS.

• The re.form argument allows the user to specify how the random effects are incorporated in
the simulation. All of the random effects terms included in re.form will be conditioned on -
that is, the conditional modes of those random effects will be included in the deterministic part
of the simulation. (If new levels are used (and allow.new.levels is TRUE), the conditional
modes for these levels will be set to the population mode, i.e. values of zero will be used for
the random effects.) Conversely, the random effect terms that are not included in re.form will
be simulated from - that is, new values will be chosen for each group based on the estimated
random-effects variances.
The default behaviour (using re.form=NA) is to condition on none of the random effects,
simulating new values for all of the random effects.

• For Gaussian fits, sigma specifies the residual standard deviation; for Gamma fits, it specifies
the shape parameter (the rate parameter for each observation i is calculated as shape/mean(i)).
For negative binomial fits, the overdispersion parameter is specified via the family, e.g. simulate(...,
family=negative.binomial(theta=1.5)).

• For binomial models, simulate.formula looks for the binomial size first in the weights
argument (if it’s supplied), second from the left-hand side of the formula (if the formula has
been specified in success/failure form), and defaults to 1 if neither of those have been supplied.
Simulated responses will be given as proportions, unless the supplied formula has a matrix-
valued left-hand side, in which case they will be given in matrix form. If a left-hand side is
given, variables in that expression must be available in newdata.

• For negative binomial models, use the negative.binomial family (from the MASS package)
and specify the overdispersion parameter via the theta (sic) parameter of the family function,
e.g. simulate(...,family=negative.binomial(theta=1)) to simulate from a geometric
distribution (negative binomial with overdispersion parameter 1).

See Also

bootMer for “simulestimate”, i.e., where each simulation is followed by refitting the model.

Examples

test whether fitted models are consistent with the
observed number of zeros in CBPP data set:
gm1 <- glmer(cbind(incidence, size - incidence) ~ period + (1 | herd),

data = cbpp, family = binomial)
gg <- simulate(gm1,1000)

https://CRAN.R-project.org/package=MASS

116 sleepstudy

zeros <- sapply(gg,function(x) sum(x[,"incidence"]==0))
plot(table(zeros))
abline(v=sum(cbpp$incidence==0),col=2)
##
simulate from a non-fitted model; in this case we are just
replicating the previous model, but starting from scratch
params <- list(theta=0.5,beta=c(2,-1,-2,-3))
simdat <- with(cbpp,expand.grid(herd=levels(herd),period=factor(1:4)))
simdat$size <- 15
simdat$incidence <- sample(0:1,size=nrow(simdat),replace=TRUE)
form <- formula(gm1)[-2] ## RHS of equation only
simulate(form,newdata=simdat,family=binomial,

newparams=params)
simulate from negative binomial distribution instead
simulate(form,newdata=simdat,family=negative.binomial(theta=2.5),

newparams=params)

sleepstudy Reaction times in a sleep deprivation study

Description

The average reaction time per day (in milliseconds) for subjects in a sleep deprivation study.

Days 0-1 were adaptation and training (T1/T2), day 2 was baseline (B); sleep deprivation started
after day 2.

Format

A data frame with 180 observations on the following 3 variables.

Reaction Average reaction time (ms)

Days Number of days of sleep deprivation

Subject Subject number on which the observation was made.

Details

These data are from the study described in Belenky et al. (2003), for the most sleep-deprived group
(3 hours time-in-bed) and for the first 10 days of the study, up to the recovery period. The original
study analyzed speed (1/(reaction time)) and treated day as a categorical rather than a continuous
predictor.

References

Gregory Belenky, Nancy J. Wesensten, David R. Thorne, Maria L. Thomas, Helen C. Sing, Daniel P.
Redmond, Michael B. Russo and Thomas J. Balkin (2003) Patterns of performance degradation and
restoration during sleep restriction and subsequent recovery: a sleep dose-response study. Journal
of Sleep Research 12, 1–12.

subbars 117

Examples

str(sleepstudy)
require(lattice)
xyplot(Reaction ~ Days | Subject, sleepstudy, type = c("g","p","r"),

index = function(x,y) coef(lm(y ~ x))[1],
xlab = "Days of sleep deprivation",
ylab = "Average reaction time (ms)", aspect = "xy")

(fm1 <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy, subset=Days>=2))
independent model
(fm2 <- lmer(Reaction ~ Days + (1|Subject) + (0+Days|Subject), sleepstudy, subset=Days>=2))

subbars "Sub[stitute] Bars"

Description

Substitute the ’+’ function for the ’|’ function in a mixed-model formula, recursively (hence the
argument name term). This provides a formula suitable for the current model.frame function.

Usage

subbars(term)

Arguments

term a mixed-model formula

Value

the formula with all | operators replaced by +

See Also

formula, model.frame, model.matrix.

Other utilities: findbars, nobars, mkRespMod, mkReTrms, nlformula.

Examples

subbars(Reaction ~ Days + (Days|Subject)) ## => Reaction ~ Days + (Days + Subject)

118 troubleshooting

troubleshooting Troubleshooting

Description

This page attempts to summarize some of the common problems with fitting [gn]lmer models and
how to troubleshoot them.

Most of the symptoms/diagnoses/workarounds listed below are due to various issues in the actual
mixed model fitting process. You may run into problems due to multicollinearity or variables that
are incorrectly typed (e.g. a variable is accidentally coded as character or factor rather than nu-
meric). These problems can often be isolated by trying a lm or glm fit or attempting to construct the
design matrix via model.matrix() (in each case with the random effects in your model excluded).
If these tests fail then the problem is likely not specifically an lme4 issue.

• failure to converge in (xxxx) evaluations The optimizer hit its maximum limit of func-
tion evaluations. To increase this, use the optControl argument of [g]lmerControl – for
Nelder_Mead and bobyqa the relevant parameter is maxfun; for optim and optimx-wrapped
optimizers, including nlminbwrap, it’s maxit; for nloptwrap, it’s maxeval.

• Model failed to converge with max|grad| ... The scaled gradient at the fitted (RE)ML
estimates is worryingly large. Try

– refitting the parameters starting at the current estimates: getting consistent results (with
no warning) suggests a false positive

– switching optimizers: getting consistent results suggests there is not really a problem;
getting a similar log-likelihood with different parameter estimates suggests that the pa-
rameters are poorly determined (possibly the result of a misspecified or overfitted model)

– compute values of the deviance in the neighbourhood of the estimated parameters to
double-check that lme4 has really found a local optimum.

• Hessian is numerically singular: parameters are not uniquely determined The Hes-
sian (inverse curvature matrix) at the maximum likelihood or REML estimates has a very large
eigenvalue, indicating that (within numerical tolerances) the surface is completely flat in some
direction. The model may be misspecified, or extremely badly scaled (see "Model is nearly
unidentifiable").

• Model is nearly unidentifiable ... Rescale variables? The Hessian (inverse curvature
matrix) at the maximum likelihood or REML estimates has a large eigenvalue, indicating that
the surface is nearly flat in some direction. Consider centering and/or scaling continuous
predictor variables.

• Contrasts can be applied only to factors with 2 or more levels One or more of the cat-
egorical predictors in the model has fewer than two levels. This may be due to user error when
converting these predictors to factors prior to modeling, or it may result from some factor lev-
els being eliminated due to NAs in other predictors. Double-check the number of data points
in each factor level to see which one is the culprit: lapply(na.omit(df[,vars]), table)
(where df is the data.frame and vars are the column names of your predictor variables).

VarCorr 119

VarCorr Extract Variance and Correlation Components

Description

This function calculates the estimated variances, standard deviations, and correlations between the
random-effects terms in a mixed-effects model, of class merMod (linear, generalized or nonlinear).
The within-group error variance and standard deviation are also calculated.

Usage

S3 method for class 'merMod'
VarCorr(x, sigma=1, ...)

S3 method for class 'VarCorr.merMod'
as.data.frame(x, row.names = NULL,

optional = FALSE, order = c("cov.last", "lower.tri"), ...)
S3 method for class 'VarCorr.merMod'
print(x, digits = max(3, getOption("digits") - 2),

comp = "Std.Dev.", corr = any(comp == "Std.Dev."),
formatter = format, ...)

Arguments

x for VarCorr: a fitted model object, usually an object inheriting from class
merMod. For as.data.frame, a VarCorr.merMod object returned from VarCorr.

sigma an optional numeric value used as a multiplier for the standard deviations.
digits an optional integer value specifying the number of digits
order arrange data frame with variances/standard deviations first and covariances/correlations

last for each random effects term ("cov.last"), or in the order of the lower tri-
angle of the variance-covariance matrix ("lower.tri")?

row.names, optional

Ignored: necessary for the as.data.frame method.
... Ignored for the as.data.frame method; passed to other print() methods for

the print() method.
comp a character vector, specifying the components to be printed; simply passed to

formatVC().
formatter a function for formatting the numbers; simply passed to formatVC().
corr (logical) print correlations (rather than covariances) of random effects?

Details

The print method for VarCorr.merMod objects has optional arguments digits (specify digits of
precision for printing) and comp: the latter is a character vector with any combination of "Variance"
and "Std.Dev.", to specify whether variances, standard deviations, or both should be printed.

120 vcconv

Value

An object of class VarCorr.merMod. The internal structure of the object is a list of matrices, one for
each random effects grouping term. For each grouping term, the standard deviations and correlation
matrices for each grouping term are stored as attributes "stddev" and "correlation", respectively,
of the variance-covariance matrix, and the residual standard deviation is stored as attribute "sc" (for
glmer fits, this attribute stores the scale parameter of the model).

The as.data.frame method produces a combined data frame with one row for each variance or
covariance parameter (and a row for the residual error term where applicable) and the following
columns:

grp grouping factor

var1 first variable

var2 second variable (NA for variance parameters)

vcov variances or covariances

sdcor standard deviations or correlations

Author(s)

This is modeled after VarCorr from package nlme, by Jose Pinheiro and Douglas Bates.

See Also

lmer, nlmer

Examples

data(Orthodont, package="nlme")
fm1 <- lmer(distance ~ age + (age|Subject), data = Orthodont)
print(vc <- VarCorr(fm1)) ## default print method: standard dev and corr
both variance and std.dev.
print(vc,comp=c("Variance","Std.Dev."), digits=2)
variance only
print(vc, comp=c("Variance"))
standard deviations only, but covariances rather than correlations
print(vc, corr = FALSE)
as.data.frame(vc)
as.data.frame(vc, order="lower.tri")

vcconv Convert between representations of (co-)variance structures

Description

Convert between representations of (co-)variance structures (EXPERIMENTAL). See source code
for details.

https://CRAN.R-project.org/package=nlme

vcconv 121

Usage

mlist2vec(L)
vec2mlist(v, n = NULL, symm = TRUE)
vec2STlist(v, n = NULL)
sdcor2cov(m)
cov2sdcor(V)
Vv_to_Cv(v, n = NULL, s = 1)
Sv_to_Cv(v, n = NULL, s = 1)
Cv_to_Vv(v, n = NULL, s = 1)
Cv_to_Sv(v, n = NULL, s = 1)

Arguments

L List of symmetric, upper-triangular, or lower-triangular square matrices.
v Concatenated vector containing the elements of the lower-triangle (including the

diagonal) of a symmetric or triangular matrix.
n Number of rows (and columns) of the resulting matrix.
symm Return symmetric matrix if TRUE or lower-triangular if FALSE.
m Standard deviation-correlation matrix.
V Covariance matrix.
s Scale parameter.

Details

mlist2vec Convert list of matrices to concatenated vector of lower triangles with an attribute that
gives the dimension of each matrix in the original list. This attribute may be used to reconstruct
the matrices. Returns a concatenation of the elements in one triangle of each matrix. An
attribute "clen" gives the dimension of each matrix.

vec2mlist Convert concatenated vector to list of matrices (lower triangle or symmetric). These
matrices could represent Cholesky factors, covariance matrices, or correlation matrices (with
standard deviations on the diagonal).

vec2STlist Convert concatenated vector to list of ST matrices.
sdcor2cov Standard deviation-correlation matrix to covariance matrix convert ’sdcor’ format (std

dev on diagonal, cor on off-diag) to and from variance-covariance matrix.
cov2sdcor Covariance matrix to standard deviation-correlation matrix (i.e. standard deviations on

the diagonal and correlations off the diagonal).
Vv_to_Cv Variance-covariance to relative covariance factor. Returns a vector of elements from the

lower triangle of a relative covariance factor.
Sv_to_Cv Standard-deviation-correlation to relative covariance factor. Returns a vector of ele-

ments from the lower triangle of a relative covariance factor.
Cv_to_Vv Relative covariance factor to variance-covariance. From unscaled Cholesky vector to

(possibly scaled) variance-covariance vector. Returns a vector of elements from the lower
triangle of a variance-covariance matrix.

Cv_to_Sv Relative covariance factor to standard-deviation-correlation. From unscaled Chol to sd-
cor vector. Returns a vector of elements from the lower triangle of a standard-deviation-
correlation matrix.

122 VerbAgg

Value

(Co-)variance structure

Examples

vec2mlist(1:6)
mlist2vec(vec2mlist(1:6)) # approximate inverse

VerbAgg Verbal Aggression item responses

Description

These are the item responses to a questionaire on verbal aggression. These data are used throughout
De Boeck and Wilson (2004) to illustrate various forms of item response models.

Format

A data frame with 7584 observations on the following 13 variables.

Anger the subject’s Trait Anger score as measured on the State-Trait Anger Expression Inventory
(STAXI)

Gender the subject’s gender - a factor with levels M and F

item the item on the questionaire, as a factor

resp the subject’s response to the item - an ordered factor with levels no < perhaps < yes

id the subject identifier, as a factor

btype behavior type - a factor with levels curse, scold and shout

situ situation type - a factor with levels other and self indicating other-to-blame and self-to-
blame

mode behavior mode - a factor with levels want and do

r2 dichotomous version of the response - a factor with levels N and Y

Source

Data originally from the UC Berkeley BEAR Center; original link is available at https://web.
archive.org/web/20221128003829/https://old.bear.berkeley.edu/page/materials-explanatory-item-response-models,
but the data are no longer accessible there.

References

De Boeck and Wilson (2004), Explanatory Item Response Models, Springer.

https://web.archive.org/web/20221128003829/https://old.bear.berkeley.edu/page/materials-explanatory-item-response-models
https://web.archive.org/web/20221128003829/https://old.bear.berkeley.edu/page/materials-explanatory-item-response-models

VerbAgg 123

Examples

str(VerbAgg)
Show how r2 := h(resp) is defined:
with(VerbAgg, stopifnot(identical(r2, {

r <- factor(resp, ordered=FALSE); levels(r) <- c("N","Y","Y"); r})))

xtabs(~ item + resp, VerbAgg)
xtabs(~ btype + resp, VerbAgg)
round(100 * ftable(prop.table(xtabs(~ situ + mode + resp, VerbAgg), 1:2), 1))
person <- unique(subset(VerbAgg, select = c(id, Gender, Anger)))
require(lattice)
densityplot(~ Anger, person, groups = Gender, auto.key = list(columns = 2),

xlab = "Trait Anger score (STAXI)")

if(lme4:::testLevel() >= 3) { ## takes about 15 sec
print(fmVA <- glmer(r2 ~ (Anger + Gender + btype + situ)^2 +
(1|id) + (1|item), family = binomial, data =

VerbAgg), corr=FALSE)
} ## testLevel() >= 3
if (interactive()) {
much faster but less accurate

print(fmVA0 <- glmer(r2 ~ (Anger + Gender + btype + situ)^2 +
(1|id) + (1|item), family = binomial,

data = VerbAgg, nAGQ=0L), corr=FALSE)
} ## interactive()

Index

∗ GLMM
glmer, 34
glmer.nb, 37

∗ LMM
lmer, 51

∗ NLMM
nlmer, 84

∗ boundary
isSingular, 49

∗ classes
glmFamily, 39
glmFamily-class, 40
golden-class, 40
lmList4-class, 61
lmResp, 62
lmResp-class, 63
merMod-class, 64
merPredD, 69
merPredD-class, 69
NelderMead, 79
NelderMead-class, 81
rePos, 110
rePos-class, 110

∗ datasets
Arabidopsis, 7
cake, 11
cbpp, 12
Dyestuff, 24
grouseticks, 42
InstEval, 46
Pastes, 89
Penicillin, 90
sleepstudy, 116
VerbAgg, 122

∗ htest
bootMer, 8

∗ methods
profile-methods, 96
ranef, 104

∗ misc
drop1.merMod, 21

∗ models
allFit, 5
bootMer, 8
expandDoubleVerts, 25
factorize, 26
findbars, 26
fixef, 27
glmer, 34
glmer.nb, 37
influence.merMod, 44
lmer, 51
lmList, 60
modular, 74
nlmer, 84
nobars, 88
ranef, 104
subbars, 117
VarCorr, 119

∗ utilities
devfun2, 20
expandDoubleVerts, 25
factorize, 26
findbars, 26
getME, 29
glmerLaplaceHandle, 38
isSingular, 49
mkReTrms, 71
nobars, 88
prt-utilities, 100
subbars, 117

.makeCC (lmerControl), 54

.prt.VC (prt-utilities), 100

.prt.aictab (prt-utilities), 100

.prt.call (prt-utilities), 100

.prt.family (prt-utilities), 100

.prt.grps (prt-utilities), 100

.prt.methTit (prt-utilities), 100

124

INDEX 125

.prt.resids (prt-utilities), 100

.prt.warn (prt-utilities), 100

.simulateFun (simulate.merMod), 113

abs, 94
AIC, 101
allFit, 5, 17, 59
anova, 67, 108
anova.merMod (merMod-class), 64
Arabidopsis, 7
as, 62
as.data.frame, 99
as.data.frame.ranef.mer (ranef), 104
as.data.frame.thpr (profile-methods), 96
as.data.frame.VarCorr.merMod (VarCorr),

119
as.formula, 53
as.function.merMod (merMod-class), 64

BIC, 101
bobyqa, 56, 58, 76, 87
boot, 10
boot.ci, 10, 15
bootMer, 4, 8, 15, 96, 99, 103, 104, 115

cake, 11
call, 101
cat, 100
cbpp, 12
character, 15, 56, 100, 101, 119
checkConv, 13
class, 10, 61, 101
clusterExport, 10
coef, 62
coef.merMod (merMod-class), 64
confint, 62, 98
confint.merMod, 10, 14, 103
confint.thpr (confint.merMod), 14
convergence, 13, 14, 16, 58, 59
cooks.distance, 44, 45
cooks.distance.influence.merMod

(influence.merMod), 44
cooks.distance.merMod

(influence.merMod), 44
cov2sdcor (vcconv), 120
Cv_to_Sv (vcconv), 120
Cv_to_Vv (vcconv), 120

data.frame, 98

densityplot, 94
densityplot.thpr (plots.thpr), 93
deriv, 84
devcomp, 19
devfun2, 20
deviance.merMod (merMod-class), 64
df.residual, 101
df.residual.merMod (merMod-class), 64
dfbeta, 44, 45
dfbeta.influence.merMod

(influence.merMod), 44
dfbetas, 44, 45
dfbetas.influence.merMod

(influence.merMod), 44
dgCMatrix, 30
dotplot, 105
dotplot.ranef.mer (ranef), 104
drop1, 21, 53, 84
drop1.merMod, 21, 68
dummy, 23, 25, 51
Dyestuff, 24
Dyestuff2 (Dyestuff), 24

environment, 77
envRefClass, 40, 41, 63, 69, 81, 110
expandDoubleVerts, 25
extractAIC, 65
extractAIC.merMod (merMod-class), 64

factor, 23, 82
factorize, 26
family, 34, 40, 60, 63, 67, 76, 101
family.merMod (merMod-class), 64
findbars, 26, 71, 73, 83, 88, 117
fitted, 62
fitted.merMod (merMod-class), 64
fixed.effects (fixef), 27
fixef, 27, 30, 32, 62
formatVC, 119
formatVC (prt-utilities), 100
formula, 25, 27, 60, 62, 88, 113, 117
formula.merMod (merMod-class), 64
fortify, 28
fortify.merMod, 68
function, 20, 21, 79, 95, 101, 119

getCall, 32, 101
getData (fortify), 28
getL (getME), 29

126 INDEX

getL,merMod-method (getME), 29
getME, 20, 21, 29, 38, 51, 66, 68, 73
getOption, 85
GHrule, 32, 41
glFormula (modular), 74
glm, 34–36, 40, 53, 60, 76, 77
glmer, 4, 8, 9, 29, 31, 34, 37–39, 44, 53, 58,

63, 65, 66, 68, 70, 81, 82, 95, 114
glmer.nb, 31, 36, 37
glmerControl, 31, 34, 37, 52, 84
glmerControl (lmerControl), 54
glmerLaplaceHandle, 38
glmerMod-class (merMod-class), 64
glmFamily, 39, 39, 40
glmFamily-class, 40
glmResp, 62–64, 68, 76
glmResp (lmResp), 62
glmResp-class (lmResp-class), 63
golden (golden-class), 40
golden-class, 40
GQdk, 33, 41, 41
GQN (GQdk), 41
grouseticks, 42
grouseticks_agg (grouseticks), 42

hatvalues.merMod, 43

infIndexPlot, 45, 46
influence, 44
influence.measures, 46
influence.merMod, 44
InstEval, 46
isGLMM (isREML), 48
isGLMM.merMod, 68
isLMM (isREML), 48
isLMM.merMod, 68
isNested, 47
isNLMM (isREML), 48
isNLMM.merMod, 68
isREML, 31, 48, 65
isREML.merMod, 68
isSingular, 18, 49, 57, 109

lFormula (modular), 74
library, 56
list, 20, 29–31, 37, 41, 52, 58, 61, 70, 72, 76,

80, 85, 86, 98, 101
llikAIC (prt-utilities), 100
lm, 53, 60, 61

lme4 (lme4-package), 4
lme4-package, 4
lme4_testlevel, 51
lmer, 4, 8, 9, 21, 29, 35, 36, 44, 51, 58, 61, 63,

65–68, 70, 73, 76, 82, 84, 94–97,
114, 120

lmerControl, 5, 14, 18, 34, 52, 54, 70, 76, 77,
84, 86, 98

lmerMod, 106, 108
lmerMod-class (merMod-class), 64
lmerResp, 62–64, 68, 76
lmerResp (lmResp), 62
lmerResp-class (lmResp-class), 63
lmList, 60, 61, 62
lmList4, 61, 112
lmList4-class, 61
lmResp, 39, 62, 62, 63, 64
lmResp-class, 63
log, 98, 99
log.thpr (profile-methods), 96
logical, 20, 37, 101
logLik, 62, 67, 101
logLik.merMod (merMod-class), 64
logProf (profile-methods), 96

makeCluster, 45
matrix, 15, 74, 84
mcmcsamp (pvalues), 103
merMod, 4, 14, 19, 20, 29, 36, 43, 48, 53, 63,

65, 67, 70, 82, 95, 104, 110, 112,
113, 119

merMod (merMod-class), 64
merMod-class, 64
merPredD, 39, 64, 68, 69, 69, 70
merPredD-class, 69
methods, 61, 62
methTitle (prt-utilities), 100
mkDataTemplate (mkSimulateTemplate), 73
mkGlmerDevfun, 67
mkGlmerDevfun (modular), 74
mkLmerDevfun, 67, 76
mkLmerDevfun (modular), 74
mkMerMod, 70, 77
mkNewReTrms (mkReTrms), 71
mkParsTemplate (mkSimulateTemplate), 73
mkRespMod, 25, 27, 71, 73, 83, 88, 117
mkReTrms, 25, 27, 70, 71, 71, 76, 77, 83, 88,

117
mkSimulateTemplate, 73

INDEX 127

mkVarCorr, 74
mlist2vec (vcconv), 120
model.frame, 25, 27, 70, 88, 117
model.frame.merMod (merMod-class), 64
model.matrix, 23, 25, 27, 88, 117
model.matrix.default, 35, 76, 85
model.matrix.merMod (merMod-class), 64
model.offset, 35, 52, 60, 76, 85
modular, 4, 34, 56, 74, 76

na.fail, 114
na.pass, 95
name, 32
namedList, 78
negative.binomial, 38
negative.binomial (glmer.nb), 37
Nelder_Mead, 56, 58, 76, 82
Nelder_Mead (NelderMead), 79
NelderMead, 79, 80, 81
NelderMead (NelderMead-class), 81
NelderMead-class, 81
new, 40, 81
ngrps, 67, 82, 101
ngrps.merMod (merMod-class), 64
nlformula, 25, 27, 71, 73, 83, 88, 117
nlmer, 4, 29, 36, 53, 58, 63, 66, 68, 70, 81–83,

84, 120
nlmerControl (lmerControl), 54
nlmerMod-class (merMod-class), 64
nlminb, 56, 76, 87
nlminbwrap, 56
nlminbwrap (nloptwrap), 86
nloptwrap, 56, 59, 86
nlsResp, 62–64, 68, 83
nlsResp (lmResp), 62
nlsResp-class (lmResp-class), 63
nobars, 25, 27, 71, 73, 83, 88, 117
nobs, 101
nobs (merMod-class), 64
numeric, 101

offset, 35, 52, 60, 76, 85
optim, 56, 58, 76, 79
optimize, 37
optimizeGlmer (modular), 74
optimizeLmer (modular), 74
options, 58

pairs, 62

Pastes, 89
PBmodcomp, 10
Penicillin, 90
plot, 62
plot.lmList (lmList), 60
plot.merMod, 68, 91
plots.thpr, 93
pnbinom, 38
predict, 62, 95
predict.merMod, 67, 68, 95
print, 62, 94, 100, 119
print.merMod (merMod-class), 64
print.summary.merMod (merMod-class), 64
print.VarCorr.merMod (VarCorr), 119
profile, 15, 16, 94, 96, 98
profile(.), 16
profile-methods, 96
profile.merMod, 15, 16, 68, 103
profile.merMod (profile-methods), 96
prt-utilities, 100
pvalues, 4, 10, 103

qqmath, 105
qqmath.merMod (plot.merMod), 91
qqmath.ranef.mer, 92
qqmath.ranef.mer (ranef), 104
qqnorm, 62

ranef, 32, 62, 104
ranef.merMod, 68
rankMatrix, 57
ReferenceClasses, 4, 77
refit, 10, 37, 106, 108
refit.merMod, 68
refitML, 107, 108
refitML.merMod, 68
reformulate, 53
REMLcrit (merMod-class), 64
rePCA, 49, 51, 109
rePos, 110, 110
rePos-class, 110
residuals, 62, 101
residuals.glm, 111
residuals.glmResp (residuals.merMod),

111
residuals.lm, 111
residuals.lme, 111
residuals.lmResp (residuals.merMod), 111
residuals.merMod, 68, 111

128 INDEX

rnorm, 9, 73

scale, 16
sdcor2cov (vcconv), 120
selfStart, 84
set.seed, 8, 114
show, 62, 100
show,lmList4-method (lmList4-class), 61
show,merMod-method (merMod-class), 64
show.merMod (merMod-class), 64
show.summary.merMod (merMod-class), 64
sigma, 52, 62, 66, 112
sigma.merMod, 68
simulate, 107, 113
simulate.formula, 112
simulate.merMod, 8, 9, 68, 73, 113
sleepstudy, 116
splom, 94
splom.thpr (plots.thpr), 93
SSbiexp, 84
SSlogis, 84
stop, 61, 80
subbars, 25, 27, 71, 73, 83, 88, 117
summary, 62, 67, 100
summary.merMod, 68
summary.merMod (merMod-class), 64
summary.summary.merMod (merMod-class),

64
Sv_to_Cv (vcconv), 120
symnum, 66

terms, 95
terms.merMod (merMod-class), 64
theta.ml, 37, 38
troubleshooting, 118

update, 53, 62, 66, 67, 84, 107
update.formula, 66
update.merMod, 107, 108
update.merMod (merMod-class), 64
updateGlmerDevfun (modular), 74

VarCorr, 74, 100, 101, 119, 120
varianceProf, 98
varianceProf (profile-methods), 96
vcconv, 120
vcov, 32, 67
vcov.merMod (merMod-class), 64
vcov.summary.merMod (merMod-class), 64

vec2mlist (vcconv), 120
vec2STlist (vcconv), 120
VerbAgg, 122
Vv_to_Cv (vcconv), 120

warning, 61, 80
weights.merMod (merMod-class), 64

xyplot, 94, 99
xyplot.thpr (plots.thpr), 93

	lme4-package
	allFit
	Arabidopsis
	bootMer
	cake
	cbpp
	checkConv
	confint.merMod
	convergence
	devcomp
	devfun2
	drop1.merMod
	dummy
	Dyestuff
	expandDoubleVerts
	factorize
	findbars
	fixef
	fortify
	getME
	GHrule
	glmer
	glmer.nb
	glmerLaplaceHandle
	glmFamily
	glmFamily-class
	golden-class
	GQdk
	grouseticks
	hatvalues.merMod
	influence.merMod
	InstEval
	isNested
	isREML
	isSingular
	lme4_testlevel
	lmer
	lmerControl
	lmList
	lmList4-class
	lmResp
	lmResp-class
	merMod-class
	merPredD
	merPredD-class
	mkMerMod
	mkRespMod
	mkReTrms
	mkSimulateTemplate
	mkVarCorr
	modular
	namedList
	NelderMead
	NelderMead-class
	ngrps
	nlformula
	nlmer
	nloptwrap
	nobars
	Pastes
	Penicillin
	plot.merMod
	plots.thpr
	predict.merMod
	profile-methods
	prt-utilities
	pvalues
	ranef
	refit
	refitML
	rePCA
	rePos
	rePos-class
	residuals.merMod
	sigma
	simulate.formula
	simulate.merMod
	sleepstudy
	subbars
	troubleshooting
	VarCorr
	vcconv
	VerbAgg
	Index

