
Overview of the package BuyseTest

Brice Ozenne

March 20, 2023

This vignette describes the main functionalities of the BuyseTest package. This package implements

the Generalized Pairwise Comparisons (GPC) as defined in Buyse (2010) for complete observations, and

extended in Péron et al. (2018) to deal with right-censoring. When considering a single endpoint, the GPC

procedure can be summarized as follow. Denote the endpoint by Y in the treatment group and by X in

the control group. Given a threshold of clinical relevance τ , the aim of GPC is to estimate the proportion

in favor of treatment P [Y ≥ X + τ] and the proportion in favor of control P [X ≥ Y + τ]. Other statistics

such as the net benefit P [Y ≥ X + τ] − P [X ≥ Y + τ] or the win ratio P[Y ≥X+τ]
P[X≥Y +τ]

can then be deduced.

The vignette is written for readers familar with the GPC framework 1, e.g. prioritized endpoints, pair,

net benefit, win ratio, threshold of clinical relevance, . . . , since it focuses on the software aspect of the

BuyseTest package (not on the underlying statistical model).

The BuyseTest package contains three main functions:

• the function BuyseTest is the main function of the package. It performs the GPC, estimates the

net benefit/win ratio, and output a BuyseRes object. The user can interact with BuyseRes objects

using:

– summary to obtain a nice display of the results

– coef to extract the estimates.

– confint to extract estimates, confidence intervals, and p.values.

– sensitivity to perform a sensitivity analysis on the choice of the threshold(s) of clinical

relevance.

– getIid to extract the iid decomposition of the estimator.

– getPairScore to extract the contribution of each pair to the net benefit/win ratio.

– getSurvival to extract the estimates of the survival (only relevant for right-censored end-

points).

– BuyseMultComp to adjust p-values and confidence intervals for multiple comparisons.

• the powerBuyseTest function performs simulation studies, e.g. to estimate the statistical power or

assess the bias / type 1 error rate of a test for a specific design.

• the BuyseTest.options function enables the user to display the default values used in the Buy-

seTest package (essentially used by the BuyseTest function). function. The function can also

change the default values to better match the user needs.

1if not, Buyse (2010) is a good place to start.

1

Before going further we need to load the BuyseTest package in the R session:

library(BuyseTest)

library(data.table)

To illustrate the functionalities of the package, we will used the veteran dataset from the survival

package:

library(survival)

head(veteran)

trt celltype time status karno diagtime age prior

1 1 squamous 72 1 60 7 69 0

2 1 squamous 411 1 70 5 64 10

3 1 squamous 228 1 60 3 38 0

4 1 squamous 126 1 60 9 63 10

5 1 squamous 118 1 70 11 65 10

6 1 squamous 10 1 20 5 49 0

See ?veteran for a presentation of the database.

Note: the BuyseTest package is under active development. Newer package versions may include

additional functionalities and fix previous bugs. The version of the package that is being is:

utils::packageVersion("BuyseTest")

[1] ‘2.4.0’

For completness, the details of the R session used to generate this document are:

sessionInfo()

R version 4.2.0 (2022-04-22)

Platform: x86_64-pc-linux-gnu (64-bit)

Running under: Ubuntu 20.04.4 LTS

Matrix products: default

BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.9.0

LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.9.0

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_US.UTF-8

[4] LC_COLLATE=en_US.UTF-8 LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C LC_ADDRESS=C

[10] LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] stats graphics grDevices utils datasets methods base

2

other attached packages:

[1] prodlim_2019.11.13 ggplot2_3.4.0 survival_3.5-0 BuyseTest_2.4.0

[5] butils.base_1.2 Rcpp_1.0.9 devtools_2.4.3 usethis_2.1.5

[9] data.table_1.14.2

loaded via a namespace (and not attached):

[1] TH.data_1.1-1 colorspace_2.0-3 deldir_1.0-6

[4] ellipsis_0.3.2 rprojroot_2.0.3 htmlTable_2.4.1

[7] RcppArmadillo_0.11.2.0.0 base64enc_0.1-3 fs_1.5.2

[10] rstudioapi_0.13 roxygen2_7.2.1 listenv_0.8.0

[13] MatrixModels_0.5-0 remotes_2.4.2 fansi_1.0.3

[16] mvtnorm_1.1-3 xml2_1.3.3 codetools_0.2-18

[19] splines_4.2.0 doParallel_1.0.17 cachem_1.0.6

[22] knitr_1.39 pkgload_1.2.4 Formula_1.2-4

[25] cluster_2.1.3 png_0.1-7 riskRegression_2022.11.28

[28] compiler_4.2.0 backports_1.4.1 assertthat_0.2.1

[31] Matrix_1.4-1 fastmap_1.1.0 cli_3.5.0

[34] htmltools_0.5.4 quantreg_5.94 prettyunits_1.1.1

[37] tools_4.2.0 gtable_0.3.1 glue_1.6.2

[40] dplyr_1.0.10 vctrs_0.5.1 nlme_3.1-157

[43] iterators_1.0.14 xfun_0.31 stringr_1.5.0

[46] globals_0.16.1 ps_1.7.0 brio_1.1.3

[49] testthat_3.1.4 lifecycle_1.0.3 future_1.28.0

[52] polspline_1.1.20 MASS_7.3-57 zoo_1.8-11

[55] scales_1.2.1 parallel_4.2.0 sandwich_3.0-2

[58] SparseM_1.81 RColorBrewer_1.1-3 memoise_2.0.1

[61] gridExtra_2.3 rms_6.3-0 rpart_4.1.16

[64] latticeExtra_0.6-30 stringi_1.7.8 desc_1.4.1

[67] foreach_1.5.2 checkmate_2.1.0 pkgbuild_1.3.1

[70] lava_1.7.2 mets_1.3.2 rlang_1.0.6

[73] pkgconfig_2.0.3 lattice_0.20-45 purrr_1.0.0

[76] htmlwidgets_1.6.1 cmprsk_2.2-11 processx_3.5.3

[79] tidyselect_1.2.0 parallelly_1.32.1 magrittr_2.0.3

[82] R6_2.5.1 generics_0.1.3 Hmisc_4.7-0

[85] multcomp_1.4-20 DBI_1.1.3 pillar_1.8.1

[88] foreign_0.8-82 withr_2.5.0 nnet_7.3-17

[91] tibble_3.1.8 future.apply_1.9.1 crayon_1.5.2

[94] interp_1.1-3 utf8_1.2.2 timereg_2.0.4

[97] jpeg_0.1-9 grid_4.2.0 callr_3.7.0

[100] digest_0.6.31 numDeriv_2016.8-1.1 stats4_4.2.0

[103] munsell_0.5.0 sessioninfo_1.2.2

3

1 Performing generalized pairwise comparisons (GPC) using

the BuyseTest function

To perform generalized pairwise comparisons, the BuyseTest function needs:

• where the data are stored - argument data

• the name of the endpoints - argument endpoint

• the type of each endpoint - argument type

• the variable defining the two treatment groups - argument treatment

The BuyseTest function has many optional arguments to specify for example:

• the threshold of clinical relevance associated to each endpoint - argument threshold

• the censoring associated to each endpoint (for time to event endpoints) - argument status

There are two equivalent ways to define the GPC:

• using a separate argument for each element:

BT <- BuyseTest(data = veteran,

endpoint = "time",

type = "timeToEvent",

treatment = "trt",

status = "status",

threshold = 20)

Generalized Pairwise Comparisons

Settings

- 2 groups : Control = 1 and Treatment = 2

- 1 endpoint:

priority endpoint type operator threshold event

1 time time to event higher is favorable 20 status (0 1)

- right-censored pairs: probabilistic score based on the survival curves

Point estimation and calculation of the iid decomposition

Estimation of the estimator’s distribution

- method: moments of the U-statistic

Gather the results in a S4BuyseTest object

4

• or via a formula interface. In the formula interface endpoint are wrapped by parentheses. The

parentheses must be preceded by their type:

- binary (b, bin, or binary)

- continuous (c, cont, or continuous)

- time to event (t, tte, or timetoevent)

BT.f <- BuyseTest(trt ∼ tte(time, threshold = 20, status = "status"),

data = veteran)

Generalized Pairwise Comparisons

Settings

- 2 groups : Control = 1 and Treatment = 2

- 1 endpoint:

priority endpoint type operator threshold event

1 time time to event higher is favorable 20 status (0 1)

- right-censored pairs: probabilistic score based on the survival curves

Point estimation and calculation of the iid decomposition

Estimation of the estimator’s distribution

- method: moments of the U-statistic

Gather the results in a S4BuyseTest object

We can check that the two approaches are equivalent:

BT.f@call <- list(); BT@call <- list();

testthat::expect_equal(BT.f,BT)

1.1 Displaying the results

The results of the GPC can be displayed using the summary method:

summary(BT)

Generalized pairwise comparisons with 1 endpoint

- statistic : net benefit (delta: endpoint specific, Delta: global)

- null hypothesis : Delta == 0

- confidence level: 0.95

- inference : H-projection of order 1

- treatment groups: 2 (treatment) vs. 1 (control)

- censored pairs : probabilistic score based on the survival curves

- results

5

endpoint threshold total(%) favorable(%) unfavorable(%) neutral(%) uninf(%) Delta

time 20 100 37.78 46.54 15.68 0 -0.0877

CI [2.5% ; 97.5%] p.value

[-0.2735;0.1045] 0.37162

To display the number of pairs instead of the percentage of pairs that are favorable/unfavorable/neu-

tral/uniformative, set the argument percentage to FALSE:

summary(BT, percentage = FALSE)

Generalized pairwise comparisons with 1 endpoint

- statistic : net benefit (delta: endpoint specific, Delta: global)

- null hypothesis : Delta == 0

- confidence level: 0.95

- inference : H-projection of order 1

- treatment groups: 2 (treatment) vs. 1 (control)

- censored pairs : probabilistic score based on the survival curves

- results

endpoint threshold total favorable unfavorable neutral uninf Delta CI [2.5% ; 97.5%]

time 20 4692 1772.59 2183.89 735.52 0 -0.0877 [-0.2735;0.1045]

p.value

0.37162

By default summary displays results relative to the net benefit. To get results for the win ratio set the

argument statistic to "winRatio":

summary(BT, statistic = "winRatio")

Generalized pairwise comparisons with 1 endpoint

- statistic : win ratio (delta: endpoint specific, Delta: global)

- null hypothesis : Delta == 1

- confidence level: 0.95

- inference : H-projection of order 1

- treatment groups: 2 (treatment) vs. 1 (control)

- censored pairs : probabilistic score based on the survival curves

- results

endpoint threshold total(%) favorable(%) unfavorable(%) neutral(%) uninf(%) Delta

time 20 100 37.78 46.54 15.68 0 0.8117

CI [2.5% ; 97.5%] p.value

[0.5134;1.2833] 0.37195

See help(BuyseRes-summary) for more detailed explanations about the summary method and its out-

put. Note that a more concise output, in a data.frame format, can be obtained via the confint method:

confint(BT, statistic = "winRatio")

estimate se lower.ci upper.ci null p.value

time_t20 0.8116692 0.1896937 0.5133887 1.283252 1 0.3719466

6

1.2 Stratified GPC

GPC can be performed for subgroups of a categorical variable - argument strata

For instance, the celltype may have huge influence on the survival time and the investigator would like

to only compare patients that have the same celltype. In the formula interface this is achieved by adding

a single variable in the right hand side of the formula:

ffstrata <- trt ∼ tte(time, threshold = 20, status = "status") + celltype

BTstrata <- BuyseTest(ffstrata, data = veteran, trace = 0)

Not being wrapped by bin, cont or tte differentiates it from endpoint variables.

When doing a stratified analysis, the summary method displays the global results as well as the results

within each strata2:

summary(BTstrata, type.display = c("endpoint","threshold","strata",

"total","favorable","unfavorable","delta","Delta"))

Generalized pairwise comparisons with 1 endpoint and 4 strata

- statistic : net benefit (delta: endpoint specific, Delta: global)

- null hypothesis : Delta == 0

- confidence level: 0.95

- inference : H-projection of order 1

- treatment groups: 2 (treatment) vs. 1 (control)

- strata weights : 25.38%, 45.69%, 13.71%, 15.23%

- censored pairs : probabilistic score based on the survival curves

- uninformative pairs: no contribution

- results

endpoint threshold strata total(%) favorable(%) unfavorable(%) delta Delta

time 20 global 100.00 36.06 45.77 -0.0971 -0.0971

squamous 25.38 14.33 8.77 0.2193

smallcell 45.69 12.69 20.88 -0.1792

adeno 13.71 4.74 6.15 -0.1034

large 15.23 4.30 9.97 -0.3722

Note that here the numbers in the total/favorable/unfavorable/ columns are relative to the overall

sample while the delta is only relative to the strata. The global delta is a sum of the strata specific delta

weighted by the empirical proportion of pairs for each strata. The weight of each strata is by default

proportional to the number of pairs but this behavior can be changed with the argument pool.strata:

BTstrataCMH <- BuyseTest(ffstrata, data = veteran, trace = 0, pool.strata = "CMH")

summary(BTstrataCMH, type.display = c("endpoint","threshold","strata",

"total","favorable","unfavorable","delta","Delta"))

2the strata-specific results can be removed by setting the argument strata to "global" when calling summary.

7

Generalized pairwise comparisons with 1 endpoint and 4 strata

- statistic : net benefit (delta: endpoint specific, Delta: global)

- null hypothesis : Delta == 0

- confidence level: 0.95

- inference : H-projection of order 1

- treatment groups: 2 (treatment) vs. 1 (control)

- strata weights : 26.38%, 34.63%, 18.47%, 20.52%

- censored pairs : probabilistic score based on the survival curves

- uninformative pairs: no contribution

- results

endpoint threshold strata total(%) favorable(%) unfavorable(%) delta Delta

time 20 global 100.00 36.70 46.66 -0.0997 -0.0997

squamous 25.38 14.33 8.77 0.2193

smallcell 45.69 12.69 20.88 -0.1792

adeno 13.71 4.74 6.15 -0.1034

large 15.23 4.30 9.97 -0.3722

CMH stands for Cochran-Mantel-Haenszel whose weighted scheme has been advocated in the litterature

(Dong et al., 2018). We can retrieve the weights by evalating the number of individual per strata and

treatment group:

nStrata <- table(veteran$celltype, veteran$trt)

nStrata

1 2

squamous 15 20

smallcell 30 18

adeno 9 18

large 15 12

nPairStrata <- nStrata[,1]*nStrata[,2]

wStrata <- rbind(default = nPairStrata,

CMH = nPairStrata/rowSums(nStrata))

round(100*wStrata/rowSums(wStrata),2)

squamous smallcell adeno large

default 25.38 45.69 13.71 15.23

CMH 26.38 34.63 18.47 20.52

It is also possible to output strata specific results:

confint(BTstrata, stratified = TRUE)

estimate se lower.ci upper.ci null p.value

time_t20.squamous 0.2193074 0.1911515 -0.1690137 0.5486919 0 0.2669352

time_t20.smallcell -0.1792181 0.1540933 -0.4567640 0.1301230 0 0.2551275

time_t20.adeno -0.1033951 0.2465197 -0.5314450 0.3667172 0 0.6771002

time_t20.large -0.3722222 0.2190018 -0.7110335 0.1068610 0 0.1240457

8

1.3 Using multiple endpoints

More than one endpoint can be considered by indicating a vector of endpoints, types, and thresholds. In

the formula interface, the different endpoints must be separated with a "+" on the right hand side of the

formula:

ff2 <- trt ∼ tte(time, threshold = 20, status = "status") + cont(karno, threshold = 0)

BT.H <- BuyseTest(ff2, data = veteran, trace = 0)

summary(BT.H)

Generalized pairwise comparisons with 2 prioritized endpoints

- statistic : net benefit (delta: endpoint specific, Delta: global)

- null hypothesis : Delta == 0

- confidence level: 0.95

- inference : H-projection of order 1

- treatment groups: 2 (treatment) vs. 1 (control)

- censored pairs : probabilistic score based on the survival curves

- neutral pairs : re-analyzed using lower priority endpoints

- results

endpoint threshold total(%) favorable(%) unfavorable(%) neutral(%) uninf(%) delta Delta

time 20 100.00 37.78 46.54 15.68 0 -0.0877 -0.0877

karno 15.68 5.78 7.11 2.78 0 -0.0133 -0.1009

CI [2.5% ; 97.5%] p.value

[-0.2735;0.1045] 0.37162

[-0.2901;0.0959] 0.31478

The hierarchy of the endpoint is defined from left (most important endpoint, here time) to right

(least important endpoint, here karno). In the summary output, the confidence intervals and p.values are

computed for the column Delta, i.e. here the net benefit for the first endpoint (line 1) and the the first

and second endpoint (line 2). In other words, the last confidence interval and p-value is the one for the

analysis over all endpoints (generally the one to report).

It is also possible to perform the comparisons on all pairs for all endpoints by setting the argument

hierarchical to FALSE:

BT.nH <- BuyseTest(ff2, hierarchical = FALSE, data = veteran, trace = 0)

summary(BT.nH)

Generalized pairwise comparisons with 2 endpoints

- statistic : net benefit (delta: endpoint specific, Delta: global)

- null hypothesis : Delta == 0

- confidence level: 0.95

- inference : H-projection of order 1

- treatment groups: 2 (treatment) vs. 1 (control)

- censored pairs : probabilistic score based on the survival curves

- neutral pairs : re-analyzed using lower priority endpoints

9

- results

endpoint threshold total(%) favorable(%) unfavorable(%) neutral(%) uninf(%) delta Delta

time 20 100 37.78 46.54 15.68 0 -0.0877 -0.0438

karno 100 41.82 44.95 13.24 0 -0.0313 -0.0595

CI [2.5% ; 97.5%] p.value

[-0.1388;0.0519] 0.36977

[-0.2267;0.1111] 0.49514

In that case the score of a pair is the weighted sum of the score relative to each endpoint. By default,

the weights are all set to the same value but this behavior can be changed by setting the argument weight

when calling BuyseTest, e.g.:

ff2w <- trt ∼ tte(time, threshold = 20, status = "status", weight = 0.8)

ff2w <- update.formula(ff2w, . ∼ . + cont(karno, threshold = 0, weight = 0.2))

BT.nHw <- BuyseTest(ff2w, hierarchical = FALSE, data = veteran, trace = 0)

summary(BT.nHw, print = FALSE)$table.print[,-13]

endpoint threshold weight total(%) favorable(%) unfavorable(%) neutral(%) uninf(%) delta

1 time 20 0.8 100 37.78 46.54 15.68 0 -0.0877

3 karno 0.2 100 41.82 44.95 13.24 0 -0.0313

Delta CI [2.5% ; 97.5%] p.value

1 -0.0701 [-0.2204;0.0834] 0.37073

3 -0.0764 [-0.2504;0.1024] 0.40269

This has been refered as the O’Brien test in the litterature (Verbeeck et al. (2019), section 3.2).

Alternatively, one may be interested in the endpoint specific results. This can be performed apply the

BuyseTest function separately to each endpoint, e.g.:

confint(BuyseTest(trt ∼ cont(karno, threshold = 0), data = veteran, trace = 0))

estimate se lower.ci upper.ci null p.value

karno -0.03132992 0.09787113 -0.2197111 0.1593037 0 0.7490407

or setting the argument cumulative to FALSE when calling the confint function:

confint(BT.nHw, cumulative = FALSE)

estimate se lower.ci upper.ci null p.value

time_t20 -0.08765836 0.09760901 -0.2735301 0.1045245 0 0.3716170

karno -0.03132992 0.09787113 -0.2197111 0.1593037 0 0.7490407

Adjustment for multiple comparison can be performed via the BuyseMultComp function:

BuyseMultComp(BT.nHw, cumulative = FALSE, endpoint = 1:2)

- Univariate tests:

estimate se lower.ci upper.ci null p.value lower.band upper.band

1 -0.08765836 0.09760901 -0.2735301 0.1045245 0 0.3716170 -0.2953329 0.1279261

2 -0.03132992 0.09787113 -0.2197111 0.1593037 0 0.7490407 -0.2420777 0.1822409

adj.p.value

1 0.5597555

2 0.9236602

10

1.4 What if smaller is better?

By default BuyseTest will always assume that higher values of an endpoint are favorable. This behavior

can be changed by specifying operator = "<0" for an endpoint:

ffop <- trt ∼ tte(time, status = "status", threshold = 20, operator = "<0")

BTinv <- BuyseTest(ffop, data = veteran, trace = 0)

summary(BTinv)

Generalized pairwise comparisons with 1 endpoint

- statistic : net benefit (delta: endpoint specific, Delta: global)

- null hypothesis : Delta == 0

- confidence level: 0.95

- inference : H-projection of order 1

- treatment groups: 2 (treatment) vs. 1 (control)

- censored pairs : probabilistic score based on the survival curves

- results

endpoint threshold total(%) favorable(%) unfavorable(%) neutral(%) uninf(%) Delta

time 20 100 46.54 37.78 15.68 0 0.0877

CI [2.5% ; 97.5%] p.value

[-0.1045;0.2735] 0.37162

Internally BuyseTest will compute the favorable and unfavorable score as usual and then switch them

around if the operator equals "<0".

11

1.5 Stopping comparison for neutral pairs

In presence of neutral pairs, BuyseTest will, by default, continue the comparison on the endpoints with

lower priority. For instance let consider a dataset with one observation in each treatment arm:

dt.sim <- data.table(Id = 1:2,

treatment = c("Yes","No"),

tumor = c("Yes","Yes"),

size = c(15,20))

dt.sim

Id treatment tumor size

1: 1 Yes Yes 15

2: 2 No Yes 20

If we use the GPC with tumor as the first endpoint and size as the second endpoint:

BT.pair <- BuyseTest(treatment ∼ bin(tumor) + cont(size, operator = "<0"), data = dt.sim,

trace = 0, method.inference = "none")

summary(BT.pair)

Generalized pairwise comparisons with 2 prioritized endpoints

- statistic : net benefit (delta: endpoint specific, Delta: global)

- null hypothesis : Delta == 0

- treatment groups: Yes (treatment) vs. No (control)

- neutral pairs : re-analyzed using lower priority endpoints

- results

endpoint total(%) favorable(%) unfavorable(%) neutral(%) uninf(%) delta Delta

tumor 100 0 0 100 0 0 0

size 100 100 0 0 0 1 1

the outcome of the comparison is neutral for the first priority, but favorable for the second. Setting

the argument neutral.as.uninf to FALSE will stop the comparison when a pair is classified as neutral:

BT.pair2 <- BuyseTest(treatment ∼ bin(tumor) + cont(size, operator = "<0"), data = dt.sim,

trace = 0, method.inference = "none", neutral.as.uninf = FALSE)

summary(BT.pair2)

Generalized pairwise comparisons with 2 prioritized endpoints

- statistic : net benefit (delta: endpoint specific, Delta: global)

- null hypothesis : Delta == 0

- treatment groups: Yes (treatment) vs. No (control)

- neutral pairs : ignored at lower priority endpoints

- results

endpoint total(%) favorable(%) unfavorable(%) neutral(%) uninf(%) delta Delta

tumor 100 0 0 100 0 0 0

size 0 0 0 0 0 0 0

So in this case no pair is analyzed at second priority.

12

1.6 What about p-value and confidence intervals?

Several methods are available in BuyseTest to perform statistical inference:

• permutation test setting the argument method.inference to "permutation". Assuming ex-

changeability under the null hypothesis, this approach gives valid p-values (regardless to the sample

size) for testing the absence of a difference between the groups.

BT.perm <- BuyseTest(trt ∼ tte(time, threshold = 20, status = "status"),

data = veteran, trace = 0, method.inference = "permutation",

seed = 10)

summary(BT.perm)

Generalized pairwise comparisons with 1 endpoint

- statistic : net benefit (delta: endpoint specific, Delta: global)

- null hypothesis : Delta == 0

- confidence level: 0.95

- inference : permutation test with 1000 samples

p-value computed using the permutation distribution

- treatment groups: 2 (treatment) vs. 1 (control)

- censored pairs : probabilistic score based on the survival curves

- results

endpoint threshold total(%) favorable(%) unfavorable(%) neutral(%) uninf(%) Delta p.value

time 20 100 37.78 46.54 15.68 0 -0.0877 0.36663

• bootstrap resampling setting the argument method.inference to "bootstrap". In large enough

samples, this approach gives valid p-values and confidence intervals.

BT.boot <- BuyseTest(trt ∼ tte(time, threshold = 20, status = "status"),

data = veteran, trace = 0, method.inference = "bootstrap",

seed = 10)

summary(BT.boot)

Generalized pairwise comparisons with 1 endpoint

- statistic : net benefit (delta: endpoint specific, Delta: global)

- null hypothesis : Delta == 0

- confidence level: 0.95

- inference : bootstrap resampling with 1000 samples

CI computed using the percentile method; p-value by test inversion

- treatment groups: 2 (treatment) vs. 1 (control)

- censored pairs : probabilistic score based on the survival curves

- results

endpoint threshold total(%) favorable(%) unfavorable(%) neutral(%) uninf(%) Delta

time 20 100 37.78 46.54 15.68 0 -0.0877

CI [2.5% ; 97.5%] p.value

[-0.2797;0.1108] 0.363

13

• asymptotic distribution setting the argument method.inference to "u-statistic". In large

enough samples, this approach gives valid p-values and confidence intervals (Ozenne et al., 2021).

BT.ustat <- BuyseTest(trt ∼ tte(time, threshold = 20, status = "status"),

data = veteran, trace = 0, method.inference = "u-statistic")

summary(BT.ustat)

Generalized pairwise comparisons with 1 endpoint

- statistic : net benefit (delta: endpoint specific, Delta: global)

- null hypothesis : Delta == 0

- confidence level: 0.95

- inference : H-projection of order 1

- treatment groups: 2 (treatment) vs. 1 (control)

- censored pairs : probabilistic score based on the survival curves

- results

endpoint threshold total(%) favorable(%) unfavorable(%) neutral(%) uninf(%) Delta

time 20 100 37.78 46.54 15.68 0 -0.0877

CI [2.5% ; 97.5%] p.value

[-0.2735;0.1045] 0.37162

The first two approaches require simulating a large number of samples and applying the GPC to each

of these samples. The number of samples is set using the arugment n.resampling and it should large

enough to limit the Monte Carlo error when estimating the p-value. Typically should be at least 10000 to

get, roughtly, 2-digit precision, as examplified below:

set.seed(10)

sapply(1:10, function(i){mean(rbinom(1e4, size = 1, prob = 0.05))})

[1] 0.0511 0.0491 0.0489 0.0454 0.0516 0.0522 0.0468 0.0483 0.0491 0.0508

Indeed, here we get a reasonnable approximation of 0.05 (if we round and only keep 2 digits). Note

that to get 3 digits precision we would need more samples. The last method does not rely on resampling

but on the computation of the influence function of the estimator. Fortunately, when using the Gehan’s

scoring rule, this does not really involve any extra-calculations and this is therefore very fast to perform.

When using the Peron’s scoring rule, more serious extra-calculations are involved so the computation time

is expected to increase by a factor 5 to 10 compared to the point estimate alone (i.e. method.inference

equal to "none").

Note: it is possible to relax the exchangeability assumption using a studentized permutation and a

bootstrap with better small samples properties using a studentized bootstrap. Both rely on the asymptotic

approach to estimate standard errors and are more numerically intensive.

14

1.7 Sensitivity analysis

The choice of the threshold of clinical relevance if somehow subjective and it is recommended to see how

the results vary as a function of the threshold. This can be easily performed using the sensitivity

method:

BTse.ustat <- sensitivity(BT.ustat, threshold = seq(0,500, length.out=10),

band = TRUE, trace = FALSE)

BTse.ustat[,c("time","estimate","se","lower.ci","upper.ci","null","lower.band","upper.band")]

time estimate se lower.ci upper.ci null lower.band upper.band

1 0.00000 -0.08752774 0.10041203 -0.27851884 0.11012263 0 -0.32429035 0.1595547

2 55.55556 -0.08095829 0.08957699 -0.25229456 0.09530004 0 -0.29381483 0.1395482

3 111.11111 -0.03170177 0.07463991 -0.17629003 0.11422560 0 -0.21206740 0.1507525

4 166.66667 0.01896964 0.06452954 -0.10713643 0.14447503 0 -0.13877437 0.1757749

5 222.22222 0.03315614 0.05523512 -0.07506821 0.14060850 0 -0.10236938 0.1674732

6 277.77778 0.04217485 0.04654025 -0.04914025 0.13279075 0 -0.07225703 0.1555108

7 333.33333 0.04112991 0.03946828 -0.03631838 0.11808708 0 -0.05595163 0.1374410

8 388.88889 0.04075638 0.03300933 -0.02402114 0.10519310 0 -0.04045901 0.1214368

9 444.44444 0.04097871 0.03027888 -0.01844156 0.10011054 0 -0.03352555 0.1150301

10 500.00000 0.03517173 0.02769280 -0.01915553 0.08929191 0 -0.03294511 0.1029633

Here by setting the argument band to TRUE, we obtain confidence intervals and p-values adjusted

for multiple comparisons. Said otherwise, the columns lower.ci and upper.ci provide a (pointwise)

confidence interval with 95% coverage for a given threshold while the columns lower.band and upper.band

provide a (simutaneous) confidence interval with 95% coverage across all given thresholds. In particular

if is interested in the largest effect, the simultaneous confidence interval should be reported instead of the

pointwise. They can be displayed using the autoplot method:

library(ggplot2)

autoplot(BTse.ustat)

−0.3

−0.2

−0.1

0.0

0.1

0.2

0 200 400

Threshold for time

N
e
t
b
e
n
e
fi
t

CIs Simulatenous CIs

With multiple endpoints, the thresholds can be specified using a list:

BTse.H <- sensitivity(BT.H, trace = FALSE,

threshold = list(time = seq(0,500,length = 10), karno = c(0,40,80)))

head(BTse.H)

15

time karno estimate se lower.ci upper.ci null p.value

1 0.00000 0 -0.08754474 0.10044847 -0.2786016 0.11017738 0 0.3858987

2 55.55556 0 -0.11177487 0.09915501 -0.2995661 0.08435417 0 0.2636263

3 111.11111 0 -0.08618872 0.09822940 -0.2732475 0.10715096 0 0.3826244

4 166.66667 0 -0.05180121 0.09818252 -0.2400240 0.14017526 0 0.5984319

5 222.22222 0 -0.03668720 0.09810141 -0.2253052 0.15458146 0 0.7086747

6 277.77778 0 -0.02906324 0.09773146 -0.2172647 0.16122161 0 0.7663054

or a matrix:

grid <- expand.grid(list("time_t20" = seq(0,500,length = 10), "karno" = c(0,40,80)))

cbind(head(grid)," " = " ... ",tail(grid))

BTse.H2 <-sensitivity(BT.H, threshold = grid, trace = FALSE)

range(BTse.H-BTse.H2)

time_t20 karno time_t20 karno

1 0.00000 0 ... 222.2222 80

2 55.55556 0 ... 277.7778 80

3 111.11111 0 ... 333.3333 80

4 166.66667 0 ... 388.8889 80

5 222.22222 0 ... 444.4444 80

6 277.77778 0 ... 500.0000 80

[1] 0 0

The latter should be used when the same endpoint is used at different priorities (each column correspond

to the threshold that should be used at a priority). As before we can display the results using the autoplot

function:

autoplot(BTse.H, col = NA)

alternative display:

autoplot(BTse.H, position = position_dodge(width = 15))

Threshold for karno : 0 Threshold for karno : 40 Threshold for karno : 80

0 200 400 0 200 400 0 200 400

−0.3

−0.2

−0.1

0.0

0.1

0.2

Threshold for time

N
e
t
b
e
n
e
fi
t

CIs

Note that the autoplot function cannot be used when more than 2 thresholds are varied at the same

time.

16

2 Getting additional inside: looking at the pair level

So far we have looked at the overall score and probabilities. But it is also possible to extract the score

relative to each pair, as well as to "manually" compute this score. This can give further inside on what

the software is actually doing and what is the contribution of each individual on the evaluation of the

treatment.

2.1 Extracting the contribution of each pair to the statistic

The net benefit or the win ratio statistics can be expressed as a sum of a score over all pairs of patients. The

argument keep.pairScore enables to export the score relative to each pair in the output of BuyseTest:

form <- trt ∼ tte(time, threshold = 20, status = "status") + cont(karno)

BT.keep <- BuyseTest(form,

data = veteran, keep.pairScore = TRUE,

trace = 0, method.inference = "none")

The method getPairScore can then be used to extract the contribution of each pair. For instance the

following code extracts the contribution for the first endpoint:

getPairScore(BT.keep, endpoint = 1)

index.1 index.2 favorable unfavorable neutral uninf weight

1: 1 70 1 0 0 0 1

2: 2 70 1 0 0 0 1

3: 3 70 1 0 0 0 1

4: 4 70 1 0 0 0 1

5: 5 70 1 0 0 0 1

4688: 65 137 0 1 0 0 1

4689: 66 137 0 1 0 0 1

4690: 67 137 0 1 0 0 1

4691: 68 137 0 1 0 0 1

4692: 69 137 0 1 0 0 1

Each line corresponds to different comparison between a pair from the control arm and the treatment

arm. The column strata store to which strata the pair belongs (first, second, . . .). The columns favorable,

unfavorable, neutral, uninformative contains the result of the comparison, e.g. the first pair was classified

as favorable while the last was classified as favorable with a weight of 1. The second and third columns

indicates the rows in the original dataset corresponding to the pair:

veteran[c(70,1),]

trt celltype time status karno diagtime age prior

70 2 squamous 999 1 90 12 54 10

1 1 squamous 72 1 60 7 69 0

For the first pair, the event was observed for both observations and since 999 > 72 + 20 the pair is rated

favorable. Substracting the average probability of the pair being favorable minus the average probability

of the pair being unfavorable:

17

getPairScore(BT.keep, endpoint = 1)[, mean(favorable) - mean(unfavorable)]

[1] -0.08765836

gives the net benefit in favor of the treatment for the first endpoint:

BT.keep

endpoint threshold delta Delta

time 20 -0.0877 -0.0877

karno -0.0133 -0.1009

More examples and explanation can be found in the documentation of the method getPairScore.

2.2 Extracting the survival probabilities

When using scoring.rule equals "Peron", survival probabilities at event time, and event times +/-

threshold in the control and treatment arms are used to score the pair. Setting keep.survival to TRUE

and precompute to FALSE in BuyseTest.options enables to export the survival probabilities in the output

of BuyseTest:

BuyseTest.options(keep.survival = TRUE, precompute = FALSE)

BT.keep2 <- BuyseTest(trt ∼ tte(time, threshold = 20, status = "status") + cont(karno),

data = veteran, keep.pairScore = TRUE, scoring.rule = "Peron",

trace = 0, method.inference = "none")

The method getSurvival can then be used to extract these survival probabilities. For instance the

following code extracts the survival for the first endpoint:

outSurv <- getSurvival(BT.keep2, endpoint = 1, strata = 1)

str(outSurv)

List of 5

$ survTimeC: num [1:69, 1:13] 72 411 228 126 118 10 82 110 314 100 ...

..- attr(*, "dimnames")=List of 2

.. ..$: NULL

.. ..$: chr [1:13] "time" "survivalC-threshold" "survivalC_0" "survivalC+threshold" ...

$ survTimeT: num [1:68, 1:13] 999 112 87 231 242 991 111 1 587 389 ...

..- attr(*, "dimnames")=List of 2

.. ..$: NULL

.. ..$: chr [1:13] "time" "survivalC-threshold" "survivalC_0" "survivalC+threshold" ...

$ survJumpC: num [1:57, 1:6] 3 4 7 8 10 11 12 13 16 18 ...

..- attr(*, "dimnames")=List of 2

.. ..$: NULL

.. ..$: chr [1:6] "time" "survival" "dSurvival" "index.survival" ...

$ survJumpT: num [1:51, 1:6] 1 2 7 8 13 15 18 19 20 21 ...

..- attr(*, "dimnames")=List of 2

.. ..$: NULL

.. ..$: chr [1:6] "time" "survival" "dSurvival" "index.survival" ...

$ lastSurv : num [1:2] 0 0

18

2.2.1 Computation of the score with only one censored event

Let’s look at pair 91:

getPairScore(BT.keep2, endpoint = 1, rm.withinStrata = FALSE)[91]

index.1 index.2 indexWithinStrata.1 indexWithinStrata.2 favorable unfavorable neutral

1: 22 71 22 2 0 0.6950827 0.3049173

uninf weight

1: 0 1

In the dataset this corresponds to:

veteran[c(22,71),]

trt celltype time status karno diagtime age prior

22 1 smallcell 97 0 60 5 67 0

71 2 squamous 112 1 80 6 60 0

The observation from the control group is censored at 97 while the observation from the treatment

group has an event at 112. Since the threshold is 20, and (112-20)<97, we know that the pair is not in

favor of the treatment. The formula for probability in favor of the control is Sc(97)
Sc(112+20)

. The survival at the

event time in the censoring group is stored in survTimeC. Since observation 22 is the 22th observation in

the control group:

iSurv <- outSurv$survTimeC[22,]

iSurv

time survivalC-threshold survivalC_0

97.0000000 0.5615232 0.5171924

survivalC+threshold survivalT-threshold survivalT_0

0.4235463 0.4558824 0.3643277

survivalT+threshold index.survivalC-threshold index.survivalC_0

0.2827500 25.0000000 28.0000000

index.survivalC+threshold index.survivalT-threshold index.survivalT_0

33.0000000 27.0000000 32.0000000

index.survivalT+threshold

35.0000000

Since we are interested in the survival in the control arm exactly at the event time:

Sc97 <- iSurv["survivalC_0"]

Sc97

survivalC_0

0.5171924

The survival at the event time in the treatment group is stored in survTimeC. Since observation 71 is

the 2nd observation in the treatment group:

19

iSurv <- outSurv$survTimeT[2,] ## survival at time 112+20

iSurv

time survivalC-threshold survivalC_0

112.0000000 0.5319693 0.4549201

survivalC+threshold survivalT-threshold survivalT_0

0.3594915 0.3801681 0.2827500

survivalT+threshold index.survivalC-threshold index.survivalC_0

0.2827500 27.0000000 32.0000000

index.survivalC+threshold index.survivalT-threshold index.survivalT_0

37.0000000 31.0000000 35.0000000

index.survivalT+threshold

35.0000000

Since we are interested in the survival in the control arm at the event time plus threshold:

Sc132 <- iSurv["survivalC+threshold"]

Sc132

survivalC+threshold

0.3594915

The probability in favor of the control is then:

Sc132/Sc97

survivalC+threshold

0.6950827

2.2.2 Computation of the score with two censored events

When both observations are censored, the formula for computing the probability in favor of treatment or

control involves an integral. This integral can be computed using the function calcIntegralSurv_cpp

that takes as argument a matrix containing the survival and the jumps in survival, e.g.:

head(outSurv$survJumpT)

time survival dSurvival index.survival index.dsurvival1 index.dsurvival2

[1,] 1 0.7681159 -0.02941176 12 0 1

[2,] 2 0.7536232 -0.01470588 13 1 2

[3,] 7 0.7388463 -0.02941176 14 2 3

[4,] 8 0.7388463 -0.02941176 14 3 4

[5,] 13 0.7092924 -0.01470588 16 4 5

[6,] 15 0.6945155 -0.02941176 17 5 6

and the starting time of the integration time. For instance, let’s look at pair 148:

20

getPairScore(BT.keep2, endpoint = 1, rm.withinStrata = FALSE)[148]

index.1 index.2 indexWithinStrata.1 indexWithinStrata.2 favorable unfavorable neutral

1: 10 72 10 3 0.5058685 0.3770426 0.1170889

uninf weight

1: 0 1

which corresponds to the observations:

veteran[c(10,72),]

trt celltype time status karno diagtime age prior

10 1 squamous 100 0 70 6 70 0

72 2 squamous 87 0 80 3 48 0

The probability in favor of the treatment (pF) and control (pUF) can be computed as:

pF = −
1

ST (x)SC(y)

∫
t>y

ST (t + τ)dSC(t)

pUF = −
1

ST (x)SC(y)

∫
t>x

SC(t + τ)dST (t)

where x = 87 and y = 100. To ease the call of calcIntegralScore_cpp we create a warper:

calcInt <- function(...){ ## no need for the functionnal derivative of the score

BuyseTest:::.calcIntegralSurv_cpp(...,

returnDeriv = FALSE,

derivSurv = matrix(0),

derivSurvD = matrix(0))

}

and then call it to compute the probabilities:

denom <- as.double(outSurv$survTimeT[3,"survivalT_0"] * outSurv$survTimeC[10,"survivalC_0"])

M <- cbind("favorable" = -calcInt(outSurv$survJumpC, start = 100,

lastSurv = outSurv$lastSurv[2],

lastdSurv = outSurv$lastSurv[1])/denom,

"unfavorable" = -calcInt(outSurv$survJumpT, start = 87,

lastSurv = outSurv$lastSurv[1],

lastdSurv = outSurv$lastSurv[2])/denom)

rownames(M) <- c("lowerBound","upperBound")

M

favorable unfavorable

lowerBound 0.5058685 0.3770426

upperBound 0.5058685 0.3770426

Note: the lower bound is identical to the upper bound as we could estimate the full survival curve:

outSurv$lastSurv

[1] 0 0

21

3 Dealing with missing values or/and right censoring

In presence of censoring or missing values, it is often not be possible to classify all pairs without a model

for the censoring mechanism. The unclassified pairs, called uninformative, have a score of 0 which will

typically bias the estimate of the net net benefit towards 0 3. Consider the following dataset:

set.seed(10)

dt <- simBuyseTest(1e2, latent = TRUE, argsCont = NULL,

argsTTE = list(scale.T = 1/2, scale.C = 1,

scale.censoring.C = 1, scale.censoring.T = 1))

dt[, eventtimeCensoring := NULL]

dt[, status1 := 1]

head(dt)

treatment eventtimeUncensored eventtime status toxicity eta_toxicity status1

1: C 0.2135567 0.2135567 1 yes -0.07945702 1

2: C 0.3422379 0.3422379 1 no 1.18175155 1

3: C 1.3933222 1.3933222 1 no 2.18614406 1

4: C 0.6737702 0.1961599 0 no 0.40617493 1

5: C 0.5642992 0.5642992 1 yes -0.73835910 1

6: C 1.1039218 0.1764950 0 yes -1.95648670 1

where we have the uncensored event times (eventtimeUncensored) as well as the censored event times

(eventtime). The percentage of censored observations is:

100*dt[,mean(status==0)]

[1] 44

We would like to be able to recover the net benefit estimated with the uncensored event times:

BuyseTest(treatment ∼ tte(eventtimeUncensored, status1, threshold = 0.5),

data = dt,

scoring.rule = "Gehan", method.inference = "none", trace = 0)

endpoint threshold Delta

eventtimeUncensored 0.5 -0.271

using the censored survival times.

3While the power is typically reduced, the type 1 error will still be controled if censoring is at random

22

The BuyseTest function handles missing values via two arguments:

• scoring.rule indicates how pairs involving missing data are compared.

– the Gehan’s scoring rule compares the observed values. If it is not possible to decide whether

one observation has a better endpoint than the other (e.g. because both are right-censoring)

then the paired is scored uninformative.

– the Peron’s scoring rule compares the probabilty of one observation having a better endpoint

than the other given the observed values. This require a model for the censoring distribution.

If the full survival curve can be identified then all pairs can be fully classified otherwise some

of the pair will be partially uninformative.

• correction.uninf indicates what to do with the uninformative scores. Setting this argument to

TRUE will re-distribute this score to favorable/unfavorable/neutral scores.

When the survival curve can be fully identified, the default (and recommanded) approach is to use

the Peron’s scoring rule where the censoring model rely on Kaplan Meier curve is fitted in each treatment

group. When the last observation are censored, then part of the survival curve is unknown and there is

no perfect solution. One can:

• only use the Peron’s scoring rule, which will lead to a non-0 uninformative score and therefore a

"conservative" estimate of the net benefit.

• use the Peron’s scoring rule in conjonction with the correction which will led to an unbiased estimator

if certain assumption are met.

• only use the Peron’s scoring rule with a parametric model which, if appropriate, will lead to an

unbiased (and rather efficient) estimator.

3.1 Gehan’s scoring rule

In the example, Gehan’s scoring rule:

e.G <- BuyseTest(treatment ∼ tte(eventtime, status, threshold = 0.5),

data = dt, scoring.rule = "Gehan", trace = 0)

summary(e.G, print=FALSE)$table.print

endpoint threshold total(%) favorable(%) unfavorable(%) neutral(%) uninf(%) Delta

1 eventtime 0.5 100 4.67 14.39 20.44 60.5 -0.0972

CI [2.5% ; 97.5%] p.value significance

1 [-0.1594;-0.0342] 0.0025149 **

leads to many uninformative pairs (about 60%) and an estimate much closer to 0 than the truth.

23

3.2 Peron’s scoring rule

In the example, Peron’s scoring rule:

e.P <- BuyseTest(treatment ∼ tte(eventtime, status, threshold = 0.5),

data = dt, scoring.rule = "Peron", trace = 0)

summary(e.P, print=FALSE)$table.print

endpoint threshold total(%) favorable(%) unfavorable(%) neutral(%) uninf(%) Delta

1 eventtime 0.5 100 11.17 43.34 44.12 1.37 -0.3216

CI [2.5% ; 97.5%] p.value significance

1 [-0.4584;-0.17] 5.3851e-05 ***

leads to no uninformative pairs. Indeed the last observation in each group is an (uncensored) event:

dt[,.SD[which.max(eventtime)],by="treatment"]

treatment eventtimeUncensored eventtime status toxicity eta_toxicity status1

1: C 2.668629 2.668629 1 yes -1.9256436 1

2: T 1.674053 1.588657 0 yes -0.8647272 1

so the full survival curve could be identified. As a result the estimate is very close to the truth.

Note 1: the censoring model can be specified by first fitting a Kaplan Meier model for the survival

time:

library(prodlim)

e.prodlim <- prodlim(Hist(eventtime, status) ∼ treatment, data = dt)

Then passing the model to the BuyseTest via the model.tte argument:

e.P1 <- BuyseTest(treatment ∼ tte(eventtime, status, threshold = 0.5),

model.tte = e.prodlim,

data = dt, scoring.rule = "Peron", trace = 0)

summary(e.P1, print=FALSE)$table.print

endpoint threshold total(%) favorable(%) unfavorable(%) neutral(%) uninf(%) Delta

1 eventtime 0.5 100 11.17 43.34 44.12 1.37 -0.3216

CI [2.5% ; 97.5%] p.value significance

1 [-0.4187;-0.2173] 6.5701e-09 ***

Note that the CI/p-value have changed since, unless stated otherwise, BuyseTest assumes no uncer-

tainty about the survival model when using model.tte. One can force it to account for the uncertainty

adding an attribute:

attr(e.prodlim, "iidNuisance") <- TRUE

e.P2 <- BuyseTest(treatment ∼ tte(eventtime, status, threshold = 0.5),

model.tte = e.prodlim,

data = dt, scoring.rule = "Peron", trace = 0)

summary(e.P2, print=FALSE)$table.print

24

endpoint threshold total(%) favorable(%) unfavorable(%) neutral(%) uninf(%) Delta

1 eventtime 0.5 100 11.17 43.34 44.12 1.37 -0.3216

CI [2.5% ; 97.5%] p.value significance

1 [-0.4584;-0.17] 5.3851e-05 ***

Note 2: it is possible to use a parametric model via the survreg function:

library(survival)

e.survreg <- survreg(Surv(eventtime, status) ∼ treatment, data = dt,

dist = "weibull")

attr(e.survreg, "iidNuisance") <- TRUE

Then passing the model to the BuyseTest via the model.tte argument:

e.P3 <- BuyseTest(treatment ∼ tte(eventtime, status, threshold = 0.5),

model.tte = e.survreg,

data = dt, scoring.rule = "Peron", trace = 0)

summary(e.P3, print=FALSE)$table.print

endpoint threshold total(%) favorable(%) unfavorable(%) neutral(%) uninf(%) Delta

1 eventtime 0.5 100 11.88 34.19 53.92 0.01 -0.2231

CI [2.5% ; 97.5%] p.value significance

1 [-0.3455;-0.0932] 0.00085702 ***

Internally the survival curve is discretized using 1000 points starting from survival = 1 to survival =

0.001 (this is why there is a non-0 but small percentage of uninformative pairs). This is performed internally

by applying the BuyseTTEM method. Another discretisation can be obtained by calling BuyseTTEM with

another value for the n.grid argument:

e.TTEM <- BuyseTTEM(e.survreg, treatment = "treatment", iid = TRUE, n.grid = 2500)

attr(e.TTEM, "iidNuisance") <- TRUE

str(e.TTEM$peron$jumpSurvHaz[[1]][[1]])

’data.frame’: 2500 obs. of 3 variables:

$ index.jump: logi NA NA NA NA NA NA ...

$ time.jump : num 0 0.000307 0.000632 0.000964 0.001301 ...

$ survival : num 1 1 0.999 0.999 0.998 ...

and then passing to BuyseTest:

e.P4 <- BuyseTest(treatment ∼ tte(eventtime, status, threshold = 0.5),

model.tte = e.TTEM,

data = dt, scoring.rule = "Peron", trace = 0)

summary(e.P4, print=FALSE)$table.print

endpoint threshold total(%) favorable(%) unfavorable(%) neutral(%) uninf(%) Delta

1 eventtime 0.5 100 11.87 34.18 53.94 0.01 -0.2231

CI [2.5% ; 97.5%] p.value significance

1 [-0.3455;-0.0932] 0.00085776 ***

It is therefore possible to extend the approach to other model by defining an appropriate BuyseTTEM

method. Looking at the code use for defining BuyseTTEM.survreg can be helpful.

25

3.3 Correction via inverse probability-of-censoring weights (IPCW)

With IPCW, the weights of the non-informative pairs is redistributed to the informative pairs. This is

only a good strategy when there are no neutral pairs or there are no lower priority endpoints. This gives

an estimate much closer to the true net benefit:

BT <- BuyseTest(treatment ∼ tte(eventtime, status, threshold = 0.5),

data = dt, keep.pairScore = TRUE, trace = 0,

scoring.rule = "Gehan", method.inference = "none", correction.uninf = 2)

summary(BT)

Generalized pairwise comparisons with 1 endpoint

- statistic : net benefit (delta: endpoint specific, Delta: global)

- null hypothesis : Delta == 0

- treatment groups: T (treatment) vs. C (control)

- censored pairs : deterministic score or uninformative

- uninformative pairs: no contribution, their weight is passed to the informative pairs using IPCW

- results

endpoint threshold total(%) favorable(%) unfavorable(%) neutral(%) uninf(%) Delta

eventtime 0.5 100 11.82 36.43 51.75 0 -0.2461

We can also see that no pair is finally classified as non informative. To get some inside about the

correction we can look at the scores of the pairs:

iScore <- getPairScore(BT, endpoint = 1)

To get a synthetic view, we only look at the unique favorable/unfavorable/neutral/uniformative re-

sults:

iScore[,.SD[1],

.SDcols = c("favorableC","unfavorableC","neutralC","uninfC"),

by = c("favorable","unfavorable","neutral","uninf")]

favorable unfavorable neutral uninf favorableC unfavorableC neutralC uninfC

1: 0 0 1 0 0.000000 0.000000 2.531646 0

2: 0 1 0 0 0.000000 2.531646 0.000000 0

3: 0 0 0 1 0.000000 0.000000 0.000000 0

4: 1 0 0 0 2.531646 0.000000 0.000000 0

We can see that the favorable/unfavorable/neutral pairs have seen their contribution multiplied by:

iScore[,1/mean(favorable + unfavorable + neutral)]

[1] 2.531646

i.e. the inverse probability of being informative.

26

3.4 Correction at the pair level

Another possible correction is to distribute the non-informative weight of a pair to the average favor-

able/unfavorable/neutral probability observed on the sample:

BT <- BuyseTest(treatment ∼ tte(eventtime, status, threshold = 0.5),

data = dt, keep.pairScore = TRUE, trace = 0,

scoring.rule = "Gehan", method.inference = "none", correction.uninf = TRUE)

summary(BT)

Generalized pairwise comparisons with 1 endpoint

- statistic : net benefit (delta: endpoint specific, Delta: global)

- null hypothesis : Delta == 0

- treatment groups: T (treatment) vs. C (control)

- censored pairs : deterministic score or uninformative

- uninformative pairs: score equals the averaged score of all informative pairs

- results

endpoint threshold total(%) favorable(%) unfavorable(%) neutral(%) uninf(%) Delta

eventtime 0.5 100 11.82 36.43 51.75 0 -0.2461

Looking at the scores of the pairs:

iScore <- getPairScore(BT, endpoint = 1)

iScore[,.SD[1],

.SDcols = c("favorableC","unfavorableC","neutralC","uninfC"),

by = c("favorable","unfavorable","neutral","uninf")]

favorable unfavorable neutral uninf favorableC unfavorableC neutralC uninfC

1: 0 0 1 0 0.0000000 0.0000000 1.0000000 0

2: 0 1 0 0 0.0000000 1.0000000 0.0000000 0

3: 0 0 0 1 0.1182278 0.3643038 0.5174684 0

4: 1 0 0 0 1.0000000 0.0000000 0.0000000 0

we can see that the corrected probability have not changed for the informative pairs, but for the

non-informative they have been set to:

iScore[, .(favorable = weighted.mean(favorable, w = 1-uninf),

unfavorable = weighted.mean(unfavorable, w = 1-uninf),

neutral = weighted.mean(neutral, w = 1-uninf))]

favorable unfavorable neutral

1: 0.1182278 0.3643038 0.5174684

27

3.5 Note on the use of the corrections

As mentioned in Péron et al. (2021), the corrections (at the pair level or IPCW) are assumes that un-

informative pairs would on average behave like informative pairs. This is typically the case under the

proportional hazard assumption. However that may not be the case with other distributions, e.g.:

set.seed(10);n <- 250;

df <- rbind(data.frame(group = "T1", time = rweibull(n, shape = 1, scale = 2), status = 1),

data.frame(group = "T2", time = rweibull(n, shape = 2, scale = 1.8), status = 1))

df$censoring <- runif(NROW(df),0,2)

df$timeC <- pmin(df$time,df$censoring)

df$statusC <- as.numeric(df$time<=df$censoring)

plot(prodlim(Hist(time,status)∼group, data = df)); title("complete data");

plot(prodlim(Hist(timeC,statusC)∼group, data = df)); title("right-censored data");

Time

S
u
rv

iv
a
l
p
ro

b
a
b
ili

ty

0 2 4 6 8

0
 %

2
5
 %

5
0
 %

7
5
 %

1
0
0
 %

group

T1

T2

complete data

Time

S
u
rv

iv
a
l
p
ro

b
a
b
ili

ty

0.0 0.5 1.0 1.5 2.0

0
 %

2
5
 %

5
0
 %

7
5
 %

1
0
0
 %

group

T1

T2

right−censored data

Here the net benefit that we would have estimated with complete data:

BuyseTest.options(method.inference = "none")

e.ref <- BuyseTest(group ∼ tte(time,status), data = df, trace = FALSE)

s.ref <- summary(e.ref, print = FALSE)$table[1,c("favorable","unfavorable","neutral","uninf","

Delta")]

s.ref

favorable unfavorable neutral uninf Delta

1 50.2048 49.7952 0 0 0.004096

can be taken as a reference. Violation of the assumption will in this example have a substantial impact

and lead to a worse estimate with the correction:

28

e.correction <- BuyseTest(group ∼ tte(timeC,statusC)+cont(time), data = df, trace = FALSE,

correction.uninf = TRUE)

s.correction <- summary(e.correction, print = FALSE)$table[1,c("favorable","unfavorable","

neutral","uninf","Delta")]

Warning message:

In .BuyseTest(envir = envirBT, iid = outArgs$iid, method.inference = "none", :

Some of the survival curves for endpoint(s) "timeC" are unknown beyond a survival of 0.25.

The correction of uninformative pairs assume that uninformative pairs would on average behave like informative

This can be a strong assumption and have substantial impact when the tail of the survival curve is unknown.

than without:

e.Peron <- BuyseTest(group ∼ tte(timeC,statusC), data = df, trace = FALSE)

s.Peron <- summary(e.Peron,print = FALSE)$table[1,c("favorable","unfavorable","neutral","uninf

","Delta")]

rbind("reference" = s.ref,

"no correction" = s.Peron,

"correction" = s.correction)

favorable unfavorable neutral uninf Delta

reference 50.20480 49.79520 0 0.00000 0.00409600

no correction 49.09253 39.74775 0 11.15972 0.09344778

correction 55.25931 44.74069 0 0.00000 0.10518628

29

4 Simulating data using simBuyseTest

You can simulate data with the simBuyseTest function. For instance the following code simulates data

for 5 individuals in the treatment arm and 5 individuals in the control arm:

set.seed(10)

simBuyseTest(n.T = 5, n.C = 5)

treatment eventtime status toxicity score

1: C 0.60539304 0 yes -1.85374045

2: C 0.31328027 1 yes -0.07794607

3: C 0.03946623 0 yes 0.96856634

4: C 0.32147489 1 yes 0.18492596

5: C 1.57044952 0 yes -1.37994358

6: T 0.29069131 0 no 1.10177950

7: T 0.19522131 0 yes 0.75578151

8: T 0.04640668 0 yes -0.23823356

9: T 0.05277335 1 yes 0.98744470

10: T 0.43062009 1 yes 0.74139013

By default a categorical, continuous and time to event outcome are generated independently. You can

modify their distribution via the arguments argsBin, argsCont, argsTTE. For instance the following code

simulates two continuous variables with mean 5 in the treatment arm and 10 in the control arm all with

variance 1:

set.seed(10)

argsCont <- list(mu.T = c(5,5), mu.C = c(10,10),

sigma.T = c(1,1), sigma.C = c(1,1),

name = c("tumorSize","score"))

dt <- simBuyseTest(n.T = 5, n.C = 5,

argsCont = argsCont)

dt

treatment eventtime status toxicity tumorSize score

1: C 0.1805891 0 yes 11.086551 8.564486

2: C 0.1702538 1 yes 9.237455 10.362087

3: C 0.2621793 1 no 9.171337 8.240913

4: C 0.2959301 0 no 10.834474 9.675456

5: C 0.4816549 1 yes 9.032348 9.348437

6: T 0.6446131 1 no 5.089347 6.101780

7: T 0.7372264 1 yes 4.045056 5.755782

8: T 0.7213402 0 yes 4.804850 4.761766

9: T 0.1580651 1 yes 5.925521 5.987445

10: T 0.2212117 0 yes 5.482979 5.741390

This functionality is based on the sim function of the lava package (https://github.com/kkholst/

lava)

30

https://github.com/kkholst/lava
https://github.com/kkholst/lava

5 Power calculation using powerBuyseTest

The function powerBuyseTest can be used to perform power calculation, i.e., estimate the probability of

rejecting a null hypothesis under a specific generative mechanism. The user therefore need to specify:

• the generative mechanism via a function - argument sim

• the null hypothesis - argument null

• the sample size(s) for the which the power should be computed - argument sample.size

Consider the following generative mechanism where the outcome follows a Student’s t-distribution in

the treatment and control group, with same variance and degrees of freedom but different mean:

simFCT <- function(n.C, n.T){

out <- rbind(cbind(Y=stats::rt(n.C, df = 5), group=0),

cbind(Y=stats::rt(n.T, df = 5) + 1/2, group=1))

return(data.table::as.data.table(out))

}

simFCT(101,101)

Y group

1: -0.5080164 0

2: 1.3917774 0

3: 1.2909425 0

4: 1.1812472 0

5: 0.6935526 0

198: -0.0193772 1

199: -1.0573662 1

200: -0.7772939 1

201: 0.1583587 1

202: 4.7379910 1

We then define the null hypothesis:

null <- c("netBenefit" = 0)

Naming the value is important since that will indicate which statistic should be used (here the net

benefit). We can assess the power of a test based on the net benefit using the following syntax:

powerW <- powerBuyseTest(sim = simFCT, method.inference = "u-statistic", null = null,

sample.size = c(5,10,20,30,50,100),

formula = group ∼ cont(Y),

n.rep = 1000, seed = 10, cpus = 6, trace = 0)

31

And use the summary method to display the power (column rejection.rate):

summary(powerW)

Simulation study with Generalized pairwise comparison

with 1000 samples

- statistic : net benefit (null hypothesis Delta=0)

endpoint threshold n.T n.C mean.estimate sd.estimate mean.se rejection.rate

Y 1e-12 5 5 0.2337 0.3831 0.3342 0.078

10 10 0.2488 0.2747 0.2439 0.158

20 20 0.2475 0.1832 0.1753 0.253

30 30 0.2474 0.1503 0.1434 0.377

50 50 0.2411 0.1161 0.1114 0.542

100 100 0.2433 0.0829 0.0787 0.837

n.T : number of observations in the treatment group

n.C : number of observations in the control group

mean.estimate: average estimate over simulations

sd.estimate : standard deviation of the estimate over simulations

mean.se : average estimated standard error of the estimate over simulations

rejection : frequency of the rejection of the null hypothesis over simulations

(standard error: H-projection of order 1| p-value: after transformation)

It is also possibly to use an asymptotic approximation to derive a approximate sample size satisfying

a specific type 1 and type 2 error rate:

nW <- powerBuyseTest(sim = simFCT, method.inference = "u-statistic", null = null,

power = 0.8, max.sample.size = 10000,

formula = group ∼ cont(Y),

n.rep = 1000, seed = 10, cpus = 6, trace = 0)

summary(nW)

Simulation study with Generalized pairwise comparison

with 1000 samples

- statistic : net benefit (null hypothesis Delta=0)

endpoint threshold n.T n.C mean.estimate sd.estimate mean.se rejection.rate

Y 1e-12 91 91 0.2394 0.0847 0.0826 0.799

n.T : number of observations in the treatment group

n.C : number of observations in the control group

mean.estimate: average estimate over simulations

sd.estimate : standard deviation of the estimate over simulations

mean.se : average estimated standard error of the estimate over simulations

rejection : frequency of the rejection of the null hypothesis over simulations

(standard error: H-projection of order 1| p-value: after transformation)

This procedure is inspired from the procedure presented by Brunner et al. (2018) in section 3.8.2.2.

32

6 Modifying default options

The BuyseTest.options method enable to get and set the default options of the BuyseTest function. For

instance, the default option for trace is:

BuyseTest.options("trace")

$trace

[1] 2

To change the default option to 0 (i.e. no output) use:

BuyseTest.options(trace = 0)

To change what the results output by the summary function use:

BuyseTest.options(summary.display = list(c("endpoint","threshold","delta","Delta","information

(%)")))

summary(BT)

Generalized pairwise comparisons with 1 endpoint

- statistic : net benefit (delta: endpoint specific, Delta: global)

- null hypothesis : Delta == 0

- treatment groups: T (treatment) vs. C (control)

- censored pairs : deterministic score or uninformative

- uninformative pairs: score equals the averaged score of all informative pairs

- results

endpoint threshold Delta information(%)

eventtime 0.5 -0.2461 100

To restore the original default options do:

BuyseTest.options(reinitialise = TRUE)

33

References

Brunner, E., Bathke, A. C., and Konietschke, F. (2018). Rank and pseudo-rank procedures for independent

observations in factorial designs. Springer.

Buyse, M. (2010). Generalized pairwise comparisons of prioritized outcomes in the two-sample problem.

Statistics in medicine, 29(30):3245–3257.

Dong, G., Qiu, J., Wang, D., and Vandemeulebroecke, M. (2018). The stratified win ratio. Journal of

biopharmaceutical statistics, 28(4):778–796.

Ozenne, B., Budtz-Jørgensen, E., and Péron, J. (2021). The asymptotic distribution of the net benefit

estimator in presence of right-censoring. Statistical methods in medical research, 30(11):2399–2412.

Péron, J., Buyse, M., Ozenne, B., Roche, L., and Roy, P. (2018). An extension of generalized pairwise

comparisons for prioritized outcomes in the presence of censoring. Statistical methods in medical research,

27(4):1230–1239.

Péron, J., Idlhaj, M., Maucort-Boulch, D., Giai, J., Roy, P., Collette, L., Buyse, M., and Ozenne, B.

(2021). Correcting the bias of the net benefit estimator due to right-censored observations. Biometrical

Journal, 63(4):893–906.

Verbeeck, J., Spitzer, E., de Vries, T., van Es, G., Anderson, W., Van Mieghem, N., Leon, M., Molenberghs,

G., and Tijssen, J. (2019). Generalized pairwise comparison methods to analyze (non) prioritized

composite endpoints. Statistics in medicine.

34

	Performing generalized pairwise comparisons (GPC) using the BuyseTest function
	Displaying the results
	Stratified GPC
	Using multiple endpoints
	What if smaller is better?
	Stopping comparison for neutral pairs
	What about p-value and confidence intervals?
	Sensitivity analysis

	Getting additional inside: looking at the pair level
	Extracting the contribution of each pair to the statistic
	Extracting the survival probabilities
	Computation of the score with only one censored event
	Computation of the score with two censored events

	Dealing with missing values or/and right censoring
	Gehan's scoring rule
	Peron's scoring rule
	Correction via inverse probability-of-censoring weights (IPCW)
	Correction at the pair level
	Note on the use of the corrections

	Simulating data using simBuyseTest
	Power calculation using powerBuyseTest
	Modifying default options

