Package ‘diversityForest’

March 8, 2023
Type Package

Title Innovative Complex Split Procedures in Random Forests Through
Candidate Split Sampling

Version 0.4.0

Date 2023-03-07

Author Roman Hornung [aut, cre], Marvin N. Wright [ctb, cph]
Maintainer Roman Hornung <hornung@ibe.med.uni-muenchen.de>

Description Implements interaction forests [1], which are specific diversity forests and
the basic form of diversity forests that uses univariable, binary splitting [2].
Interaction forests (IFs) are ensembles of decision trees that model quantitative and
qualitative interaction effects using bivariable splitting. IFs come with the
Effect Importance Measure (EIM), which can be used to identify variable pairs that
feature quantitative and qualitative interaction effects with high predictive
relevance. IFs and EIM focus on well interpretable forms of interactions.

The package also offers plot functions for visualising the estimated forms of
interaction effects.
Categorical, metric, and survival outcomes are supported.
This is a fork of the R package 'ranger' (main author: Marvin N. Wright) that
implements random forests using an efficient C++ implementation.
References:
[1] Hornung, R. & Boulesteix, A.-L. (2022) Interaction Forests: Identifying and
exploiting interpretable quantitative and qualitative interaction effects.
Computational Statistics & Data Analysis 171:107460, <doi:10.1016/j.csda.2022.107460>.
[2] Hornung, R. (2022) Diversity forests: Using split sampling to enable
innovative complex split procedures in random forests.
SN Computer Science 3(2):1, <doi:10.1007/s42979-021-00920-1>.

SystemRequirements C++17
Encoding UTF-8
License GPL-3

Imports Rcpp (>=0.11.2), Matrix, ggplot2, ggpubr, scales, nnet,
sgeostat, rms, MapGAM, gam, rlang, grDevices, RColorBrewer,
RceppEigen, survival

LinkingTo Rcpp, ReppEigen

https://doi.org/10.1016/j.csda.2022.107460
https://doi.org/10.1007/s42979-021-00920-1

diversityForest-package

Depends R (>=3.5)
Suggests testthat, BOLTSSIRR

Additional_repositories https://romanhornung.github.io/drat
RoxygenNote 7.2.3

NeedsCompilation yes

Repository CRAN

Date/Publication 2023-03-08 08:20:02 UTC

R topics documented:

Index

diversityForest-package 2
divfor e 3
importance.divforo 9
interactionfor L e 10
plotinteractionfor L 18
plotEffects 20
plotPair 26
predict.divfor L 29
predictinteractionfor 31
StOCK . . . e 33
tunedivfor 34
ZOO . o v e e e e e e e e e e e 36

38

diversityForest-package

Diversity Forests

Description

The diversity forest algorithm is not a specific algorithm, but an alternative candidate split sam-
pling scheme that makes complex split procedures in random forests possible computationally by
drastically reducing the numbers of candidate splits that need to be evaluated for each split. It also
avoids the well-known variable selection bias in conventional random forests that has the effect that
variables with many possible splits are selected too frequently for splitting (Strobl et al., 2007). For
details, see Hornung (2022).

Details

This package currently features two types of diversity forests:

* the basic form of diversity forests that uses univariable, binary splitting, which is also used in

conventional random forests

https://romanhornung.github.io/drat

divfor

interaction forests (IFs) (Hornung & Boulesteix, 2022), which use bivariable splitting to model
quantitative and qualitative interaction effects. IFs feature the Effect Importance Measure
(EIM), which ranks the variable pairs with respect to the predictive importance of their quan-
titative and qualitative interaction effects. The individual variables can be ranked as well using
EIM. For details, see Hornung & Boulesteix (2022).

Diversity forests with univariable splitting can be constructed using the function divfor and inter-
action forests using the function interactionfor. Both functions support categorical, metric, and
survival outcomes.

This package is a fork of the R package ’ranger’ that implements random forests using an efficient
C++ implementation. The documentation is in large parts taken from ‘ranger’, where some parts of
the documentation may not apply to (the current version of) the ’diversityForest” package.

Details on further functionalities of the code that are not presented in the help pages of *diversity-

Fores

t” are found in the help pages of ‘ranger’, version 0.11.0, because ’diversityForest’ is based on

the latter version of 'ranger’. The code in the example sections can be used as a template for all

basic

application scenarios with respect to classification, regression and survival prediction.

References

Hornung, R. (2022). Diversity forests: Using split sampling to enable innovative complex
split procedures in random forests. SN Computer Science 3(2):1, <doi:10.1007/s42979021-
009201>.

Hornung, R., Boulesteix, A.-L. (2022). Interaction forests: Identifying and exploiting in-
terpretable quantitative and qualitative interaction effects. Computational Statistics & Data
Analysis 171:107460, <doi:10.1016/j.csda.2022.107460>.

Strobl, C., Boulesteix, A.-L., Zeileis, A., Hothorn, T. (2007). Bias in random forest vari-
able importance measures: Illustrations, sources and a solution. BMC Bioinformatics 8:25,
<doi:10.1186/14712105825>.

Wright, M. N., Ziegler, A. (2017). ranger: A fast Implementation of Random Forests for
High Dimensional Data in C++ and R. Journal of Statistical Software 77:1-17, <doi:10.18637/

jss.v077.101>.

divfor

Construct a basic diversity forest prediction rule that uses univariable,
binary splitting.

Description

Implements the most basic form of diversity forests that uses univariable, binary splitting. Currently,
categorical, metric, and survival outcomes are supported.

https://doi.org/10.1007/s42979-021-00920-1
https://doi.org/10.1007/s42979-021-00920-1
https://doi.org/10.1016/j.csda.2022.107460
https://doi.org/10.1186/1471-2105-8-25
https://doi.org/10.18637/jss.v077.i01
https://doi.org/10.18637/jss.v077.i01

4 divfor

Usage

divfor(
formula = NULL,
data = NULL,
num.trees = 500,
mtry = NULL,
importance = "none",
write.forest = TRUE,
probability = FALSE,
min.node.size = NULL,
max.depth = NULL,
replace = TRUE,
sample.fraction = ifelse(replace, 1, 0.632),
case.weights = NULL,
class.weights = NULL,
splitrule = NULL,
num.random.splits = 1,
alpha = 0.5,
minprop = 0.1,
split.select.weights = NULL,
always.split.variables = NULL,
respect.unordered. factors = NULL,
scale.permutation.importance = FALSE,
keep.inbag = FALSE,
inbag = NULL,
holdout = FALSE,
quantreg = FALSE,
oob.error = TRUE,
num. threads = NULL,
save.memory = FALSE,
verbose = TRUE,
seed = NULL,
dependent.variable.name = NULL,
status.variable.name = NULL,
classification = NULL,

nsplits = 30,
proptry =1
)
Arguments
formula Object of class formula or character describing the model to fit. Interaction
terms supported only for numerical variables.
data Training data of class data. frame, matrix, dgCMatrix (Matrix) or gwaa.data
(GenABEL).
num. trees Number of trees. Default is 500.

mtry Artefact from "ranger’. NOT needed for diversity forests.

divfor 5

importance Variable importance mode, one of *none’, ’impurity’, impurity_corrected’, "per-
mutation’. The ’impurity’ measure is the Gini index for classification, the vari-
ance of the responses for regression and the sum of test statistics (see splitrule)
for survival. NOTE: Currently, only "permutation"” (and "none") work for diver-
sity forests.

write.forest Save divfor.forest object, required for prediction. Set to FALSE to reduce
memory usage if no prediction intended.

probability Grow a probability forest as in Malley et al. (2012). NOTE: Not yet imple-
mented for diversity forests!

min.node.size Minimal node size. Default 1 for classification, 5 for regression, 3 for survival,
and 5 for probability.

max.depth Maximal tree depth. A value of NULL or O (the default) corresponds to unlim-
ited depth, 1 to tree stumps (1 split per tree).

replace Sample with replacement.

sample.fraction
Fraction of observations to sample. Default is 1 for sampling with replacement
and 0.632 for sampling without replacement. For classification, this can be a
vector of class-specific values.

case.weights Weights for sampling of training observations. Observations with larger weights
will be selected with higher probability in the bootstrap (or subsampled) samples
for the trees.

class.weights Weights for the outcome classes (in order of the factor levels) in the splitting
rule (cost sensitive learning). Classification and probability prediction only. For
classification the weights are also applied in the majority vote in terminal nodes.

splitrule Splitting rule. For classification and probability estimation "gini" or "extratrees"
with default "gini". For regression "variance", "extratrees" or "maxstat"” with de-
fault "variance". For survival "logrank”, "extratrees", "C" or "maxstat" with de-
fault "logrank". NOTE: For diversity forests currently only the default splitting
rules are supported.

num.random.splits
Artefact from ‘ranger’. NOT needed for diversity forests.

alpha For "maxstat" splitrule: Significance threshold to allow splitting. NOT needed
for diversity forests.

minprop For "maxstat" splitrule: Lower quantile of covariate distribution to be considered
for splitting. NOT needed for diversity forests.

split.select.weights
Numeric vector with weights between O and 1, representing the probability to
select variables for splitting. Alternatively, a list of size num.trees, containing
split select weight vectors for each tree can be used.

always.split.variables
Currently not useable. Character vector with variable names to be always se-

lected.
respect.unordered. factors

Handling of unordered factor covariates. One of ’ignore’ and ’order’ (the option
“partition’ possible in ‘ranger’ is not (yet) possible with diversity forests). De-
fault is ’ignore’. Alternatively TRUE (=’order’) or FALSE (=’ignore’) can be
used.

divfor

scale.permutation. importance

keep.inbag
inbag

holdout

quantreg

oob.error
num. threads

save.memory

verbose

seed

Scale permutation importance by standard error as in (Breiman 2001). Only
applicable if permutation variable importance mode selected.

Save how often observations are in-bag in each tree.

Manually set observations per tree. List of size num.trees, containing inbag
counts for each observation. Can be used for stratified sampling.

Hold-out mode. Hold-out all samples with case weight O and use these for
variable importance and prediction error.

Prepare quantile prediction as in quantile regression forests (Meinshausen 2006).
Regression only. Set keep. inbag = TRUE to prepare out-of-bag quantile predic-
tion.

Compute OOB prediction error. Set to FALSE to save computation time, e.g. for
large survival forests.

Number of threads. Default is number of CPUs available.

Use memory saving (but slower) splitting mode. No effect for survival and
GWAS data. Warning: This option slows down the tree growing, use only if you
encounter memory problems. NOT needed for diversity forests.

Show computation status and estimated runtime.

Random seed. Default is NULL, which generates the seed from R. Set to @ to
ignore the R seed.

dependent.variable.name

Name of outcome variable, needed if no formula given. For survival forests this
is the time variable.

status.variable.name

classification
nsplits
proptry

Value

Name of status variable, only applicable to survival data and needed if no for-
mula given. Use 1 for event and O for censoring.

Only needed if data is a matrix. Set to TRUE to grow a classification forest.
Number of candidate splits to sample for each split. Default is 30.

Parameter that restricts the number of candidate splits considered for small
nodes. If nsplits is larger than proptry times the number of all possible splits,
the number of candidate splits to draw is reduced to the largest integer smaller
than proptry times the number of all possible splits. Default is 1, which corre-
sponds to always using nsplits candidate splits.

Object of class divfor with elements

forest

predictions

Saved forest (If write.forest set to TRUE). Note that the variable IDs in the
split.varlIDs object do not necessarily represent the column number in R.

Predicted classes/values, based on out-of-bag samples (classification and regres-
sion only).

variable. importance

Variable importance for each independent variable.

divfor 7

prediction.error
Overall out-of-bag prediction error. For classification this is the fraction of miss-
classified samples, for probability estimation the Brier score, for regression the
mean squared error and for survival one minus Harrell’s C-index.

r.squared R squared. Also called explained variance or coefficient of determination (re-
gression only). Computed on out-of-bag data.

confusion.matrix
Contingency table for classes and predictions based on out-of-bag samples (clas-
sification only).

unique.death.times
Unique death times (survival only).

chf Estimated cumulative hazard function for each sample (survival only).
survival Estimated survival function for each sample (survival only).

call Function call.

num. trees Number of trees.

num. independent.variables
Number of independent variables.
min.node.size Value of minimal node size used.
treetype Type of forest/tree. classification, regression or survival.
importance.mode
Importance mode used.

num. samples Number of samples.

splitrule Splitting rule.

replace Sample with replacement.

nsplits Value of nsplits used.

proptry Value of proptry used.
Author(s)

Roman Hornung, Marvin N. Wright

References

* Hornung, R. (2022). Diversity forests: Using split sampling to enable innovative complex
split procedures in random forests. SN Computer Science 3(2):1, <doi:10.1007/s42979021-
009201>.

* Wright, M. N., Ziegler, A. (2017). ranger: A fast implementation of random forests for
high dimensional data in C++ and R. Journal of Statistical Software 77:1-17, <doi:10.18637/
j8s.v077.101>.

* Breiman, L. (2001). Random forests. Machine Learning 45:5-32, <doi:10.1023/A:1010933404324>.

e Malley, J. D., Kruppa, J., Dasgupta, A., Malley, K. G., & Ziegler, A. (2012). Probability
machines: consistent probability estimation using nonparametric learning machines. Methods
of Information in Medicine 51:74-81, <doi:10.3414/ME00010052>.

* Meinshausen (2006). Quantile Regression Forests. Journal of Machine Learning Research
7:983-999.

https://doi.org/10.1007/s42979-021-00920-1
https://doi.org/10.1007/s42979-021-00920-1
https://doi.org/10.18637/jss.v077.i01
https://doi.org/10.18637/jss.v077.i01
https://doi.org/10.1023/A%3A1010933404324
https://doi.org/10.3414/ME00-01-0052

8 divfor

See Also

predict.divfor

Examples

Not run:

Load package:
library("diversityForest")

Set seed to obtain reproducible results:
set.seed(1234)

Diversity forest with default settings (NOT recommended)

Classification:

divfor(Species ~ ., data = iris, num.trees = 20)

Regression:

iris2 <- iris; iris2$Species <- NULL; iris2$Y <- rnorm(nrow(iris2))
divfor(Y ~ ., data = iris2, num.trees = 20)

Survival:

library("survival")

divfor(Surv(time, status) ~ ., data = veteran, num.trees = 20, respect.unordered.factors = "order")
NOTE: num.trees = 20 is specified too small for practical

purposes - the prediction performance of the resulting

forest will be suboptimal!!

In practice, num.trees = 500 (default value) or a

larger number should be used.

Diversity forest with specified values for nsplits and proptry (NOT recommended)
divfor(Species ~ ., data = iris, nsplits = 10, proptry = 0.4, num.trees = 20)
NOTE again: num.trees = 20 is specified too small for practical purposes.

Applying diversity forest after optimizing the values of nsplits and proptry (recommended)
tuneres <- tunedivfor(formula = Species ~ ., data = iris, num.trees.pre = 20)
NOTE: num.trees.pre = 20 is specified too small for practical
purposes - the out-of-bag error estimates of the forests
constructed during optimization will be much too variable!!
In practice, num.trees.pre = 500 (default value) or a
larger number should be used.
divfor(Species ~ ., data = iris, nsplits = tuneres$nsplitsopt,
proptry = tuneres$proptryopt, num.trees = 20)
NOTE again: num.trees = 20 is specified too small for practical purposes.

Prediction

train.idx <- sample(nrow(iris), 2/3 * nrow(iris))
iris.train <- iris[train.idx,]

iris.test <- iris[-train.idx,]

tuneres <- tunedivfor(formula = Species ~ ., data = iris.train, num.trees.pre = 20)
NOTE again: num.trees.pre = 20 is specified too small for practical purposes.
rg.iris <- divfor(Species ~ ., data = iris.train, nsplits = tuneres$nsplitsopt,

proptry = tuneres$proptryopt, num.trees = 20)
NOTE again: num.trees = 20 is specified too small for practical purposes.

importance.divfor 9

pred.iris <- predict(rg.iris, data = iris.test)
table(iris.test$Species, pred.iris$predictions)

Variable importance

rg.iris <- divfor(Species ~ ., data = iris, importance = "permutation”, num.trees = 20)
NOTE again: num.trees = 20 is specified too small for practical purposes.
rg.iris$variable.importance

End(Not run)

importance.divfor Diversity Forest variable importance

Description

Extract variable importance of divfor object.

Usage
S3 method for class 'divfor'
importance(x, ...)

Arguments
X divfor object.

Further arguments passed to or from other methods.

Value

Variable importance measures.

Author(s)

Marvin N. Wright

See Also

divfor

10 interactionfor

interactionfor Construct an interaction forest prediction rule and calculate EIM val-
ues as described in Hornung & Boulesteix (2022).

Description

Implements interaction forests as described in Hornung & Boulesteix (2022). Currently, categori-
cal, metric, and survival outcomes are supported. Interaction forests feature the effect importance
measure (EIM), which can be used to rank the covariate variable pairs with respect to the impact
of their interaction effects on prediction. This allows to identify relevant interaction effects. In-
teraction forests focus on well interpretable interaction effects. See the Details’ section below for
more details. In addition, we strongly recommend to consult Section C of Supplementary Material
1 of Hornung & Boulesteix (2022), which uses detailed examples of interaction forest analyses with
code to illustrate how interaction forests can be used in applications: Link.

Usage

interactionfor(
formula = NULL,
data = NULL,
importance = "both”,
num.trees = NULL,
simplify.large.n = TRUE,
num.trees.eim.large.n = NULL,
write.forest = TRUE,
probability = FALSE,
min.node.size = NULL,
max.depth = NULL,
replace = FALSE,
sample.fraction = ifelse(replace, 1, 0.7),
case.weights = NULL,
class.weights = NULL,
splitrule = NULL,
always.split.variables = NULL,
keep.inbag = FALSE,
inbag = NULL,
holdout = FALSE,
quantreg = FALSE,
oob.error = TRUE,
num. threads = NULL,
verbose = TRUE,
seed = NULL,
dependent.variable.name = NULL,
status.variable.name = NULL,
npairs = NULL,
classification = NULL

https://ars.els-cdn.com/content/image/1-s2.0-S0167947322000408-mmc1.pdf

interactionfor 11

Arguments

formula Object of class formula or character describing the model to fit.

data Training data of class data. frame, matrix, dgCMatrix (Matrix) or gwaa.data
(GenABEL).

importance Effect importance mode. One of the following: "both" (the default), "qualita-
tive", "quantitative”, "mainonly"”, "none". See the ’Details’ section below for
explanation.

num. trees Number of trees. The default number is 20000, if EIM values should be com-

puted and 2000 otherwise. Note that if simplify.large.n = TRUE (default),
the number of observations is larger than 1000, and EIM values should be cal-
culated two forests are constructed, one for calculating the EIM values and one
for prediction (cf. ’Details’ section). In such cases, the default number of trees
used for the forest for EIM value calculation is 20000 and the default number of
trees used for the forest for prediction is 2000.
simplify.large.n
Should restricted tree depths be used, when calculating EIM values for large data
sets? See the 'Details’ section below for more information. Default is TRUE.
num.trees.eim.large.n
Number of trees in the forest used for calculating the EIM values for large data
sets. If num.trees is provided, but not num. trees.eim.large.n, the value
given by num. trees will be used. The default number is 20000. Only used
when simplify.large.n = TRUE.

write.forest Save interaction.forest object, required for prediction. Set to FALSE to re-
duce memory usage if no prediction intended.

probability Grow a probability forest as in Malley et al. (2012).

min.node.size Minimal node size. Default 1 for classification, 5 for regression, 3 for survival,
and 5 for probability.

max.depth Maximal tree depth. A value of NULL or O (the default) corresponds to unlim-
ited depth, 1 to tree stumps (1 split per tree).

replace Sample with replacement. Default is FALSE.

sample.fraction
Fraction of observations to sample. Default is 1 for sampling with replacement
and 0.7 for sampling without replacement. For classification, this can be a vector
of class-specific values.

case.weights Weights for sampling of training observations. Observations with larger weights
will be selected with higher probability in the bootstrap (or subsampled) samples
for the trees.

class.weights Weights for the outcome classes (in order of the factor levels) in the splitting
rule (cost sensitive learning). Classification and probability prediction only. For
classification the weights are also applied in the majority vote in terminal nodes.
splitrule Splitting rule. For classification and probability estimation "gini" or "extratrees"
with default "gini". For regression "variance", "extratrees" or "maxstat" with
default "variance". For survival "logrank”, "extratrees", "C" or "maxstat" with
default "logrank”. NOTE: For interaction forests currently only the default split-

ting rules are supported.

12 interactionfor

always.split.variables
Currently not useable. Character vector with variable names to be always se-

lected.
keep.inbag Save how often observations are in-bag in each tree.
inbag Manually set observations per tree. List of size num.trees, containing inbag

counts for each observation. Can be used for stratified sampling.

holdout Hold-out mode. Hold-out all samples with case weight O and use these for vari-
able importance and prediction error. NOTE: Currently, not useable for interac-
tion forests.

quantreg Prepare quantile prediction as in quantile regression forests (Meinshausen 2006).
Regression only. Set keep. inbag = TRUE to prepare out-of-bag quantile predic-
tion. NOTE: Currently, not useable for interaction forests.

oob.error Compute OOB prediction error. Set to FALSE to save computation time, e.g. for
large survival forests.

num. threads Number of threads. Default is number of CPUs available.

verbose Show computation status and estimated runtime.

seed Random seed. Default is NULL, which generates the seed from R. Set to @ to

ignore the R seed.

dependent.variable.name
Name of outcome variable, needed if no formula given. For survival forests this
is the time variable.

status.variable.name
Name of status variable, only applicable to survival data and needed if no for-
mula given. Use 1 for event and O for censoring.

npairs Number of variable pairs to sample for each split. Default is the square root of
the number of independent variables divided by 2 (this number is rounded up).

classification Only needed if data is a matrix. Set to TRUE to grow a classification forest.

Details

The effect importance measure (EIM) of interaction forests distinguishes quantitative and qualita-
tive interaction effects (Peto, 1982). This is a common distinction as these two types of interaction
effects are interpreted in different ways (see below). For both of these types, EIM values for each
variable pair are obtained: the quantitative and qualitative EIM values.

Interaction forests target easily interpretable types of interaction effects. These can be communi-
cated clearly using statements of the following kind: "The strength of the positive (negative) effect
of variable A on the outcome depends on the level of variable B" for quantitative interactions, and
"for observations with small values of variable B, the effect of variable A is positive (negative),
but for observations with large values of B, the effect of A is negative (positive)" for qualitative
interactions.

In addition to calculating EIM values for variable pairs, importance values for the individual vari-
ables are calculated as well, the univariable EIM values. These measure the variable importance as
in the case of classical variable importance measures of random forests.

The effect importance mode can be set via the importance argument: "qualitative”: Calculate
only qualitative EIM values; "quantitative"”: Calculate only quantitative EIM values; "both”

interactionfor 13

(the default): Calculate qualitative and quantitative EIM values; "mainonly”: Calculate only uni-
variable EIM values.

The top variable pairs with largest quantitative and qualitative EIM values likely have quantitative
and qualitative interactions, respectively, which have a considerable impact on prediction. The top
variables with largest univariable EIM values likely have a considerable impact on prediction. Note
that it is currently not possible to test the EIM values for statistical significance using the interac-
tion forests algorithm itself. However, the p-values shown in the plots obtained with plotEffects
(which are obtained using bivariable models) can be adjusted for multiple testing using the Bonfer-
roni procedure to obtain practical p-values. See the end of the *Details’ section of plotEffects for
explanation and guidance.

If the number of variables is larger than 100, not all possible variable pairs are considered, but, using
a screening procedure, the 5000 variable pairs with the strongest indications of interaction effects
are pre-selected.

NOTE: To make interpretations, it is crucial to investigate (visually) the forms the interaction ef-
fects of variable pairs with large quantitative and qualitative EIM values take. This can be done
using the plot function plot.interactionfor (first overview) and plotEffects.

NOTE ALSO: As described in Hornung & Boulesteix (2022), in the case of data with larger num-
bers of variables (larger than 100, but more seriously for high-dimensional data), the univariable
EIM values can be biased. Therefore, it is strongly recommended to interpret the univariable EIM
values with caution, if the data are high-dimensional. If it is of interest to measure the univariable
importance of the variables for high-dimensional data, an additional conventional random forest
(e.g., using the ranger package) should be constructed and the variable importance measure values
of this random forest be used for ranking the univariable effects.

For large data sets with many observations the calculation of the EIM values can become very
costly - when using fully grown trees. Therefore, when calculating EIM values for data sets with
more than 1000 observations we use the following maximum tree depths by default (argument:
simplify.large.n =TRUE):

* if n < 1000: Use fully grown trees.

* if 1000 < n < 2000: Use tree depth 10.

* if 2000 < n < 5000: Use tree depth 7.

* if n > 5000: Use tree depth 5.
Extensive analyses in Hornung & Boulesteix (2022) suggest that by restricting the tree depth in
this way, the EIM values that would result when using fully grown trees are approximated well.
However, the prediction performance suffers, when using restricted trees. Therefore, we restrict the

tree depth only when calculating the EIM values (if » > 1000), but construct a second interaction
forest with unrestricted tree depth, which is then used for prediction purposes.

Value

Object of class interactionfor with elements

predictions Predicted classes/values, based on out-of-bag samples (classification and regres-
sion only).
num. trees Number of trees.

num. independent.variables
Number of independent variables.

14

interactionfor

unique.death.times

min.node.size
npairs
eim.univ.sorted

eim.univ
eim.qual.sorted

eim.qual

Unique death times (survival only).
Value of minimal node size used.

Number of variable pairs sampled for each split.

Univariable EIM values sorted in decreasing order.

Univariable EIM values.

Qualitative EIM values sorted in decreasing order.
Qualitative EIM values.

eim.quant.sorted

eim.quant

Quantitative EIM values sorted in decreasing order.

The labeling of these values provides the information on the type of quantita-
tive interactions the respective variable pairs feature. For example, consider a
variable pair A and B and say the label reads "A large AND B small". This
would mean that if the value of A is large and, at the same time, the value of B
is small, the expected value of the outcome variable is (considerably) different
from all other cases. For this type of quantitative interaction, the effect of B is
weak for small values of A and strong for large values of A. See Hornung &
Boulesteix (2022) for more information on the types of quantitative interaction
effects targeted by interaction forest.

Quantitative EIM values. These values are labeled analoguously as those in
eim.quant.sorted.

prediction.error

forest

Overall out-of-bag prediction error. For classification this is the fraction of mis-
classified samples, for probability estimation the Brier score, for regression the
mean squared error and for survival one minus Harrell’s C-index. This is "NA’
for data sets with more than 100 covariate variables, because for such data sets
we pre-select the 5000 variable pairs with strongest indications of interaction
effects. This pre-selection cannot be taken into account in the out-of-bag error
estimation, which is why the out-of-bag error estimates would be (much) too
optimistic for data sets with more than 100 covariate variables.

Saved forest (If write.forest set to TRUE). Note that the variable IDs in the
split.multvarIDs object do not necessarily represent the column number in
R.

confusion.matrix

chf
survival
splitrule
treetype

r.squared

call

Contingency table for classes and predictions based on out-of-bag samples (clas-
sification only).

Estimated cumulative hazard function for each sample (survival only).
Estimated survival function for each sample (survival only).

Splitting rule.

Type of forest/tree. classification, regression or survival.

R squared. Also called explained variance or coefficient of determination (re-
gression only). Computed on out-of-bag data.

Function call.

interactionfor 15

importance.mode
Importance mode used.

num.samples Number of samples.

replace Sample with replacement.

eim.quant.rawlists
List containing the four vectors of un-adjusted ‘raw’ quantitative EIM values
and the four vectors of adjusted EIM values. These are usually not required by
the user.
For each of the four types of quantitative splits there exists a separate vector
of raw quantitative EIM values. For example, eim.quant.large.small.raw
contains the raw quantitative EIM values of the quantitative split type associated
with quantitative interaction effects for which the expected values of the out-
come variable are different, if the value of variable A is large and, at the same
time, the value of variable B is small. The list entries of the un-adjusted ’raw’
quantitative EIM values are labeled with the suffix . raw, while the list entries of
the adjusted quantitative EIM values miss this suffix. See Hornung & Boulesteix
(2022) for details on the raw and adjusted EIM values.

promispairs List giving the indices of the variables in the pre-selected variable pairs. If the
number of variables is at most 100, all variable pairs are considered.

plotres List ob objects needed by the plot functions: eim.univ.order contains the sort-
ing of the univariable EIM values in descending order, where the first element
gives the index of the variable with largest EIM value, the second element the
index of the variable with second-largest EIM value and so on; eim. qual.order
/ eim.quant.order contains the sorting in descending order of the qualitative /
quantitative EIM values for the (pre-selected) variable pairs given by the object
promispairs above. The first element gives the index of the (pre-selected) vari-
able pair with largest qualitative / quantitative EIM value, the second element
the index of the variable pair with second-largest qualitative / quantitative EIM
value; data contains the data; yvarname is the name of the outcome variable
(survival time for survival); statusvarname is the name of the status variable.

Author(s)

Roman Hornung, Marvin N. Wright

References

e Hornung, R., Boulesteix, A.-L. (2022). Interaction forests: Identifying and exploiting in-
terpretable quantitative and qualitative interaction effects. Computational Statistics & Data
Analysis 171:107460, <doi:10.1016/j.csda.2022.107460>.

e Hornung, R. (2022). Diversity forests: Using split sampling to enable innovative complex
split procedures in random forests. SN Computer Science 3(2):1, <doi:10.1007/s42979021-
009201>.

* Peto, R., (1982) Statistical aspects of cancer trials. In: K.E. Halnam (Ed.), Treatment of
Cancer. Chapman & Hall: London.

* Wright, M. N., Ziegler, A. (2017). ranger: A fast Implementation of Random Forests for
High Dimensional Data in C++ and R. Journal of Statistical Software 77:1-17, <doi:10.18637/
jss.v077.101>.

https://doi.org/10.1016/j.csda.2022.107460
https://doi.org/10.1007/s42979-021-00920-1
https://doi.org/10.1007/s42979-021-00920-1
https://doi.org/10.18637/jss.v077.i01
https://doi.org/10.18637/jss.v077.i01

16 interactionfor

e Breiman, L. (2001). Random forests. Machine Learning 45:5-32, <doi:10.1023/A:1010933404324>.

* Malley, J. D., Kruppa, J., Dasgupta, A., Malley, K. G., & Ziegler, A. (2012). Probability
machines: consistent probability estimation using nonparametric learning machines. Methods
of Information in Medicine 51:74-81, <doi:10.3414/ME00010052>.

* Meinshausen (2006). Quantile Regression Forests. Journal of Machine Learning Research
7:983-999.

See Also

predict.divfor, plot.interactionfor, plotEffects

Examples

Not run:
Load package:

library("diversityForest")

Set seed to make results reproducible:

set.seed(1234)

Construct interaction forests and calculate EIM values:

Binary outcome:

data(zoo)

modelcat <- interactionfor(dependent.variable.name = "type", data = zoo,
num.trees = 20)

Metric outcome:

data(stock)

modelcont <- interactionfor(dependent.variable.name = "companyl1@", data = stock,
num.trees = 20)

Survival outcome:
library("survival")
mgus2$id <- NULL # 'mgus2' data set is contained in the 'survival' package

categorical variables need to be of factor format - important!!
mgus2$sex <- factor(mgus2$sex)
mgus2$pstat <- factor(mgus2$pstat)

Remove the second time variable 'ptime':
mgus2$ptime <- NULL

https://doi.org/10.1023/A%3A1010933404324
https://doi.org/10.3414/ME00-01-0052

interactionfor 17

Remove missing values:
mgus2 <- mgus2[complete.cases(mgus2),]

Take subset to make the calculations less computationally

expensive for the example (in actual applications, we would of course
use the whole data set):

mgus2sub <- mgus2[sample(1:nrow(mgus2), size=500),]

Apply 'interactionfor':
modelsurv <- interactionfor(formula = Surv(futime, death) ~ ., data=mgus2sub, num.trees=20)

NOTE: num.trees = 20 (in the above) would be much too small for practical

purposes. This small number of trees was simply used to keep the

runtime of the example short.

The default number of trees is num.trees = 20000 if EIM values are calculated
and num.trees = 2000 otherwise.

Inspect the rankings of the variables and variable pairs with respect to
the univariable, quantitative, and qualitative EIM values:

Univariable EIM values:
modelcat$eim.univ.sorted

Pairs with top quantitative EIM values:
modelcat$eim.quant.sorted[1:5]

Pairs with top qualitative EIM values:
modelcat$eim.qual.sorted[1:5]

Investigate visually the forms of the interaction effects of the variable pairs with
largest quantitative and qualitative EIM values:

plot(modelcat)
plotEffects(modelcat, type="quant"”) # type="quant” is default.
plotEffects(modelcat, type="qual")

Prediction:

Separate 'zoo' data set randomly in training
and test data:

data(zoo)

train.idx <- sample(nrow(zoo), 2/3 * nrow(zoo))
zoo.train <- zoo[train.idx,]

zoo.test <- zoo[-train.idx,]

18 plot.interactionfor

Construct interaction forest on training data:

NOTE again: num.trees = 20 is specified too small for practical purposes.

modelcattrain <- interactionfor(dependent.variable.name = "type", data = zoo,
importance = "none”, num.trees = 20)

NOTE: Because we are only interested in prediction here, we do not

calculate EIM values (by setting importance = "none"), because this

speeds up calculations.

Predict class values of the test data:
pred.zoo <- predict(modelcattrain, data = zoo.test)

Compare predicted and true class values of the test data:
table(zoo.test$type, pred.zoo$predictions)

End(Not run)

plot.interactionfor Plot method for interactionfor objects

Description

Plot function for interactionfor objects that allows to obtain a first overview of the result of
the interaction forest analysis. This function visualises the distributions of the EIM values and
the estimated forms of the bivariable influences of the variable pairs with largest quantitative and
qualitative EIM values. Further visual exploration of the result of the interaction forest analysis
should be conducted using plotEffects.

Usage

S3 method for class 'interactionfor'

plot(x, numpairsquant = 2, numpairsqual = 2, ...)
Arguments

X Object of class interactionfor.

numpairsquant The number of pairs with largest quantitative EIM values to plot. Default is 2.
numpairsqual The number of pairs with largest qualitative EIM values to plot. Default is 2.

Further arguments passed to or from other methods.

Details

For details on the plots of the estimated forms of the bivariable influences of the variable pairs see
plotEffects.

NOTE: The p-values shown in the plots are generally much too optimistic and MUST NOT be
reported as the result of a statistical test for significance of interaction. To obtain adjusted p-values
that would correspond to valid tests, it would be possible to multiply these p-values by the number of

plot.interactionfor 19

possible variable pairs, which would correspond to Bonferroni-adjusted p-values. See the ’Details’
section of plotEffects for further explanation and guidance. Note, however, that these Bonferroni-
adjusted p-values should be interpreted with caution because, stemming from bivariable models,
these p-values do not take the multivariable nature of the data into account.

NOTE ALSO: As described in Hornung & Boulesteix (2022), in the case of data with larger num-
bers of variables (larger than 100, but more seriously for high-dimensional data), the univariable
EIM values can be biased. Therefore, it is strongly recommended to interpret the univariable EIM
values with caution, if the data are high-dimensional. If it is of interest to measure the univariable
importance of the variables for high-dimensional data, an additional conventional random forest
(e.g., using the ranger package) should be constructed and the variable importance measure values
of this random forest be used for ranking the univariable effects.
Value

A ggplot2 plot.

Author(s)

Roman Hornung

References

* Hornung, R., Boulesteix, A.-L. (2022). Interaction forests: Identifying and exploiting in-
terpretable quantitative and qualitative interaction effects. Computational Statistics & Data
Analysis 171:107460, <doi:10.1016/j.csda.2022.107460>.

e Hornung, R. (2022). Diversity forests: Using split sampling to enable innovative complex
split procedures in random forests. SN Computer Science 3(2):1, <doi:10.1007/s42979021-
009201>.

See Also

plotEffects

Examples
Not run:

Load package:

library("diversityForest")

Set seed to make results reproducible:

set.seed(1234)

Construct interaction forest and calculate EIM values:

https://doi.org/10.1016/j.csda.2022.107460
https://doi.org/10.1007/s42979-021-00920-1
https://doi.org/10.1007/s42979-021-00920-1

20

plotEffects

data(stock)
model <- interactionfor(dependent.variable.name = "companyl1@", data = stock,
num.trees = 20)

NOTE: num.trees = 20 (in the above) would be much too small for practical

purposes. This small number of trees was simply used to keep the

runtime of the example short.

The default number of trees is num.trees = 20000 if EIM values are calculated
and num.trees = 2000 otherwise.

When using the plot() function without further specifications,

by default the estimated bivariable influences of the two pairs with largest quantitative
and qualitative EIM values are shown:

plot(model)

It is, however, also possible to change the numbers of

pairs with largest quantitative and qualitative EIM values

to be shown:

plot(model, numpairsquant = 4, numpairsqual = 3)

End(Not run)

plotEffects Interaction forest plots: exploring interaction forest results through
visualisation

Description

This function allows to visualise the (estimated) bivariable influences of pairs of variables (with
large quantitative and qualitative EIM values) on the outcome. This step is crucial, because to in-
terpret interaction effects between variable pairs with large quantitative and qualitative EIM values,
it is necessary to learn about the forms these interaction effects take.

Usage

plotEffects(
intobj,
type = "quant”,
numpairs = 5,
indpairs = NULL,
pairs = NULL,
allwith = NULL,

plotEffects

21

pvalues = TRUE,
twoplots = TRUE,
addtitles = TRUE,

plotit = TRUE

Arguments
intobj
type

numpairs

indpairs

pairs

allwith

pvalues

twoplots

addtitles

plotit

Object of class interactionfor.

This can be either "quant" or "qual" and determines whether the plotted pairs
are sorted according to either the quantitative or qualitative EIM values in de-
creasing order. Default is "quant".

The number of pairs to plot (default: 5). This is overwritten by indpairs.

Optional. The indices of the pairs in the sorted lists of quantitative (type="quant
or qualitative EIM values to plot (type="qual"). This overwrites the numpairs
argument.

This can be used to specify the pairs to plot. It is an optional list of charac-
ter string vectors, where each of these vectors has length two. Each list ele-
ment corresponds to one pair, where the first character string gives the name of
the first member of the respective pair to plot and the second character string
gives the name of the second member. This argument overwrites numpairs and
indpairs.

This is an optional character string that can be set to the name of one of the
variables. If provided, only variable pairs will be considered that feature the
variable specified by this argument allwith. These pairs are again sorted in
decreasing order according to the quantitative (type="quant") or qualitative
(type="qual"”) EIM values and their number is restricted to the value given
by numpairs. This argument allwith can be used, if it is of interest to learn
whether a specific variable (e.g., sex or age) interacts with other variables in the
data set and if so, which forms these interactions take.

Set to TRUE (default) to add to the plots p-values from tests for interaction effect
obtained using classical parametric regression approaches. For categorical out-
comes logistic regression is used, for metric outcomes linear regression and for
survival outcomes Cox regression. NOTE: These p-values are generally much
too optimistic and MUST NOT be reported as the result of a statistical test for
significance of interaction. See the ’Details’ section below for further details.

Set to TRUE / FALSE if for each plot page the results of two / one pair(s) of
variables should be shown. Default is TRUE.

Set to TRUE (default) to add headings providing the names of the variables in
each pair. If type="quant”, these headings also give information on the type
of quantitative interaction effect. Setting addtitles to FALSE is, for example,
useful, when the produced plots are intended for use in a publication, where
these headings might not be desirable.

This states whether the plots are actually plotted or merely returned as ggplot
objects. Default is TRUE.

")

22 plotEffects

Details

For each considered pair the bivariable influence of both pair members on the outcome estimated
using a two-dimensional flexible function is shown. Such visualisations make it possible to learn
about the forms of the interaction effects between variable pairs with large EIM values. Moreover,
these visualisations reveal (pathological) cases in which variable pairs do not show indications of
interaction effects despite featuring large EIM values.

For binary outcomes the probabilities for the second class are estimated, for categorical outcomes
with more than two classes the probabilities for the largest class (i.e., the class with the most obser-
vations) are estimated (using the function plotPair, a different class can be selected instead), for
metric outcomes the means of the outcome are estimated, and for survival outcomes the log hazards
ratio values compared to the median effect are estimated.

The kinds of estimates shown differ also according to whether both pair members are metric or only
one of the two members is metric and the other one categorical or both pair members are categorical:

* If both pair members are metric and the outcome is categorical or metric we use two-dimensional
LOESS regression, where in the case of categorical outcomes, to obtain probability estimates
for the first class (or largest class for multi-class outcomes), we use the value *1° for the first
class (largest class for multi-class outcomes) and the value *0’ for the second class (all other
classes for multi-class outcomes).

* If both pair members are metric and the outcome is survival we use a Cox proportional
hazard additive model with a two-dimensional LOESS smooth (gamcox function from the
"MapGAM’ package (version 1.2-5)) and in the rare cases for which the latter fails, we use
classical Cox regression with an interaction term between the two covariates.

* If one pair member is metric and the other one categorical and the outcome is categorical or
metric, we use LOESS regression between the outcome (coded as 0’ and ’1’ in the case of
categorical outcomes as described above) and the values of the metric variable separately for
each category of the categorical variable. In the rare cases in which the LOESS regression
fails we use classical linear regression.

* If one pair member is metric and the other one categorical and the outcome is survival, we use
Cox regression with a linear tail-restricted cubic spline with four knots (univariable LOESS
regression for survival outcomes does not seem to be available yet in R) separately for each
category of the categorical variable. In cases in which the fitting of this spline regression fails
we use classical Cox regression.

o If both pair members are categorical and the outcome is categorical or metric, we simply
calculate the mean of the outcome (coded as ’0’ and ’ 1’ in the case of categorical outcomes as
described above) for each possible combination of the categories of the two variables.

o If both pair members are categorical and the outcome is survival, we use classical Cox re-
gression with an interaction term between the two variables (there is no need for any flexible
modelling in this setting, because the Cox model with two categorical variables plus interac-
tion term is saturated).

As described above (function argument: pvalues), there is an option to add p-values from tests
for interaction effect to the plots. If at least one of the variables in the considered variable pair
is categorical and features more than two categories, there are more than one interaction terms in
the regression approaches used for testing, because the categorical variables are dummy-coded.
Therefore, in these cases we obtain a p-value for each interaction term. to obtain a single p-value
for the test for interaction we adjust these multiple p-values using the Holm-Bonferroni procedure
and take the minimum of the adjusted p-values.

plotEffects 23

NOTE: These p-values are generally much too optimistic, in particular for small data sets and large
numbers of variables. The reason for this overoptimism is that these p-values are not adjusted for the
fact that we already used the data to find the variable pairs with strongest indications of interaction
effects. This is similar to a multiple testing problem. Therefore, these p-values should only be seen
as a rough guide to be interpreted very cautiously and MUST NOT be reported as the results of a
statistical test for significance of interaction. To obtain adjusted p-values that would correspond to
valid tests, it would be possible to multiply these p-values by the number of possible pairs, which
would correspond to Bonferroni-adjusted p-values. For example, assume that we have 30 covariate
variables. In that case the number of possible pairs would be ’choose(30, 2) = 435°, which is why
we would need to multiply each p-value by 435 to obtain an adjusted p-value (or keep the original
p-values and divide the significance level 0.05 by 435). Note, however, that Bonferroni-adjusted p-
values deliver quite conservative results, that is, weaker effects might not be detected using these p-
values, while, however, effects for which these p-values are small (< 0.05) are most likely relevant.
Note further that these Bonferroni-adjusted p-values should be interpreted with caution because,
stemming from bivariable models, these p-values do not take the multivariable nature of the data
into account.

Value

A list of ggplot2 plots returned invisibly.

Author(s)

Roman Hornung

References

* Hornung, R., Boulesteix, A.-L. (2022). Interaction forests: Identifying and exploiting in-
terpretable quantitative and qualitative interaction effects. Computational Statistics & Data
Analysis 171:107460, <doi:10.1016/j.csda.2022.107460>.

* Hornung, R. (2022). Diversity forests: Using split sampling to enable innovative complex
split procedures in random forests. SN Computer Science 3(2):1, <doi:10.1007/s42979021-
009201>.

See Also

plot.interactionfor, plotPair

Examples
Not run:

Load package:

library("diversityForest")

Set seed to make results reproducible:

https://doi.org/10.1016/j.csda.2022.107460
https://doi.org/10.1007/s42979-021-00920-1
https://doi.org/10.1007/s42979-021-00920-1

24

plotEffects

set.seed(1234)

Construct interaction forest and calculate EIM values:

data(stock)

model <- interactionfor(dependent.variable.name = "company10”, data = stock,
num.trees = 20)

NOTE: num.trees = 20 (in the above) would be much too small for practical

purposes. This small number of trees was simply used to keep the

runtime of the example short.

The default number of trees is num.trees = 20000 if EIM values are calculated
and num.trees = 2000 otherwise.

Obtain a first overview by applying the plot() function for
interactionfor obects:

plot(model)

Several possible application cases of the plotEffects() function:

Visualise the estimated bivariable influences of the five variable pairs with the
largest quantitative EIM values:

plotEffects(model) # type="quant" is default.

Visualise the estimated bivariable influences of the five pairs with the

largest qualitative EIM values:

plotEffects(model, type="qual”)

Visualise the estimated bivariable influences of all (eight) pairs that involve
the variable "company7" sorted in decreasing order according to the

qualitative EIM values:

plotEffects(model, allwith="company7"”, type="qual”, numpairs=8)

Visualise the estimated bivariable influences of the pairs with third and fifth
largest qualitative EIM values:

plotEffects(model, type="qual”, indpairs=c(3,5))

Visualise the estimated bivariable influences of the pairs ("company3”, "company5") and

plotEffects 25

("companyl1”, "company9"):

plotEffects(model, pairs=list(c(”company3”, "company5"), c("companyl1”, "company9”)))

Saving of plots generated with the plotEffects() function (e.g., for use in publications):

Apply plotEffects() to obtain plots for the five variable pairs
with the largest qualitative EIM values and store these plots in
an object 'ps':

ps <- plotEffects(model, type="qual”, pvalues=FALSE, twoplots=FALSE, addtitles=FALSE, plotit=FALSE)

pvalues = FALSE states that no p-values should be shown in the plots,

because these might not be desired in plots meant for publication.

twoplots = FALSE ensures that we get one plot for each page instead of two plots per page.
addtitles = FALSE removes the automatically generated titles, because these are likely
not desired in publications.

plotit = FALSE ensures that the plots are not displayed, but only returned (invisibly)
by plotEffects().

Save the plot with second largest qualitative EIM value:
p1 <- ps[[2]1]

Add title:

library("ggpubr")

p1 <- annotate_figure(pl, top = text_grob("My descriptive plot title 1", face = "bold”, size = 14))
p1

Save as PDF:

library("ggplot2")
ggsave(file="mypathtofolder/FigureXY1.pdf", width=14, height=6)

Save the plot with fifth largest qualitative EIM value:

p2 <- psl[5]1]

Add title:
p2 <- annotate_figure(p2, top = text_grob("My descriptive plot title 2", face = "bold", size = 14))
p2

Save as PDF:
ggsave(file="mypathtofolder/FigureXY1.pdf", width=14, height=6)

Combine both of the above plots:
p <- ggarrange(pl, p2, nrow = 2)
p

26

ES

ETRE

plotPair

Save the combined plot:
ggsave(file="mypathtofolder/FigureXYcombined.pdf"”, width=14, height=11)

NOTE: Using plotEffects() it is not possible to change the plots
themselves (by e.g., increasing the label sizes or changing the
axes ranges). However, the function plotPair() can be used to change
the plots themselves.

End(Not run)

plotPair Plot of the (estimated) simultaneous influence of two variables

Description

Usage

This function allows to visualise the (estimated) bivariable influence of a single specific pair of vari-
ables on the outcome. The estimation and plotting is performed in the same way as in plotEffects.
However, plotPair does not require an interactionfor object and can thus be used also without
a constructed interaction forest.

plotPair(

pair,

yvarname,

statusvarname = NULL,
data,

levelsorder1 = NULL,
levelsorder2 = NULL,
categprob = NULL,
pvalue = TRUE,
returnseparate = FALSE,
intobj = NULL

)
Arguments

pair Character string vector of length two, where the first character string gives the
name of the first member of the respective pair to plot and the second character
string gives the name of the second member. Note that the order of the two pair
members in pair determines how the results are visualised: The estimated in-
fluence of the second pair member is visualised conditionally on different values
of the first pair member.

yvarname Name of outcome variable.

statusvarname Name of status variable, only applicable to survival data.

plotPair

data

levelsorderi

levelsorder?2

categprob

pvalue

returnseparate

intobj

Details

27

Data frame containing the variables.

Optional. Order the categories of the first variable should have in the plot (if it
is categorical). Character string vector, where the i-th entry contains the name
of the category that should take the i-th place in the ordering of the categories of
the first variable.

Optional. Order the categories of the second variable should have in the plot
(if it is categorical). Character string vector specified in an analogous way as
levelsorderi.

Optional. Only relevant for categorical outcomes with more than two classes.
Name of the class for which probabilities should be estimated. As described in
plotEffects, for categorical outcomes with more than two classes, by default
the probabilities for the largest class (i.e., the class with the most observations)
are estimated when visualising the bivariable influence of the variables. Using
categprob a different class can be specified for the class for which probabilities
should be estimated.

Set to TRUE (default) to add to the plot a p-value from a test for interaction
effect obtained using a classical parametric regression approach. For categorical
outcomes logistic regression is used, for metric outcomes linear regression and
for survival outcomes Cox regression. See the 'Details’ section of plotEffects
for further details.

Set to TRUE to return invisibly the two generated ggplot plots separately in the
form of a list. The latter option is useful, because it allows to manipulate the
resulting plots (label size etc.) and makes it possible to consider only one of the
two plots. The default is FALSE, which results in the two plots being returned
together in the form of a ggarrange object.

Optional. Object of class interactionfor. If this is provided, the ordering of
the categories obtained when constructing the interaction forest will be used for
categorical variables. See Hornung & Boulesteix (2022) for details.

See the ’Details’ section of plotEffects.

Value

A ggplot2 plot.

Author(s)

Roman Hornung

References

* Hornung, R., Boulesteix, A.-L. (2022). Interaction forests: Identifying and exploiting in-
terpretable quantitative and qualitative interaction effects. Computational Statistics & Data
Analysis 171:107460, <doi:10.1016/j.csda.2022.107460>.

https://doi.org/10.1016/j.csda.2022.107460

28

plotPair

* Hornung, R. (2022). Diversity forests: Using split sampling to enable innovative complex
split procedures in random forests. SN Computer Science 3(2):1, <doi:10.1007/s42979021-
009201>.

See Also

plotEffects, plot.interactionfor

Examples

Not run:
Load package:

library("diversityForest")

Visualise the estimated bivariable influence of 'toothed' and 'feathers' on
the probability of type="mammal”:

data(zoo)
plotPair(pair = c("toothed”, "feathers"), yvarname="type"”, data = zoo)

Visualise the estimated bivariable influence of 'creat' and 'hgb' on
survival (more precisely, on the log hazards ratio compared to the
median effect):

library("survival”)
mgus2compl <- mgus2[complete.cases(mgus2),]
plotPair(pair=c("creat”, "hgb"), yvarname="futime"”, statusvarname = "death"”, data=mgus2compl)

Problem: The outliers in the left plot make it difficult to see what is going
on in the region with creat values smaller than about two even though the
majority of values lie there.

--> Solution: We re-run the above line setting returnseparate = TRUE, because
this allows to get the two ggplot plots separately, which can then be manipulated
to change the x-axis range in order to remove the outliers:

H

ps <- plotPair(pair=c(”creat”, "hgb"), yvarname="futime"”, statusvarname = "death”,
data=mgus2compl, returnseparate = TRUE)

Change the x-axis range:

library("ggplot2")

ps[[11] + x1im(c(@.5,2))

Save the plot:

ggsave(file="mypathtofolder/FigureXY1.pdf", width=7, height=6)

We can, for example, also change the label sizes of the second plot:

https://doi.org/10.1007/s42979-021-00920-1
https://doi.org/10.1007/s42979-021-00920-1

predict.divfor 29

With original label sizes:

pslC[2]1]

With larger label sizes:

ps[[2]] + theme(axis.title=element_text(size=15))

Save the plot:

library("ggplot2"”)

ggsave(file="mypathtofolder/FigureXY2.pdf", width=7, height=6)

End(Not run)

predict.divfor Diversity Forest prediction

Description

Prediction with new data and a saved forest from divfor.

Usage

S3 method for class 'divfor'
predict(

object,

data = NULL,

predict.all = FALSE,

num. trees = object$num. trees,

type = "response”,

se.method = "infjack"”,
quantiles = c(0.1, 0.5, 0.9),
seed = NULL,

num. threads = NULL,
verbose = TRUE,

)
Arguments

object divfor object.

data New test data of class data. frame or gwaa.data (GenABEL).

predict.all Return individual predictions for each tree instead of aggregated predictions for
all trees. Return a matrix (sample x tree) for classification and regression, a 3d
array for probability estimation (sample x class x tree) and survival (sample x
time x tree).

num. trees Number of trees used for prediction. The first num. trees in the forest are used.

type Type of prediction. One of ’response’, ’se’, ’terminalNodes’, ’quantiles’ with

default "response’. See below for details.

30 predict.divfor

se.method Method to compute standard errors. One of ’jack’, ’infjack’ with default ’inf-
jack’. Only applicable if type = ’se’. See below for details.

quantiles Vector of quantiles for quantile prediction. Set type = 'quantiles' to use.

seed Random seed. Default is NULL, which generates the seed from R. Set to @ to
ignore the R seed. The seed is used in case of ties in classification mode.

num. threads Number of threads. Default is number of CPUs available.

verbose Verbose output on or off.

further arguments passed to or from other methods.

Details

This package is a fork of the R package ’ranger’ that implements random forests using an effi-
cient C++ implementation. More precisely, *diversityForest” was written by modifying the code of
’ranger’, version 0.11.0. Therefore, details on further functionalities of the code that are not pre-
sented in the help pages of "diversityForest’ are found in the help pages of ‘ranger’ (version 0.11.0).
The code in the example sections of divfor and tunedivfor can be used as a template for all com-
mon application scenarios with respect to classification, regression and survival prediction using
univariable, binary splitting. Some function arguments adopted from the 'ranger’ package may not
be useable with diversity forests (for the current package version).

Value

Object of class divfor.prediction with elements

predictions Predicted classes/values (only for classification and regression)
unique.death.times Unique death times (only for survival).
chf Estimated cumulative hazard function for each sample (only for survival).
survival Estimated survival function for each sample (only for survival).
num. trees Number of trees.
num. independent.variables Number of independent variables.
treetype Type of forest/tree. Classification, regression or survival.
num.samples Number of samples.
Author(s)

Marvin N. Wright

References

* Hornung, R. (2022). Diversity forests: Using split sampling to enable innovative complex
split procedures in random forests. SN Computer Science 3(2):1, <doi:10.1007/s42979021-
009201>.

* Wright, M. N., Ziegler, A. (2017). ranger: A fast Implementation of Random Forests for
High Dimensional Data in C++ and R. Journal of Statistical Software 77:1-17, <doi:10.18637/
38s.v077.101>.

* Wager, S., Hastie T., & Efron, B. (2014). Confidence Intervals for Random Forests: The

Jackknife and the Infinitesimal Jackknife. Journal of Machine Learning Research 15:1625-
1651.

https://doi.org/10.1007/s42979-021-00920-1
https://doi.org/10.1007/s42979-021-00920-1
https://doi.org/10.18637/jss.v077.i01
https://doi.org/10.18637/jss.v077.i01

predict.interactionfor

31

* Meinshausen (2006). Quantile Regression Forests. Journal of Machine Learning Research

7:983-999.

See Also

divfor

predict.interactionfor

Interaction Forest prediction

Description

Prediction with new data and a saved interaction forest from interactionfor.

Usage

S3 method for class 'interactionfor'

predict(
object,

data = NULL,
predict.all =

FALSE,

num. trees = object$num.trees,
type = "response”,

se.method = "infjack”,
quantiles = c(0.1, 0.5, 0.9),
seed = NULL,

num.threads =

NULL,

verbose = TRUE,

Arguments

object
data
predict.all

num. trees

type

se.method

interactionfor object.
New test data of class data. frame or gwaa.data (GenABEL).

Return individual predictions for each tree instead of aggregated predictions for
all trees. Return a matrix (sample x tree) for classification and regression, a 3d
array for probability estimation (sample x class x tree) and survival (sample x
time X tree).

Number of trees used for prediction. The first num. trees in the forest are used.

Type of prediction. One of ’response’, ’se’, ’terminalNodes’, ’quantiles’ with
default 'response’. See below for details.

Method to compute standard errors. One of ’jack’, ’infjack’ with default ’inf-
jack’. Only applicable if type = ’se’. See below for details.

32 predict.interactionfor

quantiles Vector of quantiles for quantile prediction. Set type = 'quantiles’ to use.

seed Random seed. Default is NULL, which generates the seed from R. Set to @ to
ignore the R seed. The seed is used in case of ties in classification mode.

num. threads Number of threads. Default is number of CPUs available.

verbose Verbose output on or off.

further arguments passed to or from other methods.

Details

Note that his package is a fork of the R package ’ranger’ that implements random forests using
an efficient C++ implementation. The documentation is in large parts taken from ’ranger’, where
some parts of the documentation may not apply to (the current version of) the ’diversityForest’
package. Details on further functionalities of the code that are not presented in the help pages of
“diversityForest’ are found in the help pages of 'ranger’ (version 0.11.0).

Value

Object of class interaction.prediction with elements

predictions Predicted classes/values (only for classification and regression)
unique.death.times Unique death times (only for survival).
chf Estimated cumulative hazard function for each sample (only for survival).
survival Estimated survival function for each sample (only for survival).
num. trees Number of trees.
num.independent.variables Number of independent variables.
treetype Type of forest/tree. Classification, regression or survival.
num. samples Number of samples.
Author(s)

Marvin N. Wright, Roman Hornung

References

* Hornung, R., Boulesteix, A.-L. (2022). Interaction forests: Identifying and exploiting in-
terpretable quantitative and qualitative interaction effects. Computational Statistics & Data
Analysis 171:107460, <doi:10.1016/j.csda.2022.107460>.

* Hornung, R. (2022). Diversity forests: Using split sampling to enable innovative complex
split procedures in random forests. SN Computer Science 3(2):1, <doi:10.1007/s42979021-
009201>.

* Wright, M. N., Ziegler, A. (2017). ranger: A fast Implementation of Random Forests for
High Dimensional Data in C++ and R. Journal of Statistical Software 77:1-17, <doi:10.18637/
jss.v077.101>.

e Wager, S., Hastie T., & Efron, B. (2014). Confidence Intervals for Random Forests: The
Jackknife and the Infinitesimal Jackknife. Journal of Machine Learning Research 15:1625-
1651.

e Meinshausen (2006). Quantile Regression Forests. Journal of Machine Learning Research
7:983-999.

https://doi.org/10.1016/j.csda.2022.107460
https://doi.org/10.1007/s42979-021-00920-1
https://doi.org/10.1007/s42979-021-00920-1
https://doi.org/10.18637/jss.v077.i01
https://doi.org/10.18637/jss.v077.i01

stock 33

See Also

interactionfor

stock Data on stock prices of aerospace companies

Description

This data set contains 950 daily stock prices from January 1988 through October 1991, for ten
aerospace companies. The names of the companies are anonymised and the stock prices for one of
these companies (company10@) were flagged as the outcome variable. Thus, for this data set, both
the outcome and the covariates were metric.

Format

A data frame with 950 observations, nine covariates and one metric outcome variable

Details

The variables are as follows: covariates: company1, ..., company9, outcome variable: company10.

Source

OpenML: data.name: stock, data.id: 223, link: https://www.openml.org/d/223/

References
* Vanschoren, J., van Rijn, J. N., Bischl, B., Torgo, L. (2013). OpenML: networked science in
machine learning. SIGKDD Explorations 15(2):49-60, <doi:10.1145/2641190.2641198>.

Examples

Load data:
data(stock)

Dimension of data:
dim(stock)

First rows of data:
head(stock)

https://www.openml.org/d/223/
https://doi.org/10.1145/2641190.2641198

34

tunedivfor

tunedivfor

Optimization of the values of the tuning parameters nsplits and
proptry

Description

First, both for nsplits and proptry a grid of possible values may be provided, where default grids
are used if no grids are provided. Second, for each pairwise combination of values from these
two grids a forest is constructed. Third, that pair of nsplits and proptry values is used as the
optimized set of parameter values that is associated with the smallest out-of-bag prediction error. If
several pairs of parameter values are associated with the same smallest out-of-bag prediction error,
the pair with the smallest (parameter) values is used.

Usage

tunedivfor(

formula = NULL,

data = NULL,

nsplitsgrid =
proptrygrid =
num.trees.pre

Arguments

formula

data

nsplitsgrid
proptrygrid

num.trees.pre

Value
List with elements

nsplitsopt
proptryopt

tunegrid

ooberrs

c(2, 5, 10, 30, 50, 100, 200),
c(0.05, 1),
= 500

Object of class formula or character describing the model to fit. Interaction
terms supported only for numerical variables.

Training data of class data. frame, matrix, dgCMatrix (Matrix) or gwaa.data
(GenABEL).

Grid of values to consider for nsplits. Default grid: 2, 5, 10, 30, 50, 100, 200.
Grid of values to consider for proptry. Default grid: 0.05, 1.

Number of trees used for each forest constructed during tuning parameter opti-
mization. Default is 500.

Optimized value of nsplits.
Optimized value of proptry.

Two-dimensional data. frame, where each row contains one pair of values con-
sidered for nsplits (first entry) and proptry (second entry).

The out-of-bag prediction errors obtained for each pair of values considered for
nsplits and proptry, where the ordering of pairs of values is the same as in
tunegrid (see above).

tunedivfor 35

Author(s)

Roman Hornung

References

* Hornung, R. (2022). Diversity forests: Using split sampling to enable innovative complex
split procedures in random forests. SN Computer Science 3(2):1, <doi:10.1007/s42979021-
009201>.

* Wright, M. N., Ziegler, A. (2017). ranger: A fast Implementation of Random Forests for
High Dimensional Data in C++ and R. Journal of Statistical Software 77:1-17, <doi:10.18637/
j8s.v077.101>.

See Also

divfor

Examples

Load package:

library("diversityForest")

Set seed to obtain reproducible results:

set.seed(1234)

Tuning parameter optimization for the iris data set:

tuneres <- tunedivfor(formula = Species ~ ., data = iris, num.trees.pre = 20)
NOTE: num.trees.pre = 20 is specified too small for practical

purposes - the out-of-bag error estimates of the forests

constructed during optimization will be much too variable!!

In practice, num.trees.pre = 500 (default value) or a

larger number should be used.

tuneres

tuneres$nsplitsopt
tuneres$proptryopt
tuneres$tunegrid
tuneres$ooberrs

https://doi.org/10.1007/s42979-021-00920-1
https://doi.org/10.1007/s42979-021-00920-1
https://doi.org/10.18637/jss.v077.i01
https://doi.org/10.18637/jss.v077.i01

36 Z00

Z00 Data on biological species

Description

This data set describes 101 different biological species using 16 simple attributes, where 15 of these
are binary and one is metric (the number of legs). The outcome "mammal vs. other" (type) is
binary.

Format

A data frame with 101 observations, 16 covariates and one binary outcome variable

Details

The variables are as follows:

* hair. factor. Presence of hairs (true = yes; false = no)

» feathers. factor. Presence of feathers (true = yes; false = no)

* eggs. factor. Does the species lay eggs? (true = yes; false = no)

» milk. factor. Does the species give milk? (true = yes; false = no)

e airborne. factor. Does the species fly? (true = yes; false = no)

* aquatic. factor. Does the species live in the water? (true = yes; false = no)
» predator. factor. Is the species a predator? (true = yes; false = no)

* toothed. factor. Presence of teeth (true = yes; false = no)

* backbone. factor. Presence of backbone (true = yes; false = no)

* breathes. factor. Does the species breathe with lungs? (true = yes; false = no)
* venomous. factor. Is the species venomous? (true = yes; false = no)

* fins. factor. Presence of fins (true = yes; false = no)

* legs. metric. Number of legs

 tail. factor. Presence of tail (true = yes; false = no)

* domestic. factor. Is the species domestic? (true = yes; false = no)

* catsize. factor. Is the species large? (true = yes; false = no)

* type. factor. Binary outcome variable - type of species ('mammal’ vs. *other”)

The original openML dataset contains an additional variable animal, which is removed in this
version of the data set. This variable provided the names of all species.

Source

OpenML: data.name: zoo, data.id: 965, link: https://www.openml.org/d/965/

https://www.openml.org/d/965/

Z00 37

References

* Vanschoren, J., van Rijn, J. N., Bischl, B., Torgo, L. (2013). OpenML: networked science in
machine learning. SIGKDD Explorations 15(2):49-60, <doi:10.1145/2641190.2641198>.

* Dua, D., Graff, C. (2019) UCI Machine Learning Repository. Irvine, CA: University of Cali-
fornia, School of Information and Computer Science. https://archive.ics.uci.edu/ml/.

Examples

##' Load data:
data(zoo)

##' Numbers of observations in the two classes:
table(zoo$type)

##' Dimension of data:
dim(zoo)

##' First rows of data:
head(zoo)

https://doi.org/10.1145/2641190.2641198
https://archive.ics.uci.edu/ml/

Index

diversityForest
(diversityForest-package), 2

diversityForest-package, 2

divfor, 3,3, 9, 29-31, 35

importance (importance.divfor), 9
importance.divfor, 9
interactionfor, 3, 10, 37, 33

plot.interactionfor, 13, 16, 18, 23, 28
plotEffects, 13, 16, 18, 19, 20, 26-28
plotPair, 22, 23, 26
predict.divfor, 8, 16, 29
predict.interactionfor, 31

stock, 33
tunedivfor, 30, 34

z00, 36

38

	diversityForest-package
	divfor
	importance.divfor
	interactionfor
	plot.interactionfor
	plotEffects
	plotPair
	predict.divfor
	predict.interactionfor
	stock
	tunedivfor
	zoo
	Index

